CN108920841B - Antenna design method - Google Patents
Antenna design method Download PDFInfo
- Publication number
- CN108920841B CN108920841B CN201810729086.XA CN201810729086A CN108920841B CN 108920841 B CN108920841 B CN 108920841B CN 201810729086 A CN201810729086 A CN 201810729086A CN 108920841 B CN108920841 B CN 108920841B
- Authority
- CN
- China
- Prior art keywords
- antenna
- neural network
- antenna design
- input
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013461 design Methods 0.000 title claims abstract description 128
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000013528 artificial neural network Methods 0.000 claims abstract description 109
- 230000004044 response Effects 0.000 claims abstract description 52
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 49
- 238000005457 optimization Methods 0.000 claims abstract description 28
- 238000004088 simulation Methods 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims description 50
- 210000002569 neuron Anatomy 0.000 claims description 13
- 238000005070 sampling Methods 0.000 claims description 10
- 239000013598 vector Substances 0.000 claims description 8
- 230000002068 genetic effect Effects 0.000 claims description 7
- 210000002364 input neuron Anatomy 0.000 claims description 7
- 210000004205 output neuron Anatomy 0.000 claims description 7
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 238000013507 mapping Methods 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims 2
- 238000004364 calculation method Methods 0.000 abstract description 11
- 238000003062 neural network model Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 238000012938 design process Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013210 evaluation model Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Biophysics (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Computer Hardware Design (AREA)
- Neurology (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明公开了一种天线设计方法,包括构建天线初始模型;选取输入样本输入天线初始模型得到天线模型响应;采用神经网络结构模拟得到天线代理模型;构建天线设计参数变量和目标函数;将天线设计参数变量输入天线代理模型得到响应并计算目标函数值;对目标函数值进行判断得到最终的天线设计参数。本发明采用混合优化算法联合优化神经网络的网络结构和初始结构参数,简化神经网络结构,降低神经网络的计算成本,提高神经网络的预测精度,然后利用神经网络作为代理模型拟合天线设计参数样本的电磁仿真数据,代替耗时巨大的电磁仿真实现从天线结构参数到电磁响应的瞬时近似计算,减少电磁仿真次数,极大降低计算成本,显著提高天线设计效率。
The invention discloses an antenna design method, which includes constructing an initial model of the antenna; selecting an input sample to input the initial model of the antenna to obtain the response of the antenna model; simulating the structure of a neural network to obtain an antenna proxy model; constructing antenna design parameter variables and objective functions; The parameter variables are input into the antenna proxy model to get the response and calculate the objective function value; the final antenna design parameters are obtained by judging the objective function value. The present invention uses a hybrid optimization algorithm to jointly optimize the network structure and initial structural parameters of the neural network, simplifies the neural network structure, reduces the calculation cost of the neural network, improves the prediction accuracy of the neural network, and then uses the neural network as a proxy model to fit antenna design parameter samples The electromagnetic simulation data, instead of the time-consuming electromagnetic simulation, realizes the instantaneous approximate calculation from the antenna structure parameters to the electromagnetic response, reduces the number of electromagnetic simulations, greatly reduces the calculation cost, and significantly improves the antenna design efficiency.
Description
技术领域technical field
本发明具体涉及一种天线设计方法。The invention specifically relates to an antenna design method.
背景技术Background technique
随着经济技术的发展和人们生活水平的提高,通信已经成为了人们生产和生活中必不可少的环节。With the development of economy and technology and the improvement of people's living standards, communication has become an indispensable link in people's production and life.
作为导行电磁波与自由空间电磁波之间的能量转换装置,天线在移动通信、雷达、卫星通信等领域具有广泛的应用。现代无线通信系统的发展不仅要求天线具有重量轻、成本低、易于制造和易于集成等特点,还对天线的小型化、宽频带、多频带、共形和一体化设计提出了前所未有的要求。As an energy conversion device between guided electromagnetic waves and free space electromagnetic waves, antennas are widely used in mobile communications, radar, satellite communications and other fields. The development of modern wireless communication systems not only requires antennas to be light in weight, low in cost, easy to manufacture and easy to integrate, but also puts forward unprecedented requirements for miniaturization, broadband, multiband, conformal and integrated design of antennas.
常规天线的设计一般基于规则结构,利用现有的经验公式,结合天线工程师的设计经验和实物测量与调试。这样的天线设计方法,天线设计周期往往较长;更重要的是,这些常规的天线设计方法对非规则结构、新型结构和高性能要求的天线设计显得无能为力。且当优化设计多参数多目标的天线结构时,设计过程冗长、优化能力和效率变得很差。The design of conventional antennas is generally based on regular structures, using existing empirical formulas, combined with the design experience of antenna engineers and physical measurement and debugging. With such antenna design methods, the antenna design cycle is often longer; more importantly, these conventional antenna design methods are powerless for antenna designs with irregular structures, new structures, and high-performance requirements. Moreover, when optimally designing a multi-parameter and multi-objective antenna structure, the design process is lengthy, and the optimization ability and efficiency become very poor.
智能优化算法可被认为是简单而通用的目标优化策略,通常是模仿各种生物或社会现象(如群体智能、遗传过程等)。这些算法能够实现天线结构参数的自动调整以及多个设计目标的同时优化。尽管如此,伴随基于种群的智能优化算法的好处,该类算法的一个明显缺陷就是优化过程需要进行巨大数量的模型评估。一个现实天线模型的单一评估通常需要几分钟到数十分钟不等,而且实际应用中评估模型往往不止一个,因此计算代价是极大的,因此也阻碍了在设计过程中直接应用智能优化算法,同时也间接导致了各种旨在降低计算成本的策略的发展。另一方面,计算成本高的问题或许可以在具有多个CPU或GPU单元和多个辅助计算设计软件(特别是EM解算器)许可证的超级计算机形式下利用大规模计算资源部分解决。然而,这样的硬件配置并不广泛使用,它们提供非常低的加速-成本比,因此也并不现实。Intelligent optimization algorithms can be considered as simple and general objective optimization strategies, usually imitating various biological or social phenomena (such as swarm intelligence, genetic processes, etc.). These algorithms can realize automatic adjustment of antenna structure parameters and simultaneous optimization of multiple design objectives. Nevertheless, along with the benefits of intelligent population-based optimization algorithms, an obvious drawback of such algorithms is that the optimization process requires a huge number of model evaluations. A single evaluation of a realistic antenna model usually takes several minutes to tens of minutes, and there are often more than one evaluation model in practical applications, so the calculation cost is extremely high, which also hinders the direct application of intelligent optimization algorithms in the design process. It has also indirectly led to the development of various strategies aimed at reducing computational costs. On the other hand, the problem of high computational cost may be partially solved by exploiting large-scale computing resources in the form of supercomputers with multiple CPU or GPU units and multiple licenses of auxiliary computational design software (especially EM solvers). However, such hardware configurations are not widely available, they provide very low speed-up-cost ratios, and are therefore not realistic.
发明内容Contents of the invention
本发明的目的在于提供一种能够极大减小天线设计时的计算成本,从而保证天线设计的高效和可靠的天线设计方法。The purpose of the present invention is to provide an antenna design method that can greatly reduce the calculation cost of antenna design, thereby ensuring efficient and reliable antenna design.
本发明提供的这种天线设计方法,包括如下步骤:This antenna design method provided by the present invention comprises the following steps:
S1.根据天线的设计需求,构建天线初始模型;S1. According to the design requirements of the antenna, construct the initial model of the antenna;
S2.在天线设计空间内选取若干组天线设计参数值作为输入样本,并将样本输入到步骤S1得到的天线初始模型中,从而得到各输入样本所对应的天线模型响应;S2. Select several groups of antenna design parameter values in the antenna design space as input samples, and input the samples into the initial antenna model obtained in step S1, so as to obtain the antenna model responses corresponding to each input sample;
S3.采用神经网络对步骤S2得到的输入样本与天线模型响应之间的映射关系进行模拟,从而得到对应的天线代理模型;S3. Using the neural network to simulate the mapping relationship between the input samples obtained in step S2 and the antenna model response, so as to obtain the corresponding antenna proxy model;
S4.构建若干组天线设计参数变量,并根据天线设计需求构造若干个天线设计目标函数;S4. Construct several groups of antenna design parameter variables, and construct several antenna design objective functions according to antenna design requirements;
S5.将步骤S4得到的天线设计参数变量输入到步骤S3得到的天线代理模型,从而得到各组天线设计参数所对应的响应,并根据得到的响应计算各个天线设计参数所对应的目标函数值;S5. Inputting the antenna design parameter variable obtained in step S4 into the antenna proxy model obtained in step S3, thereby obtaining the corresponding responses of each group of antenna design parameters, and calculating the corresponding objective function value of each antenna design parameter according to the obtained responses;
S6.对步骤S5得到的目标函数值进行判断:S6. Judging the objective function value obtained in step S5:
若有目标函数值符合事先设定的要求,则认定该目标函数值对应的天线设计参数变量为最终的天线设计参数;If any objective function value meets the pre-set requirements, the antenna design parameter variable corresponding to the objective function value is determined to be the final antenna design parameter;
若所有的目标函数值均不符合事先设定的要求,则生成新的若干组天线设计参数变量,并重复步骤S5~S6直至由目标函数值符合事先设定的要求,从而得到最终的天线设计参数。If all the objective function values do not meet the pre-set requirements, generate new sets of antenna design parameter variables, and repeat steps S5-S6 until the objective function values meet the pre-set requirements, so as to obtain the final antenna design parameter.
步骤S2所述的在天线设计空间内选取若干组天线设计参数值,具体为采用拉丁超立方采样方法在天线设计空间内选取若干组天线设计参数值。Selecting several groups of antenna design parameter values in the antenna design space described in step S2 is specifically selecting several groups of antenna design parameter values in the antenna design space by using the Latin hypercube sampling method.
步骤S2所述的并将样本输入到天线初始模型中从而得到各输入样本所对应的天线模型响应,具体为采用电磁仿真工具对输入了样本的天线初始模型进行仿真求解,从而得到各输入样本所对应的天线模型响应。As described in step S2, input the samples into the initial antenna model to obtain the antenna model response corresponding to each input sample. Specifically, the electromagnetic simulation tool is used to simulate and solve the initial antenna model with the input samples, so as to obtain the response of each input sample. The corresponding antenna model response.
步骤S3所述的采用神经网络对得到的输入样本与天线模型响应之间的映射关系进行模拟,具体为根据输入样本及其对应的天线模型响应,采用混合优化算法优化神经网络结构及参数,从而得到能够模拟输入样本及其对应的天线模型响应的神经网络结构,并以该神经网络结构作为最终的天线代理模型。In step S3, the neural network is used to simulate the mapping relationship between the obtained input samples and the antenna model responses, specifically, according to the input samples and the corresponding antenna model responses, a hybrid optimization algorithm is used to optimize the neural network structure and parameters, so that A neural network structure capable of simulating input samples and corresponding antenna model responses is obtained, and the neural network structure is used as the final antenna proxy model.
所述的采用混合优化算法优化神经网络结构及参数,具体为采用如下步骤进行优化:The described adopting hybrid optimization algorithm to optimize the neural network structure and parameters is specifically optimized by adopting the following steps:
A.根据天线设计参数变量及其对应的响应向量,分别确定神经网络的输入神经元数目ni和输出神经元数目no;A. According to the antenna design parameter variables and their corresponding response vectors, respectively determine the number of input neurons n i and the number of output neurons n o of the neural network;
B.确定神经网络隐含层神经元数目nh;B. Determine the number n h of neurons in the hidden layer of the neural network;
C.对神经网络结构及初始结构参数分别进行编码,并初始化混合粒子群;C. Encode the neural network structure and initial structure parameters respectively, and initialize the mixed particle swarm;
D.构造适应度函数f,用于表示神经网络结构对输入样本的预测响应与真实响应之间的预测误差;D. Construct a fitness function f, which is used to represent the prediction error between the predicted response of the neural network structure to the input sample and the real response;
E.计算每个混合粒子的适应度函数值;E. Calculate the fitness function value of each mixed particle;
G.对不同隐含层神经元数据对应的神经网络进行优化后得到神经网络的预测误差,并选取预测误差最小的神经网络作为最终的天线代理模型。G. After optimizing the neural network corresponding to the neuron data of different hidden layers, the prediction error of the neural network is obtained, and the neural network with the smallest prediction error is selected as the final antenna proxy model.
步骤C所述的对神经网络结构及初始结构参数分别进行编码并初始化混合粒子群,具体为采用如下步骤进行编码和初始化:In step C, the neural network structure and initial structural parameters are respectively encoded and the mixed particle swarm is initialized. Specifically, the following steps are used for encoding and initialization:
(1)对神经网络结构进行二进制编码,对神经网络的初始结构参数进行实数编码,并采用如下算式计算二进制与实数粒子的维度d:(1) Perform binary encoding on the neural network structure, perform real-number encoding on the initial structural parameters of the neural network, and use the following formula to calculate the dimension d of binary and real-numbered particles:
d=ni×nh+nh+nh×no+no d=n i ×n h +n h +n h ×n o +n o
式中ni为神经网络的输入神经元数目,no为输出神经元数目,nh为神经网络隐含层神经元数目;In the formula, n i is the number of input neurons of the neural network, n o is the number of output neurons, and n h is the number of hidden layer neurons of the neural network;
(2)产生d维二进制粒子,代表神经网络输入层与隐含层之间的链路开关、隐含层与输出层之间的链路开关以及隐含层和输出层的链路阈值,其中1表示该条链路存在,0表示链路不存在;(2) Generate d-dimensional binary particles, which represent the link switch between the input layer and the hidden layer of the neural network, the link switch between the hidden layer and the output layer, and the link threshold between the hidden layer and the output layer, where 1 means the link exists, 0 means the link does not exist;
(3)产生d维(0,1)内的实数粒子,代表神经网络输入层与隐含层之间的权值、隐含层与输出层之间的权值以及隐含层和输出层的阈值;(3) Generate real number particles in the d dimension (0,1), representing the weight between the input layer and the hidden layer of the neural network, the weight between the hidden layer and the output layer, and the weight between the hidden layer and the output layer threshold;
(4)将实数粒子与二进制粒子顺序排列组成代表神经网络结构及初始结构参数的2d维混合粒子,并初始化混合粒子群。(4) Arrange real number particles and binary particles in order to form 2d-dimensional mixed particles representing the neural network structure and initial structure parameters, and initialize the mixed particle swarm.
步骤D所述的构造适应度函数f,具体为采用如下公式构造适应度函数f:The construction of the fitness function f described in step D is specifically to use the following formula to construct the fitness function f:
式中err为绝对平均误差且式中q为输入样本数目,k表示1到n0之间的变量索引,Yk(t)为各组输入样本的响应值,yk(t)为神经网络对于各组输入样本的预测响应值。where err is the absolute mean error and In the formula, q is the number of input samples, k represents the variable index between 1 and n 0 , Y k (t) is the response value of each group of input samples, and y k (t) is the predicted response of the neural network to each group of input samples value.
步骤E所述的计算每个混合粒子的适应度函数值,具体为采用如下步骤进行计算:The calculation of the fitness function value of each mixed particle described in step E is specifically calculated by the following steps:
1)将每个混合粒子的d维实数部分与二进制部分对应相乘,得到神经网络的结构参数,接着使用该结构参数构建神经网络;1) Multiply the d-dimensional real part of each mixed particle with the binary part to obtain the structural parameters of the neural network, and then use the structural parameters to construct the neural network;
2)将各组输入样本作为输入数据输入神经网络,得到输入样本对应的预测响应向量,并求解神经网络对输入样本的预测误差,所述预测误差即为适应度函数值。2) Input each group of input samples into the neural network as input data to obtain the predicted response vector corresponding to the input samples, and solve the prediction error of the input samples by the neural network, and the prediction error is the fitness function value.
步骤G所述的对不同隐含层神经元数据对应的神经网络进行优化,具体为采用HPSO(Hybrid real-binary particle swarm optimization,混合实数-二进制粒子群优化算法)优化。The optimization of the neural network corresponding to the neuron data of different hidden layers described in step G is optimized by using HPSO (Hybrid real-binary particle swarm optimization, hybrid real-binary particle swarm optimization algorithm).
所述的神经网络为BP神经网络、感知器神经网络或线性神经网络;所述的混合优化算法为混合粒子群算法或混合Taguchi遗传算法;步骤S6所述的生成新的若干组天线设计参数变量,具体为采用多目标智能算法生成新的若干组天线设计参数变量,且所述的多目标智能算法为基于分解的多目标进化算法、非支配排序进化算法、多目标遗传算法或多目标粒子群算法。The neural network is a BP neural network, a perceptron neural network or a linear neural network; the hybrid optimization algorithm is a hybrid particle swarm optimization algorithm or a hybrid Taguchi genetic algorithm; the generation of new groups of antenna design parameter variables described in step S6 , specifically using a multi-objective intelligent algorithm to generate new sets of antenna design parameter variables, and the multi-objective intelligent algorithm is a multi-objective evolutionary algorithm based on decomposition, a non-dominated sorting evolutionary algorithm, a multi-objective genetic algorithm or a multi-objective particle swarm algorithm.
本发明提供的这种天线设计方法,采用混合优化算法联合优化神经网络的网络结构和初始结构参数,简化神经网络结构,降低神经网络的计算成本,提高神经网络的预测精度,然后利用神经网络作为代理模型拟合天线设计参数样本的电磁仿真数据,代替耗时巨大的电磁仿真实现从天线结构参数到电磁响应的瞬时近似计算,减少电磁仿真次数,极大降低计算成本;而且本发明方法有效结合了多目标智能算法、代理模型和天线设计,可显著提高天线设计效率,尤其是求解复杂的高维多目标天线设计问题,其优势更加明显。The antenna design method provided by the present invention uses a hybrid optimization algorithm to jointly optimize the network structure and initial structural parameters of the neural network, simplify the neural network structure, reduce the calculation cost of the neural network, improve the prediction accuracy of the neural network, and then use the neural network as The surrogate model fits the electromagnetic simulation data of the antenna design parameter sample, replaces the time-consuming electromagnetic simulation to realize the instantaneous approximate calculation from the antenna structure parameters to the electromagnetic response, reduces the number of electromagnetic simulations, and greatly reduces the calculation cost; and the method of the present invention effectively combines The multi-objective intelligent algorithm, surrogate model and antenna design can significantly improve the efficiency of antenna design, especially in solving complex high-dimensional multi-objective antenna design problems, and its advantages are more obvious.
附图说明Description of drawings
图1为本发明方法的方法流程图。Fig. 1 is the method flowchart of the method of the present invention.
图2为本发明的实施例构造的初始天线模型的示意图。Fig. 2 is a schematic diagram of an initial antenna model constructed in an embodiment of the present invention.
图3为本发明的实施例设计获得的6个满足设计目标的天线的回波损耗曲线图。FIG. 3 is a graph of return loss curves of 6 antennas meeting the design objectives obtained through the design of the embodiment of the present invention.
具体实施方式Detailed ways
如图1所示为本发明方法的方法流程图:本发明提供的这种天线设计方法,包括如下步骤:As shown in Figure 1, it is a method flowchart of the method of the present invention: this antenna design method provided by the present invention comprises the following steps:
S1.根据天线的设计需求,构建天线初始模型;S1. According to the design requirements of the antenna, construct the initial model of the antenna;
S2.在天线设计空间内选取若干组天线设计参数作为输入样本(可以采用拉丁超立方采样方法进行选取),并将样本输入到步骤S1得到的天线初始模型中,采用电磁仿真工具对输入了样本的天线初始模型进行仿真求解,从而得到各输入样本所对应的天线模型响应(所述响应为天线的各个性能指标,包括天线回波损耗值、增益或驻波比等);S2. Select several groups of antenna design parameters in the antenna design space as input samples (the Latin hypercube sampling method can be used to select), and input the samples into the initial model of the antenna obtained in step S1, and use electromagnetic simulation tools to analyze the input samples The initial model of the antenna is simulated and solved, so as to obtain the corresponding antenna model response of each input sample (the response is each performance index of the antenna, including antenna return loss value, gain or standing wave ratio, etc.);
S3.采用神经网络对步骤S2得到的输入样本与天线模型响应之间的映射关系进行模拟,从而得到对应的天线代理模型;具体为根据输入样本及其对应的天线模型响应,采用混合优化算法优化神经网络结构及参数,从而得到能够模拟输入样本及其对应的天线模型响应的神经网络结构,并以该神经网络结构作为最终的天线代理模型;具体为采用如下步骤进行优化:S3. Use the neural network to simulate the mapping relationship between the input samples obtained in step S2 and the antenna model response, so as to obtain the corresponding antenna proxy model; specifically, according to the input samples and their corresponding antenna model responses, use a hybrid optimization algorithm to optimize Neural network structure and parameters, so as to obtain a neural network structure capable of simulating the input sample and its corresponding antenna model response, and use the neural network structure as the final antenna proxy model; specifically, the following steps are used for optimization:
A.根据天线设计参数变量及其对应的响应向量,分别确定神经网络的输入神经元数目ni和输出神经元数目no;A. According to the antenna design parameter variables and their corresponding response vectors, respectively determine the number of input neurons n i and the number of output neurons n o of the neural network;
B.确定神经网络隐含层神经元数目nh;B. Determine the number n h of neurons in the hidden layer of the neural network;
C.对神经网络结构及初始结构参数分别进行编码,并初始化混合粒子群;具体为采用如下步骤进行编码和初始化:C. Encode the neural network structure and initial structural parameters, and initialize the mixed particle swarm; specifically, the following steps are used for encoding and initialization:
(1)对神经网络结构进行二进制编码,对神经网络的初始结构参数进行实数编码,并采用如下算式计算二进制与实数粒子的维度d:(1) Perform binary encoding on the neural network structure, perform real-number encoding on the initial structural parameters of the neural network, and use the following formula to calculate the dimension d of binary and real-numbered particles:
d=ni×nh+nh+nh×no+no d=n i ×n h +n h +n h ×n o +n o
式中ni为神经网络的输入神经元数目,no为输出神经元数目,nh为神经网络隐含层神经元数目;In the formula, n i is the number of input neurons of the neural network, n o is the number of output neurons, and n h is the number of hidden layer neurons of the neural network;
(2)产生d维二进制粒子,代表神经网络输入层与隐含层之间的链路开关、隐含层与输出层之间的链路开关以及隐含层和输出层的链路阈值,其中1表示该条链路存在,0表示链路不存在;(2) Generate d-dimensional binary particles, which represent the link switch between the input layer and the hidden layer of the neural network, the link switch between the hidden layer and the output layer, and the link threshold between the hidden layer and the output layer, where 1 means the link exists, 0 means the link does not exist;
(3)产生d维(0,1)内的实数粒子,代表神经网络输入层与隐含层之间的权值、隐含层与输出层之间的权值以及隐含层和输出层的阈值;(3) Generate real number particles in the d dimension (0,1), representing the weight between the input layer and the hidden layer of the neural network, the weight between the hidden layer and the output layer, and the weight between the hidden layer and the output layer threshold;
(4)将实数粒子与二进制粒子顺序排列组成代表神经网络结构及初始结构参数的2d维混合粒子,并初始化混合粒子群;(4) Arranging real number particles and binary particles in order to form 2d-dimensional mixed particles representing the neural network structure and initial structural parameters, and initializing the mixed particle swarm;
D.构造适应度函数f,用于表示神经网络结构对输入样本的预测响应与真实响应之间的预测误差;具体为采用如下公式构造适应度函数f:D. Construct a fitness function f, which is used to represent the prediction error between the predicted response of the neural network structure to the input sample and the real response; specifically, the following formula is used to construct the fitness function f:
式中err为绝对平均误差且式中q为输入样本数目,k为1到n0之间的变量索引,Yk(t)为各组输入样本的响应值,yk(t)为神经网络对于各组输入样本的预测响应值;where err is the absolute mean error and In the formula, q is the number of input samples, k is the variable index between 1 and n 0 , Y k (t) is the response value of each group of input samples, and y k (t) is the predicted response of the neural network to each group of input samples value;
E.计算每个混合粒子的适应度函数值;具体为采用如下步骤进行计算:E. Calculate the fitness function value of each mixed particle; specifically, the following steps are used for calculation:
1)将每个混合粒子的d维实数部分与二进制部分对应相乘,得到神经网络的结构参数,接着使用该结构参数构建神经网络;1) Multiply the d-dimensional real part of each mixed particle with the binary part to obtain the structural parameters of the neural network, and then use the structural parameters to construct the neural network;
2)将各组输入样本作为输入数据输入神经网络,得到输入样本对应的预测响应向量,并求解神经网络对输入样本的预测误差,所述预测误差即为适应度函数值;2) Input each group of input samples into the neural network as input data, obtain the corresponding predicted response vector of the input samples, and solve the prediction error of the input samples by the neural network, and the prediction error is the fitness function value;
G.对不同隐含层神经元数据对应的神经网络进行优化(比如采用HPSO(Hybridreal-binary particle swarm optimization,混合实数-二进制粒子群优化算法)进行优化)后得到神经网络的预测误差,并选取预测误差最小的神经网络作为最终的天线代理模型;G. Optimize the neural network corresponding to the neuron data of different hidden layers (such as using HPSO (Hybridreal-binary particle swarm optimization, hybrid real-binary particle swarm optimization algorithm) to optimize) to obtain the prediction error of the neural network, and select The neural network with the smallest prediction error is used as the final antenna proxy model;
在具体实施时,神经网络可以采用BP神经网络、感知器神经网络或线性神经网络等;而混合优化算法则可以采用混合粒子群算法或混合Taguchi遗传算法等;In specific implementation, the neural network can use BP neural network, perceptron neural network or linear neural network, etc.; while the hybrid optimization algorithm can use hybrid particle swarm optimization algorithm or hybrid Taguchi genetic algorithm, etc.;
S4.构建若干组天线设计参数变量,并根据天线设计需求构造若干个天线设计目标函数;S4. Construct several groups of antenna design parameter variables, and construct several antenna design objective functions according to antenna design requirements;
S5.将步骤S4得到的天线设计参数变量输入到步骤S3得到的天线代理模型,从而得到各组天线设计参数所对应的响应,并根据得到的响应计算各个天线设计参数所对应的目标函数值;S5. Inputting the antenna design parameter variable obtained in step S4 into the antenna proxy model obtained in step S3, thereby obtaining the corresponding responses of each group of antenna design parameters, and calculating the corresponding objective function value of each antenna design parameter according to the obtained responses;
S6.对步骤S5得到的目标函数值进行判断:S6. Judging the objective function value obtained in step S5:
若有目标函数值符合事先设定的要求,则认定该目标函数值对应的天线设计参数变量为最终的天线设计参数;If any objective function value meets the pre-set requirements, the antenna design parameter variable corresponding to the objective function value is determined to be the final antenna design parameter;
若所有的目标函数值均不符合事先设定的要求,则生成新的若干组天线设计参数变量,并重复步骤S5~S6直至由目标函数值符合事先设定的要求,从而得到最终的天线设计参数;其中,可以采用多目标智能算法生成新的若干组天线设计参数变量,且所述的多目标智能算法为基于分解的多目标进化算法、非支配排序进化算法、多目标遗传算法或多目标粒子群算法。If all the objective function values do not meet the pre-set requirements, generate new sets of antenna design parameter variables, and repeat steps S5-S6 until the objective function values meet the pre-set requirements, so as to obtain the final antenna design Parameters; wherein, a multi-objective intelligent algorithm can be used to generate new sets of antenna design parameter variables, and the multi-objective intelligent algorithm is a multi-objective evolutionary algorithm based on decomposition, a non-dominated sorting evolutionary algorithm, a multi-objective genetic algorithm or a multi-objective Particle Swarm Algorithm.
以下结合一个具体实施例对本发明方法进行进一步说明:The method of the present invention is further described below in conjunction with a specific embodiment:
目标为设计一个两目标的平面多频段天线;其中神经网络采用BP神经网络模型,混合优化算法采用混合粒子群算法(HPSO),多目标智能算法采用基于分解的多目标进化算法(MOEA/D),电磁仿真工具采用HFSS。The goal is to design a two-objective planar multi-band antenna; the neural network adopts BP neural network model, the hybrid optimization algorithm adopts hybrid particle swarm optimization algorithm (HPSO), and the multi-objective intelligent algorithm adopts decomposition-based multi-objective evolutionary algorithm (MOEA/D) , the electromagnetic simulation tool adopts HFSS.
具体设计过程如下:The specific design process is as follows:
构造天线模型如图2所示,天线模型的设计空间即其约束条件为10个天线参数的尺寸限制,如下表1所示:The antenna model is constructed as shown in Figure 2. The design space of the antenna model, that is, its constraint condition is the size limit of 10 antenna parameters, as shown in Table 1 below:
表1天线建模约束条件(单位:mm)Table 1 Antenna modeling constraints (unit: mm)
利用拉丁超立方采样方法在天线设计空间内选取200组天线设计参数变量作为输入样本,调用电磁仿真工具求解各组天线设计参数变量的响应向量即15个频率采样点的回波损耗值作为输出样本,200组天线设计参数变量和其对应各个频率采样点的回波损耗值组成构造代理模型的样本集。Use the Latin hypercube sampling method to select 200 groups of antenna design parameter variables in the antenna design space as input samples, and use electromagnetic simulation tools to solve the response vectors of each group of antenna design parameter variables, that is, the return loss values of 15 frequency sampling points as output samples , 200 groups of antenna design parameter variables and the return loss values corresponding to each frequency sampling point constitute the sample set for constructing the proxy model.
根据天线设计参数变量和其对应各个频率采样点的回波损耗值分别确定BP神经网络代理模型的输入神经元及输出神经元数目ni=10,no=15;Determine the number of input neurons and output neurons n i =10, n o =15 of the BP neural network proxy model according to the antenna design parameter variable and the return loss value corresponding to each frequency sampling point;
确定BP神经网络代理模型隐含层神经元数目范围[10,20];Determine the range of neurons in the hidden layer of the BP neural network proxy model [10,20];
计算二进制与实数粒子维度d=25×nh+15,分别初始化d维二进制与实数粒子,组合为混合粒子,并初始化粒子群;Calculate binary and real number particle dimensions d=25×n h +15, respectively initialize d-dimensional binary and real number particles, combine them into mixed particles, and initialize particle swarm;
构造HPSO算法优化BP神经网络网络结构及初始结构参数的适应度函数:Construct the HPSO algorithm to optimize the network structure of BP neural network and the fitness function of the initial structural parameters:
Yk(t)为调用电磁仿真工具仿真求解各组天线设计参数变量的回波损耗值,yk(t)为使用BP神经网络代理模型预测的各组天线设计参数变量的回波损耗值;Y k (t) is the return loss value of calling the electromagnetic simulation tool to simulate and solve each group of antenna design parameter variables, and y k (t) is the return loss value of each group of antenna design parameter variables predicted by using the BP neural network proxy model;
将每个混合粒子的实数部分与二进制部分对应相乘,得到非全连接神经网络代理模型的结构参数,使用这些结构参数及样本集构建非全连接BP神经网络代理模型,将各组天线设计参数变量作为输入数据输入非全连接BP神经网络代理模型,预测得到天线设计参数变量的响应向量,求解代理模型对天线设计参数变量的预测误差;Multiply the real number part of each mixed particle with the binary part to obtain the structural parameters of the non-fully connected neural network proxy model, use these structural parameters and sample sets to construct the non-fully connected BP neural network proxy model, and combine the design parameters of each group of antennas The variable is input as the input data into the non-fully connected BP neural network proxy model, and the response vector of the antenna design parameter variable is predicted, and the prediction error of the proxy model to the antenna design parameter variable is solved;
对不同隐含层神经元数目对应的非全连接BP神经网络代理模型使用HPSO优化1000次并输出预测误差,选择误差最小的作为平面多频带天线的代理模型;Use HPSO to optimize the non-fully connected BP neural network proxy model corresponding to the number of neurons in different hidden layers 1000 times and output the prediction error, and select the one with the smallest error as the proxy model of the planar multi-band antenna;
在天线设计空间内随机初始化40组天线设计参数变量x1,x2,...,x40作为MOEA/D算法的初始种群,同时根据天线设计需求构造2个天线设计目标;Randomly initialize 40 groups of antenna design parameter variables x 1 , x 2 ,...,x 40 in the antenna design space as the initial population of the MOEA/D algorithm, and construct 2 antenna design targets according to the antenna design requirements;
目标函数1:2.40~2.60GHz,3.30~3.80GHz,5.00~5.90GHz三个频段内回波损耗值S11<-10dB;Objective function 1: Return loss value S 11 <-10dB in the three frequency bands of 2.40~2.60GHz, 3.30~3.80GHz, and 5.00~5.90GHz;
其中n是上述3个频段内的采样点个数,fi为频段内采样点频率,S11(fi)为频率fi处的回波损耗值;Where n is the number of sampling points in the above three frequency bands, f i is the frequency of sampling points in the frequency band, and S 11 (f i ) is the return loss value at frequency f i ;
目标函数2:天线尺寸;Objective function 2: Antenna size;
F2=w×lF 2 =w×l
将40组天线设计参数变量分别作为输入值,调用非全连接BP神经网络模型预测各组天线设计参数变量各个频率采样点的回波损耗值,再根据回波损耗值求解目标函数值F1,根据设计参数求解目标函数值F2;Taking 40 groups of antenna design parameter variables as input values, call the non-fully connected BP neural network model to predict the return loss value of each group of antenna design parameter variables at each frequency sampling point, and then solve the objective function value F 1 according to the return loss value, Solve the objective function value F 2 according to the design parameters;
判断步骤5求解获得的目标函数值是否满足天线设计需求,若满足,则进入步骤7,否则,利用MOEA/D更新生成新的40组天线设计参数变量,返回步骤5,直到获得符合设计要求的天线设计参数,或者达到MOEA/D设定的迭代次数;Judging whether the objective function value obtained in
如果天线设计结果满足2个天线设计目标,结束迭代。If the antenna design results meet the two antenna design objectives, the iteration ends.
应用本发明所述方法获得的设计参数如表2所示,获得的6个满足设计目标的天线的反射曲线图如图3所示,天线在不同的面积参数下,在2.33~2.63GHz、3.17~3.92GHz、4.97~5.99GHz三个频段的回波损耗值均小于-10dB,满足天线设计性能需求。The design parameters obtained by applying the method of the present invention are as shown in Table 2, and the reflection curves of 6 antennas that meet the design objectives are as shown in Figure 3. Under different area parameters, the antennas are at 2.33~2.63GHz, 3.17 The return loss values of the three frequency bands of ~3.92GHz and 4.97~5.99GHz are all less than -10dB, which meets the performance requirements of antenna design.
表2设计获得的6个满足设计目标的天线尺寸表Table 2 Design of 6 antenna sizes that meet the design goals
其次分别利用传统电磁仿真(EM)设计方法、MOEA/D结合仅优化结构参数的BP网络模型、MOEA/D结合非全连接BP神经网络模型进行天线设计,其天线总计算代价比较结果如表3所示。Secondly, the traditional electromagnetic simulation (EM) design method, MOEA/D combined with the BP network model that only optimizes structural parameters, and MOEA/D combined with the non-fully connected BP neural network model are used to design the antenna. The comparison results of the total calculation cost of the antenna are shown in Table 3 shown.
表3 3种天线设计方法的计算代价比较Table 3 Computational cost comparison of three antenna design methods
最后,对于设计获取的6组天线设计参数变量,分别利用BP神经网络模型直接预测(预测结果1)和非全连接BP神经网络模型预测其响应值并计算目标函数F1(预测结果2),然后直接利用仿真响应值计算其目标函数F1,其误差率比较如表4所示。Finally, for the 6 sets of antenna design parameter variables obtained in the design, the BP neural network model is used to directly predict (prediction result 1) and the non-fully connected BP neural network model to predict the response value and calculate the objective function F 1 (prediction result 2), Then directly use the simulated response value to calculate its objective function F 1 , and its error rate comparison is shown in Table 4.
表4 2种预测方法的精度比较Table 4 Accuracy comparison of the two prediction methods
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810729086.XA CN108920841B (en) | 2018-07-05 | 2018-07-05 | Antenna design method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810729086.XA CN108920841B (en) | 2018-07-05 | 2018-07-05 | Antenna design method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108920841A CN108920841A (en) | 2018-11-30 |
CN108920841B true CN108920841B (en) | 2023-02-14 |
Family
ID=64425570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810729086.XA Active CN108920841B (en) | 2018-07-05 | 2018-07-05 | Antenna design method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108920841B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111368384B (en) * | 2018-12-07 | 2022-06-10 | 华为技术有限公司 | Method and equipment for predicting antenna engineering parameters |
CN110765723B (en) * | 2019-11-15 | 2022-06-10 | 苏州浪潮智能科技有限公司 | Routing modeling optimization method and device based on BP neural network |
CN111460665B (en) * | 2020-04-01 | 2023-12-22 | 江苏科技大学 | Antenna design method based on kriging agent model and multi-target genetic algorithm |
CN112199770B (en) * | 2020-09-17 | 2024-04-09 | 中国运载火箭技术研究院 | Test agent model construction method and system based on test parameter characteristics |
CN113065268A (en) * | 2021-03-30 | 2021-07-02 | 中国科学院光电技术研究所 | Rapid multi-objective space reflector optimization design method based on proxy model |
CN113642168B (en) * | 2021-08-09 | 2024-07-05 | 佛山科学技术学院 | Antenna design method based on structural parameter prediction and crowd optimization |
CN118153449B (en) * | 2024-04-02 | 2024-08-30 | 电子科技大学 | Antenna pattern robust design method based on sequential optimization |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106021813A (en) * | 2016-06-12 | 2016-10-12 | 中南大学 | Fast multi-target antenna design method based on dynamic updating of agent model |
CN107357962A (en) * | 2017-06-19 | 2017-11-17 | 西安电子科技大学 | A kind of antenna house rib cross-sectional size optimization method based on Adaptive proxy model |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6973622B1 (en) * | 2000-09-25 | 2005-12-06 | Wireless Valley Communications, Inc. | System and method for design, tracking, measurement, prediction and optimization of data communication networks |
-
2018
- 2018-07-05 CN CN201810729086.XA patent/CN108920841B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106021813A (en) * | 2016-06-12 | 2016-10-12 | 中南大学 | Fast multi-target antenna design method based on dynamic updating of agent model |
CN107357962A (en) * | 2017-06-19 | 2017-11-17 | 西安电子科技大学 | A kind of antenna house rib cross-sectional size optimization method based on Adaptive proxy model |
Also Published As
Publication number | Publication date |
---|---|
CN108920841A (en) | 2018-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108920841B (en) | Antenna design method | |
CN109271695B (en) | Multi-target Antenna Design Method Based on Neural Network | |
Dong et al. | Fast multi-objective optimization of multi-parameter antenna structures based on improved BPNN surrogate model | |
CN109086531B (en) | Antenna design method based on neural network | |
CN106021813B (en) | A fast multi-target antenna design method based on dynamic update proxy model | |
CN108984985B (en) | Antenna structure design method based on neural network | |
CN108170950A (en) | Multilayer Frequency-Selective Surfaces absorbing material modeling optimization method based on neural network | |
CN111460665B (en) | Antenna design method based on kriging agent model and multi-target genetic algorithm | |
CN110147590A (en) | A kind of helical antenna design method based on Adaptive evolution optimization algorithm | |
CN111651936A (en) | A FOA-GRNN-based modeling and design method for dual-notch ultra-wideband antennas | |
CN109117545B (en) | Neural network-based antenna rapid design method | |
CN104504424B (en) | Radio frequency identification network topology optimization method based on Symbiotic evolution on multiple populations | |
Liu et al. | Automatic coupler design using data-driven-based modular neural network | |
CN113609677A (en) | Multipath-based machine learning auxiliary antenna design method | |
CN112711906A (en) | Optimization method for energy balance problem of wireless sensor network | |
CN113420496B (en) | Design method and device of multi-band antenna, storage medium, and electronic device | |
CN117669446A (en) | Transformer magnetic field rapid calculation method, device, electronic equipment and storage medium | |
CN106503793A (en) | A kind of neural network short-term wind speed forecasting method based on improvement difference algorithm | |
CN116341360A (en) | An Antenna Topology Pixel Optimal Design Method Using Machine Learning-Assisted Optimization | |
Qin et al. | Fast antenna design using multi-objective evolutionary algorithms and artificial neural networks | |
CN113076699A (en) | Antenna optimization method based on multi-output Gaussian process Bayesian optimization | |
CN106066904A (en) | A kind of higher-dimension multiple target antenna design method based on multi-objective Evolutionary Algorithm | |
CN104517141B (en) | Radio frequency identification network topology method based on load balance Yu particle cluster algorithm | |
Qin et al. | Fast multi-objective antenna design based on BPNN surrogate model | |
CN112633500A (en) | Multi-objective optimization evolutionary computation method of convolutional neural network proxy model based on decomposition idea |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |