CN108920033B - Embedded touch screen and display device - Google Patents

Embedded touch screen and display device Download PDF

Info

Publication number
CN108920033B
CN108920033B CN201811099335.8A CN201811099335A CN108920033B CN 108920033 B CN108920033 B CN 108920033B CN 201811099335 A CN201811099335 A CN 201811099335A CN 108920033 B CN108920033 B CN 108920033B
Authority
CN
China
Prior art keywords
self
substrate
capacitance
touch screen
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811099335.8A
Other languages
Chinese (zh)
Other versions
CN108920033A (en
Inventor
张雷
邵贤杰
陈俊生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Hefei BOE Optoelectronics Technology Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Hefei BOE Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Hefei BOE Optoelectronics Technology Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201811099335.8A priority Critical patent/CN108920033B/en
Publication of CN108920033A publication Critical patent/CN108920033A/en
Application granted granted Critical
Publication of CN108920033B publication Critical patent/CN108920033B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Abstract

The invention discloses an embedded touch screen and a display device, wherein a self-capacitance electrode layer, an insulating layer, a transparent shielding electrode layer and a pixel unit layer are sequentially stacked on one side of a substrate of an array substrate facing an opposite substrate in the touch screen by utilizing a self-capacitance principle, and a touch detection signal loaded by self-capacitance is isolated from a display signal by utilizing the transparent shielding electrode insulated from the self-capacitance electrode, so that the interference between the touch detection signal and the display signal is avoided, the simultaneous execution of touch detection and display driving can be realized, and better display and touch effects are ensured.

Description

Embedded touch screen and display device
Technical Field
The present disclosure relates to display devices, and particularly to an in-cell touch screen and a display device.
Background
Currently, the existing In-cell touch screen detects the touch position of a finger by using the principle of mutual capacitance or self-capacitance. The touch screen comprises a touch screen body, a plurality of self-capacitance electrodes, a touch detection chip and a control unit, wherein the self-capacitance electrodes which are arranged on the same layer and are insulated from each other can be arranged in the touch screen body by utilizing the principle of self-capacitance, when a human body does not touch the screen body, the capacitance born by each capacitance electrode is a fixed value, when the human body touches the screen body, the capacitance born by the corresponding self-capacitance electrode is the fixed value and is superposed with the human body capacitance, and the touch position can be judged by the touch detection chip by detecting the capacitance value change of each capacitance electrode in a touch time period. Because the human body capacitance can act on all self-capacitances, the projected capacitance in the mutual capacitance can only act on relative to the human body capacitance, and the touch variation caused by touching the screen by the human body is larger than that of the touch screen manufactured by utilizing the mutual capacitance principle, the signal-to-noise ratio of touch can be effectively improved relative to the touch screen of the mutual capacitance, and therefore the accuracy of touch sensing is improved.
In the conventional in-cell touch screen, in order to reduce the mutual interference between the display signal and the touch signal and improve the picture quality and the touch accuracy, the touch and display phases generally need to be driven in a time-sharing manner, and since the time of one frame is generally a fixed value, the time-sharing drive causes less time to be shared by the touch time period and the display time period, which may cause the problems that the normal display is affected due to insufficient charging in the display time period, and the touch effect is affected due to too short time for detecting the signal in the touch time period.
Disclosure of Invention
The embedded touch screen and the display device provided by the embodiment of the invention are used for solving the mutual interference between the display signal and the touch signal and improving the picture quality and the touch accuracy.
Therefore, the embodiment of the invention provides an embedded touch screen, which comprises an array substrate and an opposite substrate which are oppositely arranged, wherein the array substrate comprises a substrate, and a self-capacitance electrode layer, an insulating layer, a transparent shielding electrode layer and a pixel unit layer which are sequentially stacked on one side of the substrate, which faces the opposite substrate; and one side of the substrate base plate, which is back to the opposite base plate, is a touch surface.
Optionally, in a specific implementation, in the embedded touch screen provided in the embodiment of the present invention, the insulating layer is made of an organic insulating material.
Optionally, in a specific implementation manner, in the in-cell touch screen provided by the embodiment of the present invention, a dielectric constant of a material of the insulating layer is less than 3.5, and a thickness of the insulating layer is greater than 2 μm.
Optionally, in a specific implementation, in the in-cell touch screen provided in the embodiment of the present invention, the pixel unit layer includes a plurality of pixel units distributed in an array, the self-capacitance electrode layer includes a plurality of self-capacitance electrodes independent from each other, and a forward projection of the self-capacitance electrode on the substrate is located in a gap between the pixel units; the self-capacitance electrode layer is made of metal materials, and each self-capacitance electrode has a grid-shaped structure.
Optionally, in a specific implementation manner, in the in-cell touch screen provided in the embodiment of the present invention, each grid in the grid-like structure of the self-capacitance electrode corresponds to a plurality of the pixel units, each pixel unit includes a plurality of sub-pixels, and a length and a width of each grid at least correspond to a size of one of the sub-pixels.
Optionally, in a specific implementation manner, in the in-cell touch screen provided in the embodiment of the present invention, the self-capacitance electrode layer further includes a floating electrode insulated from the self-capacitance electrode, and the floating electrode is located in each grid of the grid-like structure of the self-capacitance electrode.
Optionally, in practical implementation, in the in-cell touch screen provided by the embodiment of the invention, the orthographic projection of the floating electrode on the substrate is located at the gap between the pixel units.
Optionally, in a specific implementation manner, in the in-cell touch screen provided by the embodiment of the present invention, the floating electrodes have a grid-like structure.
Optionally, in a specific implementation, in the in-cell touch screen provided in the embodiment of the present invention, an anti-glare layer is further included between the substrate and the self-capacitance electrode layer, and an orthogonal projection of the self-capacitance electrode on the substrate is located within an orthogonal projection range of the anti-glare layer on the substrate.
Correspondingly, the embodiment of the invention also provides a display device which comprises the embedded touch screen.
The invention has the beneficial effects that:
according to the embedded touch screen and the display device provided by the embodiment of the invention, the self-capacitance electrode layer, the insulating layer, the transparent shielding electrode layer and the pixel unit layer are sequentially stacked on one side, facing the opposite substrate, of the substrate of the array substrate in the touch screen by using the self-capacitance principle, and the touch detection signal loaded by self capacitance is isolated from the display signal by using the transparent shielding electrode insulated from the self-capacitance electrode, so that the interference between the touch detection signal and the display signal is avoided, the simultaneous execution of touch detection and display driving can be realized, and the better display and touch effects are ensured.
Drawings
FIG. 1 is a schematic diagram of an embedded touch screen according to an embodiment of the invention;
FIG. 2 is a schematic top view of an in-cell touch screen according to an embodiment of the invention;
fig. 3 is a second schematic top view of an in-cell touch screen according to an embodiment of the invention.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention clearer, the present invention will be described in further detail with reference to the accompanying drawings, and it is apparent that the described embodiments are only a part of the embodiments of the present invention, not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
The shapes and sizes of the various elements in the drawings are not to scale and are merely intended to illustrate the invention.
The embedded touch screen provided by the embodiment of the invention comprises an array substrate 10 and an opposite substrate 20 which are oppositely arranged, wherein the array substrate 10 comprises a substrate 1, a self-capacitance electrode layer 2, an insulating layer 3, a transparent shielding electrode layer 4 and a pixel unit layer 5 which are sequentially stacked on one side of the substrate 1 facing the opposite substrate 20, and a flat layer 6 is arranged between the transparent shielding electrode layer 4 and the pixel unit layer 5; wherein, the side of the substrate base plate 1 opposite to the opposite base plate 20 is a touch control surface.
According to the embedded touch screen provided by the embodiment of the invention, the self-capacitance electrode layer, the insulating layer, the transparent shielding electrode layer and the pixel unit layer are sequentially stacked on one side, facing the opposite substrate, of the substrate of the array substrate in the touch screen by using the self-capacitance principle, and the touch detection signal loaded by the self-capacitance is isolated from the display signal by using the transparent shielding electrode insulated from the self-capacitance electrode, so that the interference between the touch detection signal and the display signal is avoided, the simultaneous execution of touch detection and display driving can be realized, and the better display and touch effects are ensured.
Further, since mutual capacitance is generated between the self-capacitance electrode layer and the transparent shielding electrode layer, which affects the touch detection effect, in order to reduce the mutual capacitance between the self-capacitance electrode layer and the transparent shielding electrode layer, in the embedded touch screen provided in the embodiment of the present invention, the insulating layer is made of an organic insulating material. This is because the organic insulating material has a low dielectric constant and a large thickness, and therefore the material of the insulating layer is an organic insulating material.
Further, in order to better reduce the mutual capacitance between the self-capacitance electrode layer and the transparent shielding electrode layer, in the in-cell touch screen provided by the embodiment of the invention, the dielectric constant of the material of the insulating layer is generally less than 3.5, the thickness of the insulating layer is generally greater than 2 μm, and the effect of reducing the mutual capacitance is better.
Further, in the in-cell touch screen provided by the embodiment of the invention, the insulating layer may be made of an inorganic film layer such as SiN or SiO.
Further, in the in-cell touch screen provided by the embodiment of the invention, as shown in fig. 2, the pixel unit layer 5 includes a plurality of pixel units 01 distributed in an array, and each pixel unit 01 includes a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B; as shown in fig. 3, the self-capacitance electrode layer 2 includes a plurality of self-capacitance electrodes 02 independent from each other, each self-capacitance electrode 02 is connected to the touch detection chip IC through a wire 04, and in order not to affect the aperture ratio, the orthographic projection of the self-capacitance electrode 02 on the substrate 1 is located in the gap between the pixel units 01; in order to reduce the resistance value of the self-capacitance electrode, the material of the self-capacitance electrode layer 2 is a metal material, and in order to further reduce the mutual capacitance between the self-capacitance electrode layer and the transparent shielding electrode layer, the respective capacitance electrodes 02 are provided to have a grid-like structure.
Further, in order to further reduce the mutual capacitance between the self-capacitance electrode layer and the transparent shielding electrode layer, the grid density in the grid-shaped structure of the self-capacitance electrode can be reduced, so that in the embedded touch screen provided in the embodiment of the invention, as shown in fig. 2, each grid 001 in the grid-shaped structure of the self-capacitance electrode 02 corresponds to a plurality of pixel units 01, each pixel unit 01 includes a plurality of sub-pixels (a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B), the length and width of each grid 001 corresponds to at least one sub-pixel size, and each self-capacitance electrode 02 is connected to the touch detection chip IC through a wire 04.
Further, each grid in the grid-like structure of the self-capacitance electrode corresponds to a plurality of pixel units, and when the length and width of each grid are both more than 300um, although the effect of reducing mutual capacitance is achieved, the grid density is reduced to cause the problem that the grid is visible and the visual effect is poor, so in order to improve the visual effect, in the in-cell touch screen provided by the embodiment of the invention, as shown in fig. 2, the self-capacitance electrode layer 2 further includes a floating electrode 03 insulated from the self-capacitance electrode 02, and the floating electrode 03 is located in each grid 001 in the grid-like structure of the self-capacitance electrode 02. Therefore, mutual capacitance is not increased, and grid density can be improved, so that visual effect is not deteriorated.
Therefore, in order to further increase the grid density, in the in-cell touch screen provided by the embodiment of the present invention, as shown in fig. 2, the floating electrode 03 has a grid-like structure.
Further, in order not to affect the aperture ratio, in the in-cell touch panel provided in the embodiment of the present invention, as shown in fig. 2, the orthographic projection of the floating electrode 03 on the substrate base plate 1 is located at the gap between the pixel units 01.
Further, since the material of the self-capacitance electrode is a metal material, and the metal has a high light reflectivity, the in-cell touch screen provided in the embodiment of the present invention further includes an anti-reflection layer located between the substrate and the self-capacitance electrode layer, and an orthogonal projection of the self-capacitance electrode on the substrate is located within an orthogonal projection range of the anti-reflection layer on the substrate. The reflection of the metal grid-shaped structure to the external environment light can be reduced or even eliminated by forming the anti-reflection layer between the self-capacitance electrode layer and the substrate, so that the influence of the reflected external environment light on the display effect of the embedded touch screen provided by the embodiment of the invention is avoided, and the shadow elimination problem can be effectively solved.
For example, in the in-cell touch screen provided by the embodiment of the present invention, the material of the anti-reflection layer may include molybdenum oxide and copper oxide. At this time, the anti-reflection layer may be formed by introducing oxygen into the metal sputtering cavity, and of course, the embodiment of the present invention includes but is not limited thereto, and the material of the anti-reflection layer may also be other materials.
In a specific implementation, in the in-cell touch screen provided in the embodiment of the present invention, as shown in fig. 1, the opposite substrate 20 includes a glass substrate 11 and a color film layer 12, an anti-glare or high-shielding polarizer 8 is disposed on a side of the substrate 1 opposite to the opposite substrate 20, and an anti-glare or high-shielding polarizer 9 is disposed on a side of the glass substrate 11 opposite to the substrate 1, so as to further solve the problem of shadow elimination.
In a specific implementation, in the in-cell touch screen provided in the embodiment of the invention, the material of the transparent shielding electrode layer may be ITO, a nano silver wire, or the like, which is not limited herein.
In the embedded touch screen provided in the embodiment of the present invention, as shown in fig. 1, a touch sensing chip IC on the same layer as the self-capacitance electrode layer 2 is further disposed on the substrate 1 of the array substrate 10, so that the respective capacitance electrodes 02 can be directly connected to the touch sensing chip IC without disposing leads; in addition, the array substrate is a touch surface, namely the array substrate faces a user, and the self-capacitance electrode layer is also positioned on the array substrate, so that a protective cover plate does not need to be arranged on the array substrate.
In practical implementation, as shown in fig. 1, the in-cell touch panel provided in the embodiment of the present invention further includes a liquid crystal layer 7 located between the array substrate 10 and the opposite substrate 20, and a backlight 13 located on a side of the polarizer 9 opposite to the glass substrate 11.
In the in-cell touch panel according to the embodiment of the invention, a user can view the touch panel from the array substrate side or the opposite substrate side.
Based on the same inventive concept, the embodiment of the invention also provides a display device, which comprises the embedded touch screen provided by the embodiment of the invention. The display device may be: any product or component with a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator and the like. The implementation of the display device can be referred to the embodiment of the in-cell touch screen, and repeated details are not repeated.
According to the embedded touch screen and the display device provided by the embodiment of the invention, the self-capacitance electrode layer, the insulating layer, the transparent shielding electrode layer and the pixel unit layer are sequentially stacked on one side, facing the opposite substrate, of the substrate of the array substrate in the touch screen by using the self-capacitance principle, and the touch detection signal loaded by the self-capacitance is isolated from the display signal by using the transparent shielding electrode insulated from the self-capacitance electrode, so that the interference between the touch detection signal and the display signal is avoided, the synchronous execution of touch detection and display driving can be realized, and better display and touch effects are ensured.
It will be apparent to those skilled in the art that various changes and modifications may be made in the present invention without departing from the spirit and scope of the invention. Thus, if such modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include such modifications and variations.

Claims (6)

1. An embedded touch screen is characterized by comprising an array substrate and an opposite substrate which are oppositely arranged, wherein the array substrate comprises a substrate, and a self-capacitance electrode layer, an insulating layer, a transparent shielding electrode layer and a pixel unit layer which are sequentially stacked on one side of the substrate, which faces the opposite substrate; one side of the substrate base plate, which is back to the opposite base plate, is a touch surface;
the insulating layer is made of an organic insulating material;
the pixel unit layer comprises a plurality of pixel units distributed in an array, the self-capacitance electrode layer comprises a plurality of self-capacitance electrodes which are independent from each other, and orthographic projections of the self-capacitance electrodes on the substrate are located in gaps among the pixel units; the self-capacitance electrode layer is made of a metal material, and each self-capacitance electrode has a grid-shaped structure;
the anti-reflection layer is positioned between the substrate base plate and the self-capacitance electrode layer, and the orthographic projection of the self-capacitance electrode on the substrate base plate is positioned in the range of the orthographic projection of the anti-reflection layer on the substrate base plate;
each grid in the grid-shaped structure of the self-capacitance electrode corresponds to a plurality of pixel units, and the length and the width of each grid are both larger than 300 um;
the self-capacitance electrode layer further comprises a floating electrode which is insulated from the self-capacitance electrode, and the floating electrode is positioned in each grid in the grid-shaped structure of the self-capacitance electrode.
2. The in-cell touch screen of claim 1, wherein the dielectric constant of the material of the insulating layer is less than 3.5, and the thickness of the insulating layer is greater than 2 μm.
3. The in-cell touch screen of claim 1, wherein each pixel unit comprises a plurality of sub-pixels, and wherein each grid has a length and a width corresponding to at least one sub-pixel size.
4. The in-cell touch screen of claim 1, wherein the floating electrodes are positioned at gaps between the pixel cells in an orthographic projection of the substrate base plate.
5. The in-cell touch screen of claim 1, wherein the floating electrodes have a grid-like structure.
6. A display device comprising the in-cell touch screen according to any one of claims 1 to 5.
CN201811099335.8A 2018-09-20 2018-09-20 Embedded touch screen and display device Active CN108920033B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811099335.8A CN108920033B (en) 2018-09-20 2018-09-20 Embedded touch screen and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811099335.8A CN108920033B (en) 2018-09-20 2018-09-20 Embedded touch screen and display device

Publications (2)

Publication Number Publication Date
CN108920033A CN108920033A (en) 2018-11-30
CN108920033B true CN108920033B (en) 2021-12-28

Family

ID=64408662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811099335.8A Active CN108920033B (en) 2018-09-20 2018-09-20 Embedded touch screen and display device

Country Status (1)

Country Link
CN (1) CN108920033B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210021793A (en) * 2019-08-19 2021-03-02 엘지디스플레이 주식회사 Touch display device
CN113760112A (en) * 2020-06-02 2021-12-07 深圳市柔宇科技股份有限公司 Display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830555A (en) * 2012-08-31 2012-12-19 北京京东方光电科技有限公司 Touch liquid crystal grating and 3D touch display device
CN104020913A (en) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 Embedded touch screen and display device
CN104615324A (en) * 2015-02-17 2015-05-13 京东方科技集团股份有限公司 Embedded touch screen and display device
CN104749830A (en) * 2013-12-27 2015-07-01 介面光电股份有限公司 Electrode structure and touch panel device with electrode structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796795B1 (en) * 2001-10-22 2008-01-22 삼성전자주식회사 Contact portion of semiconductor device and method for manufacturing the same, and thin film transistor array panel for display device including the contact portion and method for manufacturing the same
CN201532513U (en) * 2009-10-20 2010-07-21 胜华科技股份有限公司 Pixel array and homeotropic alignment LCD panel
US9563303B2 (en) * 2013-07-30 2017-02-07 Shanghai Tianma Micro-electronics Co., Ltd. Embedded capacitive touch display panel and embedded capacitive touch display device
CN105117088B (en) * 2015-09-16 2018-03-23 京东方科技集团股份有限公司 A kind of touch-control display panel and preparation method thereof, driving method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830555A (en) * 2012-08-31 2012-12-19 北京京东方光电科技有限公司 Touch liquid crystal grating and 3D touch display device
CN104749830A (en) * 2013-12-27 2015-07-01 介面光电股份有限公司 Electrode structure and touch panel device with electrode structure
CN104020913A (en) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 Embedded touch screen and display device
CN104615324A (en) * 2015-02-17 2015-05-13 京东方科技集团股份有限公司 Embedded touch screen and display device

Also Published As

Publication number Publication date
CN108920033A (en) 2018-11-30

Similar Documents

Publication Publication Date Title
CN110321027B (en) Touch sensor for display with protection
CN106157818B (en) Flexible display panel, manufacturing method thereof and display device
CN110321029B (en) Touch sensor for display
US10191592B2 (en) Touch-control display panel and display device, and driving method of display panel
EP3118727B1 (en) In-cell touchscreen and display device
US20180275809A1 (en) In-cell touch screen and display device
US20160041643A1 (en) Touch substrate, method for manufacturing the same, touch screen, and display device
KR20180067226A (en) touch sensor capable of detecting fingerprint, and display device and electronic apparatus including the same
EP2490108A2 (en) Touch Screen
US9019242B2 (en) Touch display device with dual-sided display and dual-sided touch input functions
US9557594B2 (en) Liquid-crystal display screen with touch-control function and manufacturing method thereof and electronic apparatus
WO2017193745A1 (en) In-cell touch screen, driving method therefor, and display device
US20130293487A1 (en) Touch panel
CN103676358A (en) Display base plate, manufacturing method thereof, touch screen and display device
EP2955612A1 (en) Touch display device and touch substrate
CN110673366B (en) Display panel and display device
EP2555094A2 (en) Touch control panel structure having a dummy pattern
CN106681559B (en) Touch panel, manufacturing method thereof and touch display device
CN104375707A (en) Touch display panel and touch display device
CN108920033B (en) Embedded touch screen and display device
US11194435B2 (en) Detection substrate and display device
KR20140093445A (en) Self capacitor type in-cell touch liquid crystal display device
JP2017010301A (en) Display device substrate, method for manufacturing display device substrate, and display device using the same
US20130154954A1 (en) Touch Control Panel Structure Having A Dummy Pattern
CN111025787A (en) Display panel and display device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant