CN108896592A - 页岩油地下原位加热改质过程中干酪根的测试方法及装置 - Google Patents

页岩油地下原位加热改质过程中干酪根的测试方法及装置 Download PDF

Info

Publication number
CN108896592A
CN108896592A CN201810980522.0A CN201810980522A CN108896592A CN 108896592 A CN108896592 A CN 108896592A CN 201810980522 A CN201810980522 A CN 201810980522A CN 108896592 A CN108896592 A CN 108896592A
Authority
CN
China
Prior art keywords
shale oil
sample
data
kerogenic
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810980522.0A
Other languages
English (en)
Other versions
CN108896592B (zh
Inventor
王晓琦
金旭
焦航
李建明
孙亮
刘晓丹
苏玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Natural Gas Co Ltd
Original Assignee
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Natural Gas Co Ltd filed Critical China Petroleum and Natural Gas Co Ltd
Priority to CN201810980522.0A priority Critical patent/CN108896592B/zh
Publication of CN108896592A publication Critical patent/CN108896592A/zh
Application granted granted Critical
Publication of CN108896592B publication Critical patent/CN108896592B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明实施例提供了一种页岩油地下原位加热改质过程中干酪根的测试方法及装置,其中,该方法包括:在页岩油岩石样品中干酪根处,获取多个薄片样品和粉状样品;获取各薄片样品在热处理前的第一扫描透射电子显微镜图像和热处理后的第二扫描透射电子显微镜图像,确定各薄片样品在内部微观结构上的变化,对粉状样品中的部分样品进行热学测试,获取热失重数据、吸热数据以及放热数据;对粉状样品中的部分样品进行热解测试,获取热解数据;根据热失重数据、吸热数据、放热数据、热解数据以及各薄片样品在内部微观结构上的变化,确定页岩油岩石样品中干酪根在地下原位加热改质过程中不同的生排烃阶段以及各生排烃阶段的生排烃的量。

Description

页岩油地下原位加热改质过程中干酪根的测试方法及装置
技术领域
本发明涉及石油开采技术领域,特别涉及一种页岩油地下原位加热改质过程中干酪根的测试方法及装置。
背景技术
我国的页岩油资源丰富,技术可采资源量43.52亿吨(EIA,2015),居世界第三位。页岩油是指主要富存在富有机质页岩层系(或砂岩、碳酸盐岩夹层)中的液态烃,是有机质热分解后生成的产物。我国的页岩油资源主要分布于中新生界陆相沉积盆地中,如松辽盆地、鄂尔多斯盆地、渤海湾盆地、四川盆地等。目前,与水平井体积压裂相比,对于页岩油的开发,地下原位加热转化/改质技术被认为是开采页岩油最有潜力的技术,该技术有不受地质条件限制、地下转化轻质油、高采出程度、较低污染等技术优点。经研究表明,该地下原位加热转化/改质技术对于中国陆相页岩层系,成熟度介于0.5%~1.0%、总有机碳质量分数大于6%的页岩油层系都有较好的前景。
对于成熟度介于0.5%~1.0%的黑色页岩,岩石内部有部分已经由干酪根裂解生成的液态烃,滞留在干酪根内部;另外还有大量未裂解生油的干酪根,这些干酪根就是原位转化/改质技术的重点对象。通过该技术,大量干酪根在外部能量的作用下,加速裂解生油,并且会形成大量微观通道,生烃增压又会作为动力驱动原油在页岩内部的纳米孔隙网络中运移,有机会将原先未连接的液态烃与新生成的液态烃排出。目前,在微观尺度上对于页岩油地下原位加热改质的实验研究较少,尚无系统的微观研究与评价方法。
发明内容
本发明实施例提供了一种页岩油地下原位加热改质过程中干酪根的测试方法,以解决现有技术中无法评价页岩油地下原位加热改质过程的技术问题。该方法包括:
确定页岩油岩石样品中干酪根的位置;
在所述页岩油岩石样品中干酪根处,获取多个薄片样品和粉状样品;
获取各所述薄片样品的第一扫描透射电子显微镜图像;
将各所述薄片样品分别放置在不同的测试环境下进行热处理,其中,各所述薄片样品所处的测试环境之间只有一个环境参数的数值不同,其他环境参数的数值一致;
获取各所述薄片样品在热处理后的第二扫描透射电子显微镜图像;
根据所述第一扫描透射电子显微镜图像和所述第二扫描透射电子显微镜图像,确定各所述薄片样品在内部微观结构上的变化,
对所述粉状样品中的部分样品进行热学测试,获取热失重数据、吸热数据以及放热数据,其中,所述热学测试的温度范围与热处理的温度范围相同;
对所述粉状样品中的部分样品进行热解测试,获取热解数据;
根据所述热失重数据、所述吸热数据、所述放热数据、所述热解数据以及各所述薄片样品在内部微观结构上的变化,确定所述页岩油岩石样品中干酪根在地下原位加热改质过程中不同的生排烃阶段以及各生排烃阶段的生排烃的量。
本发明实施例还提供了一种页岩油地下原位加热改质过程中干酪根的测试装置,以解决现有技术中无法评价页岩油地下原位加热改质过程的技术问题。该装置包括:
位置确定模块,用于确定页岩油岩石样品中干酪根的位置;
取样模块,用于在所述页岩油岩石样品中干酪根处,获取多个薄片样品和粉状样品;
第一图像获取模块,用于获取各所述薄片样品的第一扫描透射电子显微镜图像;
热处理模块,用于将各所述薄片样品分别放置在不同的测试环境下进行热处理,其中,各所述薄片样品所处的测试环境之间只有一个环境参数的数值不同,其他环境参数的数值一致;
第二图像获取模块,用于获取各所述薄片样品在热处理后的第二扫描透射电子显微镜图像;
结构分析模块,用于根据所述第一扫描透射电子显微镜图像和所述第二扫描透射电子显微镜图像,确定各所述薄片样品在内部微观结构上的变化,
热学实验模块,用于对所述粉状样品中的部分样品进行热学测试,获取热失重数据、吸热数据以及放热数据,其中,所述热学测试的温度范围与热处理的温度范围相同;
热解实验模块,用于对所述粉状样品中的部分样品进行热解测试,获取热解数据;
分析模块,用于根据所述热失重数据、所述吸热数据、所述放热数据、所述热解数据以及各所述薄片样品在内部微观结构上的变化,确定所述页岩油岩石样品中干酪根在地下原位加热改质过程中不同的生排烃阶段以及各生排烃阶段的生排烃的量。
本发明实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任意的页岩油地下原位加热改质过程中干酪根的测试方法,以解决现有技术中无法评价页岩油地下原位加热改质过程的技术问题。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述任意的页岩油地下原位加热改质过程中干酪根的测试方法的计算机程序,以解决现有技术中无法评价页岩油地下原位加热改质过程的技术问题。
在本发明实施例中,通过在同一页岩油岩石样品中干酪根处获取多个薄片样品和粉状样品,对多个薄片样品和粉状样品分别平行进行实验,对各个薄片样品进行热处理实验,模拟页岩油地下原位加热改质过程,深入纳米尺度获取各薄片样品在内部微观结构上的变化;对粉状样品进行热学测试,获取热失重数据、吸热数据以及放热数据,对粉状样品进行热解测试,获取热解数据,最后,基于热失重数据、吸热数据、放热数据、热解数据以及各薄片样品在内部微观结构上的变化,分析确定所述页岩油岩石样品中干酪根在地下原位加热改质过程中不同的生排烃阶段,以及定量地确定各生排烃阶段的生排烃的量,实现了页岩油地下原位加热改质过程中干酪根的生烃评价,从而解决现有技术中无法评价页岩油地下原位加热改质过程的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:
图1是本发明实施例提供的一种页岩油地下原位加热改质过程中干酪根的测试方法的流程图;
图2是本发明实施例提供的一种电镜背散射图像下干酪根的分布示意图;
图3是本发明实施例提供的一种薄片样品的第一扫描透射电子显微镜图像的示意图;
图4是本发明实施例提供的一种薄片样品的第二扫描透射电子显微镜图像的示意图;
图5是本发明实施例提供的一种页岩油地下原位加热改质过程中干酪根的测试方法的工作流程图;
图6是本发明实施例提供的一种页岩油地下原位加热改质过程中干酪根的测试装置的结构框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施方式和附图,对本发明做进一步详细说明。在此,本发明的示意性实施方式及其说明用于解释本发明,但并不作为对本发明的限定。
在本发明实施例中,提供了一种页岩油地下原位加热改质过程中干酪根的测试方法,如图1所示,该方法包括:
步骤101:确定页岩油岩石样品中干酪根的位置;
步骤102:在所述页岩油岩石样品中干酪根处,获取多个薄片样品(即多个片状样品)和粉状样品;
步骤103:获取各所述薄片样品的第一扫描透射电子显微镜图像;
步骤104:将各所述薄片样品放置不同的测试环境下进行热处理,其中,各所述薄片样品所处的测试环境之间只有一个环境参数的数值不同,其他环境参数的数值一致;
步骤105:获取各所述薄片样品在热处理后的第二扫描透射电子显微镜图像;
步骤106:根据所述第一扫描透射电子显微镜图像和所述第二扫描透射电子显微镜图像,确定各所述薄片样品在内部微观结构上的变化,
步骤107:对所述粉状样品中的部分样品进行热学测试,获取热失重数据、吸热数据以及放热数据,其中,所述热学测试的温度范围与热处理的温度范围相同;
步骤108:对所述粉状样品中的部分样品进行热解测试,获取热解数据;
步骤109:根据所述热失重数据、所述吸热数据、所述放热数据、所述热解数据以及各所述薄片样品在内部微观结构上的变化,确定所述页岩油岩石样品中干酪根在地下原位加热改质过程中不同的生排烃阶段以及各生排烃阶段的生排烃的量。
由图1所示的流程可知,在本发明实施例中,通过在同一页岩油岩石样品中干酪根处获取多个薄片样品和粉状样品,对多个薄片样品和粉状样品分别平行进行实验,对各个薄片样品进行热处理实验,模拟页岩油地下原位加热改质过程,深入纳米尺度获取各薄片样品在内部微观结构上的变化;对粉状样品进行热学测试,获取热失重数据、吸热数据以及放热数据,对粉状样品进行热解测试,获取热解数据,最后,基于热失重数据、吸热数据、放热数据、热解数据以及各薄片样品在内部微观结构上的变化,分析确定所述页岩油岩石样品中干酪根在地下原位加热改质过程中不同的生排烃阶段,以及定量地确定各生排烃阶段的生排烃的量,实现了页岩油地下原位加热改质过程中干酪根的生烃评价,从而解决现有技术中无法评价页岩油地下原位加热改质过程的问题。
具体实施时,通过将页岩油储层岩石精细切割、表面抛光、表面离子抛光后,制作成表面光滑的页岩油岩石样品。
具体实施时,上述页岩油岩石样品可以是各种类型的富有机质泥页岩岩石样品,例如,油源岩、气源岩和油气源岩,包括海相、陆相烃源岩。
具体实施时,页岩油岩石样品制作完成之后,通过以下步骤在页岩油岩石样品中确定干酪根的位置:
获取所述页岩油岩石样品的背散射图像;例如,将页岩油岩石样品置于扫描电子显微镜内,页岩油岩石样品的表面镀导电层(例如,碳),利用背散射探头(CBS)获取页岩油岩石样品的背散射图像。
在所述背散射图像中,将黑色区域确定为干酪根的位置(如图2所示的矩形区域)。
具体实施时,干酪根在电镜背散射探头下表现为黑色的组分,优选具有代表性且面积足够大的干酪根来获取多个薄片样品和粉状样品,干酪根的尺寸尽量大于10微米×5微米,内部无黏土矿物的干酪根,如果实在没有符合该条件的干酪根,再选择尺寸较小的或掺有黏土矿物的干酪根颗粒。干酪根可以为I型干酪根、Ⅱ型干酪根或Ⅲ型干酪根。
具体实施时,确定出页岩油岩石样品中干酪根的位置后,可以采用电子束-聚焦离子束双束扫描电镜(FIB-SEM)来切取多个薄片样品,其安装有纳米机械手,具有微加工功能,例如,利用离子束切薄片、提取以及焊接功能,可以利用纳米机械手在页岩油岩石样品的干酪根处切取多个薄片样品,将薄片样品分别固定到单独的支架上。
具体实施时,所述薄片样品的长度范围可以为5微米~20微米,高度范围可以为5微米~20微米,厚度范围可以为50纳米~300纳米。
具体实施时,为了避免样品之间的差异性,在本实施例中,在所述页岩油岩石样品中同一干酪根颗粒处,获取多个薄片样品和粉状样品。一系列的干酪根薄片样品从同一个微米尺度的干酪根有机质颗粒上提取而出,在这个尺度上,此干酪根颗粒形成的过程中做为一个整体,因此这些薄片样品可以看作均匀等同的样品。因此,有了同样的样品,即可开展变参数的实验,研究某一参数的变化对其影响。而现在实验室中的生排烃实验往往是将一大块岩石内部的干酪根提取出来,再进行实验,这些干酪根原本分布在岩石内的不同微层内,对于细粒沉积岩而言,各个干酪根之间往往具有不同沉积微相,它们其实类型、形成环境都有所不同,因此混到一起只能得到统计的数据。
具体实施时,将各所述薄片样品分别放置在不同的测试环境下进行热处理的过程中,各薄片样品所处的测试环境之间只有一个环境参数的数值不同,其他环境参数的数值一致,以便观察单一不同环境参数对热处理的影响,例如,所述测试环境的环境参数可以包括:温度、压力以及维持热处理气氛的气体的百分含量。当测试时,针对各个测试环境,可以从温度、压力以及维持热处理气氛的气体的百分含量中选择任意一个环境参数变化,其他环境参数均保持一致,温度包括不同的升温曲线,保温温度范围为100~500℃,压力范围为0.1~1000个大气压(约0.01~100MPa),所述的气氛主要调控水蒸汽、氧气、氮气、硫化氢等气体含量。例如,各个测试环境之间只有温度的数值不同,各个测试环境之间压力以及维持热处理气氛的气体的百分含量的数值均一致,具体的,可以是三种测试环境的压力值一致,均为N2气氛,气体气氛30%氧气,70%氮气;压力为1个大气压,三种测试环境的温度值分别为200℃、250℃、300℃、350℃,保温2小时。
具体实施时,上述热处理过程的测试环境可以利用通有气氛的管式炉或其他可控制气氛的加热仪器来实现,对薄片样品和页岩油岩石样品进行加热处理,模拟页岩油地下原位改质的过程。该部分为测试的核心,可以改变测试环境的环境参数有升温曲线、气氛气体百分含量、压力等。
具体实施时,可以采用聚焦离子束扫描电镜的STEM附件或采用透射电镜(TEM)的扫描透射功能,获取上述各薄片样品的第一扫描透射电子显微镜图像和所述第二扫描透射电子显微镜图像,放大倍数2万倍,对各个薄薄片样品分别进行表征,获得场像(BF)、暗场像(DF)以及高角度暗场像(HAADF)。
具体实施时,根据第一扫描透射电子显微镜图像(如图3所示)和第二扫描透射电子显微镜图像(如图4所示),可以确定各薄片样品热处理前后在内部微观结构上发生的变化,例如,内部微观结构上发生的变化可以包括灰度的变化、孔隙的产生、孔隙率的变化、裂缝的产生以及裂缝的变化等中的任意之一或任意组合,基于这些微观变化可以建立从均匀干酪根到多孔的形成、死碳化的全过程,将所述页岩油岩石样品中干酪根在地下原位加热改质的升温全过程进行拆解,划分为不同的生排烃阶段。
具体的,因为对于不同的样品,在原位加热改质时现象可能不同,因此对地下原位加热改质的升温全过程进行拆解,可以大致分生排烃初期、生排烃高峰期以及生排烃末期三个阶段,每个阶段的具体划分可以针对具体样品确定,也可以更细致的划分出多个阶段,例如,将生排烃初期、生排烃高峰期以及生排烃末期三个阶段分别再细致划分出多个阶段。
例如:以低熟干酪根为例,在生排烃初期(<300℃),仅会有干酪根的整体收缩,表现为薄片厚度变薄,导致明场像灰度变浅,更为透明;在生排烃高峰期(300-450℃),可能会出现大量的微孔隙,同时伴随部分微裂缝出现;在生排烃末期(>450℃),会出现大量有机质碳化颗粒,变为死碳。对于上述几个温度范围,通常情况下适用,因此,对应的热重与DSC测试也应该做到这些温度范围。对于其他类型的某些样品,温度范围可能会有所变化。
具体实施时,可以采用Avizo、Matlab等软件对第一扫描透射电子显微镜图像(如图3所示)和第二扫描透射电子显微镜图像(如图4所示)进行对比分析,以确定各薄片样品热处理前后在内部微观结构上发生的变化。
具体实施时,对所述粉状样品中的部分样品进行热学测试,该热学测试可以包括热重和DSC测试,在不同200℃-250℃、250-300℃、300℃-350℃温度阶段,主要获取干酪根的样品在加热过程中热失重数据、吸热数据以及放热数据。
具体实施时,对所述粉状样品中的部分样品进行热解测试,热解数据主要包括总有机碳(TOC)、总烃(HC)、生烃潜量(S1+S2)、氯仿可溶有机质(沥青“A”)、H/C、O/C以及同位素等,其中,在地球化学分析中,通过热解实验可以得到总有机碳、总烃、生烃潜量、H/C、O/C等数据,可以通过氯仿沥青测试方法获得氯仿可溶有机质,可以通过同位素测试方法获得同位素。
具体实施时,根据热失重数据、吸热数据以及放热数据,再辅助热解数据,即可判断滞留在干酪根中的烃与新裂解生成的烃的量。具体的,根据所述热解数据中的S1值确定在S1值对应的温度范围内单位质量的页岩油岩石样品含有的滞留烃的含量;
在S1值对应的温度范围内,根据所述热失重数据和所述吸热数据,确定得到的滞留烃的量;
根据所述热解数据中的S2值确定在S2值对应的温度范围内单位质量的页岩油岩石样品裂解产生的烃的含量;
在S2值对应的温度范围内,根据所述热失重数据和所述吸热数据,确定得到的因裂解产生的烃的量。
例如,热解数据中S1值对应的温度为300℃,即S1值表示在300℃(即S1值对应的温度)下检测的单位质量的生油岩(即页岩油岩石样品)中含有的液态烃(即上述滞留烃,滞留烃即在页岩油岩石样品加热之前已经存在的且滞留在页岩油岩石样品中的液态烃)的含量,mg/g(岩石),在S1值对应的温度内,建立S1值与热失重数据、吸放热数据之间的关系,即可动态确定出随着热失重数据、吸放热数据的变化,流出页岩油岩石样品的滞留烃的量。
热解数据中S2值对应的温度为300℃-600℃,S2值表示在300℃-600℃(即S2值对应的温度)下检测的单位质量生油岩中被加热而裂解的干酪根产生的烃的量(mg/g),在S2值对应的温度300℃-600℃内,建立S2值与热失重数据、吸放热数据之间的关系,即可动态确定出随着热失重数据、吸放热数据的变化,流出页岩油岩石样品的因加热而裂解产生的烃的量。
具体实施时,为了进一步测试干酪根,在本实施例中,还可以判断干酪根的生排烃潜力,例如,上述方法,还包括:
对所述粉状样品中的部分样品进行热模拟实验,确定排出的烃的类型;
根据各生排烃阶段排出的烃的量以及烃的类型,判断所述页岩油岩石样品中干酪根的生排烃潜力。根据热解实验得到的S1值、S2值、热失重数据和所述吸热数据确定出烃的量之后,还可以结合烃的类型判断生排烃潜力,例如,针对同质量的页岩油岩石样品中干酪根,则排出烃的量越大,生排烃潜力越大;针对同样的排出烃量,则烃中包含的高碳数的烷烃、芳香烃等含量越高,生排烃潜力越大,例如,排出的烃中可能有含C8类型的烃、含C3类型的烃,则含C8类型的烃的含量越大,生排烃潜力越大。
具体的,可以采用黄金管生排烃模拟等模拟方法,获取生排烃过程中排出的烃类物质的色谱和质谱,进而根据所述色谱和所述质谱,辨别确定排出的烃的类型。
以下以鄂尔多斯盆地延长组长7页岩地下原位加热改质实验为例,描述上述页岩油地下原位加热改质过程中干酪根的测试方法的工作流程,如图5所示,以实现对长7页岩地下原位加热改质过程的微观评价。
选取一块延长组长7富有机质黑色页岩,TOC 7.2%,成熟度镜质体反射率Ro为7.8%。
首先进行制样,切割得到1cm*1cm*0.5cm的小薄片,然后进行表面机械抛光,最小抛光剂砂粒至0.5微米(Leica EM TXP精研一体机,0.5微米研磨片),然后进行氩离子表面抛光(Leica RES 102设备),得到样品(即上述页岩油岩石样品)。对于同一块样品,研磨得到50目的粉体样品,待用。分别平行进行A组实验和B组实验。
A组实验:
A1、对样品表面离子抛光。
A2、将离子抛光过的样品粘接到扫描电镜样品台上,置于聚焦离子束扫描电镜(FEI Helios 650Dual Beam型号)内,利用背散射成像选取目标干酪根位置(如图2中的矩形区域所示)。
A3、将目标干酪根位置利用聚焦离子束切薄片样品,然后利用纳米机械手(FEIEasy Lift装置)将薄片样品提取并粘接到固定在样品台上的铜网支架臂上,对于同一个干酪根颗粒,切出4片同样的薄片样品,每个薄片样品的尺寸约8μm*6μm*200nm。
A4、利用扫描透射STEM探头获取各个干酪根薄片样品的初始图像(即上述第一扫描透射电子显微镜图像),放大倍数2万倍,对四个薄片样品分别进行表征,获得BF、DF、HAADF图像。
A5、将载有铜网支架的样品台从扫描电镜腔体中取出,在架托上放入气氛管式炉中,设置升温曲线加热,按照升温速度为10℃/min升温,从室温升至200℃、250℃、300℃、350℃,保温2小时;气体气氛30%氧气,70%氮气;压力为1个大气压。对4个薄片样品在不同的温度下进行热处理。
A6、将热处理完的薄片样品再次放入扫描电镜腔体内,调节电子束至热处理前获取图像时同样的参数,调节样品成像位置为同一位置,然后进行STEM第二次成像(即上述第二扫描透射电子显微镜图像),获得BF、DF、HAADF图像。
B组实验:
B1、研磨得到粉体样品。
B2、对研磨得到的粉体样品中的部分粉体样品进行TGA(热重分析仪)、DSC(差示扫描量热法)分析,从室温至500℃,升温速度10℃/min,流动N2保护,测试得到热失重曲线与DSC曲线(包括吸热数据以及放热数据)。
B3、对研磨得到的粉体样品中的部分粉体样品进行热解测试,获得热解数据。用该粉体或提取的干酪根使用RockEval6设备进行热解测试,获得S1S2数据。
B4、对研磨得到的粉体样品中的部分粉体样品进行黄金管热模拟实验进行热模拟实验,获得生排烃过程中的产物信息。
B5、获取热失重曲线、DSC曲线(包括吸热数据以及放热数据)、热解数据以及产物信息。
C实验分析:
根据该岩石样品的热失重的信息、DSC的数据,获得不同200℃-250℃、250-300℃、300℃-350℃温度阶段的失重信息与吸热、放热信息;利用热解测试的数据辅助判断滞留在干酪根中的烃与新裂解生成的烃的量;根据热解模拟实验,判断热模拟产物,判断生排烃潜力;将初始干酪根的薄片样品与热处理后薄片样品的STEM图像进行对比,将两次成像的结果导入Avizo Fire(FEI Company)软件中,研究干酪根薄片样品内部的微观结构的变化,观察干酪根内部特征的变化,包括孔隙与微裂缝的生成等,建立从均匀干酪根到多孔的形成、死碳化的全过程模板。综上,以干酪根内部微结构的变化为主,以生排烃过程中的产物定量为辅,明确该长7页岩岩石在地下原位加热改质中的生排烃规律与潜力。从而为大规模的地下原位加热改质的开展提供理论支持。
基于同一发明构思,本发明实施例中还提供了一种页岩油地下原位加热改质过程中干酪根的测试装置,如下面的实施例所述。由于页岩油地下原位加热改质过程中干酪根的测试装置解决问题的原理与页岩油地下原位加热改质过程中干酪根的测试方法相似,因此页岩油地下原位加热改质过程中干酪根的测试装置的实施可以参见页岩油地下原位加热改质过程中干酪根的测试方法的实施,重复之处不再赘述。以下所使用的,术语“单元”或者“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是本发明实施例的页岩油地下原位加热改质过程中干酪根的测试装置的一种结构框图,如图6所示,该装置包括:
位置确定模块601,用于确定页岩油岩石样品中干酪根的位置;
取样模块602,用于在所述页岩油岩石样品中干酪根处,获取多个薄片样品和粉状样品;
第一图像获取模块603,用于获取各所述薄片样品的第一扫描透射电子显微镜图像;
热处理模块604,用于将各所述薄片样品分别放置在不同的测试环境下进行热处理,其中,各所述薄片样品所处的测试环境之间只有一个环境参数的数值不同,其他环境参数的数值一致;
第二图像获取模块605,用于获取各所述薄片样品在热处理后的第二扫描透射电子显微镜图像;
结构分析模块606,用于根据所述第一扫描透射电子显微镜图像和所述第二扫描透射电子显微镜图像,确定各所述薄片样品在内部微观结构上的变化,
热学实验模块607,用于对所述粉状样品中的部分样品进行热学测试,获取热失重数据、吸热数据以及放热数据,其中,所述热学测试的温度范围与热处理的温度范围相同;
热解实验模块608,用于对所述粉状样品中的部分样品进行热解测试,获取热解数据;
分析模块609,用于根据所述热失重数据、所述吸热数据、所述放热数据、所述热解数据以及各所述薄片样品在内部微观结构上的变化,确定所述页岩油岩石样品中干酪根在地下原位加热改质过程中不同的生排烃阶段以及各生排烃阶段的生排烃的量。
在一个实施例中,所述分析模块,包括:
阶段划分单元,用于根据各所述薄片样品在内部微观结构上的变化,将所述页岩油岩石样品中干酪根在地下原位加热改质的过程划分为不同的生排烃阶段;
生排烃量确定单元,用于根据所述热解数据中的S1值确定在S1值对应的温度范围内单位质量的页岩油岩石样品含有的滞留烃的含量;在S1值对应的温度范围内,根据所述热失重数据和所述吸热数据,确定得到的滞留烃的量;根据所述热解数据中的S2值确定在S2值对应的温度范围内单位质量的页岩油岩石样品因加热裂解产生的烃的含量;在S2值对应的温度范围内,根据所述热失重数据和所述吸热数据,确定得到的因加热裂解产生的烃的量。
在一个实施例中,还包括:
热模拟实验模块,用于对所述粉状样品中的部分样品进行热模拟实验,确定排出的烃的类型;
潜力分析模块,用于根据各生排烃阶段排出的烃的量以及烃的类型,判断所述页岩油岩石样品中干酪根的生排烃潜力。
在一个实施例中,所述热模拟实验模块,包括:
图谱获取单元,用于获取生排烃过程中排出的烃类物质的色谱和质谱;
产物确定单元,用于根据所述色谱和所述质谱,辨别确定排出的烃的类型。
在一个实施例中,所述位置确定模块,包括:
散射图像获取单元,用于获取所述页岩油岩石样品的背散射图像;
位置确定单元,用于在所述背散射图像中,将黑色区域确定为干酪根的位置。
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
本发明实施例实现了如下技术效果:在本发明实施例中,通过在同一页岩油岩石样品中干酪根处获取多个薄片样品和粉状样品,对多个薄片样品和粉状样品分别平行进行实验,对各个薄片样品进行热处理实验,模拟页岩油地下原位加热改质过程,深入纳米尺度获取各薄片样品在内部微观结构上的变化;对粉状样品进行热学测试,获取热失重数据、吸热数据以及放热数据,对粉状样品进行热解测试,获取热解数据,最后,基于热失重数据、吸热数据、放热数据、热解数据以及各薄片样品在内部微观结构上的变化,分析确定所述页岩油岩石样品中干酪根在地下原位加热改质过程中不同的生排烃阶段,以及定量地确定各生排烃阶段的生排烃的量,实现了页岩油地下原位加热改质过程中干酪根的生烃评价,从而解决现有技术中无法评价页岩油地下原位加热改质过程的问题。
显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明实施例可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

1.一种页岩油地下原位加热改质过程中干酪根的测试方法,其特征在于,包括:
确定页岩油岩石样品中干酪根的位置;
在所述页岩油岩石样品中干酪根处,获取多个薄片样品和粉状样品;
获取各所述薄片样品的第一扫描透射电子显微镜图像;
将各所述薄片样品分别放置在不同的测试环境下进行热处理,其中,各所述薄片样品所处的测试环境之间只有一个环境参数的数值不同,其他环境参数的数值一致;
获取各所述薄片样品在热处理后的第二扫描透射电子显微镜图像;
根据所述第一扫描透射电子显微镜图像和所述第二扫描透射电子显微镜图像,确定各所述薄片样品在内部微观结构上的变化,
对所述粉状样品中的部分样品进行热学测试,获取热失重数据、吸热数据以及放热数据,其中,所述热学测试的温度范围与热处理的温度范围相同;
对所述粉状样品中的部分样品进行热解测试,获取热解数据;
根据所述热失重数据、所述吸热数据、所述放热数据、所述热解数据以及各所述薄片样品在内部微观结构上的变化,确定所述页岩油岩石样品中干酪根在地下原位加热改质过程中不同的生排烃阶段以及各生排烃阶段的生排烃的量。
2.如权利要求1所述页岩油地下原位加热改质过程中干酪根的测试方法,其特征在于,根据所述热失重数据、所述吸热数据、所述放热数据、所述热解数据以及各所述薄片样品在内部微观结构上的变化,确定所述页岩油岩石样品中干酪根在地下原位加热改质过程中不同的生排烃阶段以及各生排烃阶段的生排烃的量,包括:
根据各所述薄片样品在内部微观结构上的变化,将所述页岩油岩石样品中干酪根在地下原位加热改质的过程划分为不同的生排烃阶段;
根据所述热解数据中的S1值确定在S1值对应的温度范围内单位质量的页岩油岩石样品含有的滞留烃的含量;
在S1值对应的温度范围内,根据所述热失重数据和所述吸热数据,确定得到的滞留烃的量;
根据所述热解数据中的S2值确定在S2值对应的温度范围内单位质量的页岩油岩石样品因加热裂解产生的烃的含量;
在S2值对应的温度范围内,根据所述热失重数据和所述吸热数据,确定得到的因加热裂解产生的烃的量。
3.如权利要求1所述页岩油地下原位加热改质过程中干酪根的测试方法,其特征在于,所述热解数据包括总有机碳、总烃、生烃潜量、氯仿可溶有机质、H/C、O/C以及同位素。
4.如权利要求1所述页岩油地下原位加热改质过程中干酪根的测试方法,其特征在于,各所述薄片样品在内部微观结构上的变化包括:灰度的变化、孔隙的产生、孔隙率的变化、裂缝的产生以及裂缝的变化中的任意之一或任意组合。
5.如权利要求1所述页岩油地下原位加热改质过程中干酪根的测试方法,其特征在于,还包括:
对所述粉状样品中的部分样品进行热模拟实验,确定排出的烃的类型;
根据各生排烃阶段排出的烃的量以及烃的类型,判断所述页岩油岩石样品中干酪根的生排烃潜力。
6.如权利要求5所述页岩油地下原位加热改质过程中干酪根的测试方法,其特征在于,对所述粉状样品中的部分样品进行热模拟实验,确定排出的烃的类型,包括:
获取生排烃过程中排出的烃类物质的色谱和质谱;
根据所述色谱和所述质谱,辨别确定排出的烃的类型。
7.如权利要求1至6中任一项所述页岩油地下原位加热改质过程中干酪根的测试方法,其特征在于,确定页岩油岩石样品中干酪根的位置,包括:
获取所述页岩油岩石样品的背散射图像;
在所述背散射图像中,将黑色区域确定为干酪根的位置。
8.如权利要求1至6中任一项所述页岩油地下原位加热改质过程中干酪根的测试方法,其特征在于,所述测试环境的环境参数包括:温度、压力以及维持热处理气氛的气体的百分含量。
9.如权利要求1至6中任一项所述页岩油地下原位加热改质过程中干酪根的测试方法,其特征在于,所述薄片样品的长度范围为5微米~20微米,高度范围为5微米~20微米,厚度范围为50纳米~300纳米。
10.一种页岩油地下原位加热改质过程中干酪根的测试装置,其特征在于,包括:
位置确定模块,用于确定页岩油岩石样品中干酪根的位置;
取样模块,用于在所述页岩油岩石样品中干酪根处,获取多个薄片样品和粉状样品;
第一图像获取模块,用于获取各所述薄片样品的第一扫描透射电子显微镜图像;
热处理模块,用于将各所述薄片样品分别放置在不同的测试环境下进行热处理,其中,各所述薄片样品所处的测试环境之间只有一个环境参数的数值不同,其他环境参数的数值一致;
第二图像获取模块,用于获取各所述薄片样品在热处理后的第二扫描透射电子显微镜图像;
结构分析模块,用于根据所述第一扫描透射电子显微镜图像和所述第二扫描透射电子显微镜图像,确定各所述薄片样品在内部微观结构上的变化,
热学实验模块,用于对所述粉状样品中的部分样品进行热学测试,获取热失重数据、吸热数据以及放热数据,其中,所述热学测试的温度范围与热处理的温度范围相同;
热解实验模块,用于对所述粉状样品中的部分样品进行热解测试,获取热解数据;
分析模块,用于根据所述热失重数据、所述吸热数据、所述放热数据、所述热解数据以及各所述薄片样品在内部微观结构上的变化,确定所述页岩油岩石样品中干酪根在地下原位加热改质过程中不同的生排烃阶段以及各生排烃阶段的生排烃的量。
11.如权利要求10所述页岩油地下原位加热改质过程中干酪根的测试装置,其特征在于,所述分析模块,包括:
阶段划分单元,用于根据各所述薄片样品在内部微观结构上的变化,将所述页岩油岩石样品中干酪根在地下原位加热改质的过程划分为不同的生排烃阶段;
生排烃量确定单元,用于根据所述热解数据中的S1值确定在S1值对应的温度范围内单位质量的页岩油岩石样品含有的滞留烃的含量;在S1值对应的温度范围内,根据所述热失重数据和所述吸热数据,确定得到的滞留烃的量;根据所述热解数据中的S2值确定在S2值对应的温度范围内单位质量的页岩油岩石样品因加热裂解产生的烃的含量;在S2值对应的温度范围内,根据所述热失重数据和所述吸热数据,确定得到的因加热裂解产生的烃的量。
12.如权利要求10所述页岩油地下原位加热改质过程中干酪根的测试装置,其特征在于,还包括:
热模拟实验模块,用于对所述粉状样品中的部分样品进行热模拟实验,确定排出的烃的类型;
潜力分析模块,用于根据各生排烃阶段排出的烃的量以及烃的类型,判断所述页岩油岩石样品中干酪根的生排烃潜力。
13.如权利要求12所述页岩油地下原位加热改质过程中干酪根的测试装置,其特征在于,所述热模拟实验模块,包括:
图谱获取单元,用于获取生排烃过程中排出的烃类物质的色谱和质谱;
产物确定单元,用于根据所述色谱和所述质谱,辨别确定排出的烃的类型。
14.如权利要求10至13中任一项所述页岩油地下原位加热改质过程中干酪根的测试装置,其特征在于,所述位置确定模块,包括:
散射图像获取单元,用于获取所述页岩油岩石样品的背散射图像;
位置确定单元,用于在所述背散射图像中,将黑色区域确定为干酪根的位置。
15.一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至9任一项所述的页岩油地下原位加热改质过程中干酪根的测试方法。
16.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有执行权利要求1至9任一项所述的页岩油地下原位加热改质过程中干酪根的测试方法的计算机程序。
CN201810980522.0A 2018-08-27 2018-08-27 页岩油地下原位加热改质过程中干酪根的测试方法及装置 Active CN108896592B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810980522.0A CN108896592B (zh) 2018-08-27 2018-08-27 页岩油地下原位加热改质过程中干酪根的测试方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810980522.0A CN108896592B (zh) 2018-08-27 2018-08-27 页岩油地下原位加热改质过程中干酪根的测试方法及装置

Publications (2)

Publication Number Publication Date
CN108896592A true CN108896592A (zh) 2018-11-27
CN108896592B CN108896592B (zh) 2021-01-01

Family

ID=64358817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810980522.0A Active CN108896592B (zh) 2018-08-27 2018-08-27 页岩油地下原位加热改质过程中干酪根的测试方法及装置

Country Status (1)

Country Link
CN (1) CN108896592B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537547A (zh) * 2020-06-11 2020-08-14 中国石油大学(华东) 一种评价原位加热改质时页岩油储层有机质转化率的方法
CN112083034A (zh) * 2020-09-14 2020-12-15 中国石油大学(华东) 原位电加热过程中烃源岩生烃量确定方法及系统
CN112782227A (zh) * 2019-11-08 2021-05-11 中国石油天然气股份有限公司 岩石含油分布的测定方法及系统
CN113984871A (zh) * 2021-12-27 2022-01-28 成都创源油气技术开发有限公司 利用ea-irms测定页岩可溶性有机碳同位素的方法
CN114199906A (zh) * 2021-12-14 2022-03-18 中国科学院地球化学研究所 模拟地外空间热环境对天体表层矿物微观结构改造的方法
CN114280090A (zh) * 2021-11-23 2022-04-05 中国地质大学(武汉) 一种陆相页岩排烃效率与页岩油富集程度的评价方法
CN116046825A (zh) * 2023-04-03 2023-05-02 中国核动力研究设计院 辐照后弥散燃料纳米压痕试样及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360359A (en) * 1981-03-13 1982-11-23 Conoco Inc. Method for relating shallow electrical anomalies to the presence of deeper hydrocarbon reservoirs
WO1983003676A1 (en) * 1982-04-20 1983-10-27 Bather, John, Maxwell Analysis of kerogens
CN101149363A (zh) * 2007-10-29 2008-03-26 中国科学院广州地球化学研究所 岩石样品的生烃动力学高压热模拟实验方法和装置
CN101333446A (zh) * 2008-07-30 2008-12-31 中国科学院广州地球化学研究所 用于生烃动力学研究的干酪根分阶段热解装置
CN101839899A (zh) * 2009-03-18 2010-09-22 中国石油天然气股份有限公司 一种碳酸盐烃源岩的油气分析方法
CN101929960A (zh) * 2009-06-22 2010-12-29 中国石油天然气股份有限公司 定量测定烃源岩中干酪根结构组成和成熟度的方法
US20130182819A1 (en) * 2012-01-13 2013-07-18 Ingrain, Inc. Method Of Determining Reservoir Properties And Quality With Multiple Energy X-Ray Imaging
CN103454198A (zh) * 2013-04-24 2013-12-18 中国石油大学(华东) 一种泥页岩有机孔隙度检测方法
CN104849409A (zh) * 2015-05-20 2015-08-19 中国石油大学(华东) 一种泥页岩成岩演化模拟实验方法
US20160341707A1 (en) * 2015-05-20 2016-11-24 Saudi Arabian Oil Company Pyrolysis to determine hydrocarbon expulsion efficiency of hydrocarbon source rock
CN108152315A (zh) * 2017-11-14 2018-06-12 中国石油天然气股份有限公司 一种干酪根生油能力的微观评价方法及其系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360359A (en) * 1981-03-13 1982-11-23 Conoco Inc. Method for relating shallow electrical anomalies to the presence of deeper hydrocarbon reservoirs
WO1983003676A1 (en) * 1982-04-20 1983-10-27 Bather, John, Maxwell Analysis of kerogens
CN101149363A (zh) * 2007-10-29 2008-03-26 中国科学院广州地球化学研究所 岩石样品的生烃动力学高压热模拟实验方法和装置
CN101333446A (zh) * 2008-07-30 2008-12-31 中国科学院广州地球化学研究所 用于生烃动力学研究的干酪根分阶段热解装置
CN101839899A (zh) * 2009-03-18 2010-09-22 中国石油天然气股份有限公司 一种碳酸盐烃源岩的油气分析方法
CN101929960A (zh) * 2009-06-22 2010-12-29 中国石油天然气股份有限公司 定量测定烃源岩中干酪根结构组成和成熟度的方法
US20130182819A1 (en) * 2012-01-13 2013-07-18 Ingrain, Inc. Method Of Determining Reservoir Properties And Quality With Multiple Energy X-Ray Imaging
CN103454198A (zh) * 2013-04-24 2013-12-18 中国石油大学(华东) 一种泥页岩有机孔隙度检测方法
CN104849409A (zh) * 2015-05-20 2015-08-19 中国石油大学(华东) 一种泥页岩成岩演化模拟实验方法
US20160341707A1 (en) * 2015-05-20 2016-11-24 Saudi Arabian Oil Company Pyrolysis to determine hydrocarbon expulsion efficiency of hydrocarbon source rock
CN108152315A (zh) * 2017-11-14 2018-06-12 中国石油天然气股份有限公司 一种干酪根生油能力的微观评价方法及其系统

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
GILLAIZEAU, B: "Source organisms and formation pathway of the kerogen of the Goynuk Oil Shale (Oligocene, Turkey) as revealed by electron microscopy, spectroscopy and pyrolysis", 《ORGANIC GEOCHEMISTRY》 *
周杰: "一种生、排烃计算方法探讨与应用", 《石油勘探与开发》 *
张林晔: "《东营凹陷成烃与成藏关系研究》", 31 March 2005, 石油地质出版社 *
李志明: "烃源岩有限空间油气生排模拟及其意义", 《石油实验地质》 *
李术元: "《化学动力学在盆地模拟生烃评价中的应用》", 31 May 2000, 石油大学出版社 *
杨智: "基于原位转化/改质技术的陆相页岩选区评价", 《深圳大学学报理工版》 *
黄第藩: "《煤成油地球化学新进展》", 30 September 1992, 石油工业出版社 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782227A (zh) * 2019-11-08 2021-05-11 中国石油天然气股份有限公司 岩石含油分布的测定方法及系统
CN112782227B (zh) * 2019-11-08 2022-11-04 中国石油天然气股份有限公司 岩石含油分布的测定方法及系统
CN111537547A (zh) * 2020-06-11 2020-08-14 中国石油大学(华东) 一种评价原位加热改质时页岩油储层有机质转化率的方法
CN112083034A (zh) * 2020-09-14 2020-12-15 中国石油大学(华东) 原位电加热过程中烃源岩生烃量确定方法及系统
CN114280090A (zh) * 2021-11-23 2022-04-05 中国地质大学(武汉) 一种陆相页岩排烃效率与页岩油富集程度的评价方法
CN114199906A (zh) * 2021-12-14 2022-03-18 中国科学院地球化学研究所 模拟地外空间热环境对天体表层矿物微观结构改造的方法
CN114199906B (zh) * 2021-12-14 2023-08-22 中国科学院地球化学研究所 模拟地外空间热环境对天体表层矿物微观结构改造的方法
CN113984871A (zh) * 2021-12-27 2022-01-28 成都创源油气技术开发有限公司 利用ea-irms测定页岩可溶性有机碳同位素的方法
CN116046825A (zh) * 2023-04-03 2023-05-02 中国核动力研究设计院 辐照后弥散燃料纳米压痕试样及其制备方法
CN116046825B (zh) * 2023-04-03 2023-06-27 中国核动力研究设计院 辐照后弥散燃料纳米压痕试样及其制备方法

Also Published As

Publication number Publication date
CN108896592B (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
CN108896592A (zh) 页岩油地下原位加热改质过程中干酪根的测试方法及装置
Curtis et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging
Ko et al. Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford–equivalent) mudrocks: Results from gold tube pyrolysis experiments
Wood et al. Solid bitumen in the Montney Formation: Diagnostic petrographic characteristics and significance for hydrocarbon migration
Madonna et al. Synchrotron-based X-ray tomographic microscopy for rock physics investigations
Saif et al. Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM
Cardott et al. Post-oil solid bitumen network in the Woodford Shale, USA—A potential primary migration pathway
Ju et al. Laboratory in situ CT observation of the evolution of 3D fracture networks in coal subjected to confining pressures and axial compressive loads: a novel approach
Sun et al. Nanoscale pore characteristics of the Lower Cambrian Niutitang Formation Shale: a case study from Well Yuke# 1 in the Southeast of Chongqing, China
Sun et al. Rock properties evaluation for carbonate reservoir characterization with multi-scale digital rock images
Zhou et al. 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM
Hemes et al. Multi-scale characterization of porosity in Boom Clay (HADES-level, Mol, Belgium) using a combination of X-ray μ-CT, 2D BIB-SEM and FIB-SEM tomography
Saraji et al. The representative sample size in shale oil rocks and nano-scale characterization of transport properties
Curtis et al. Transmission and scanning electron microscopy investigation of pore connectivity of gas shales on the nanoscale
Hu et al. Development of organic pores in the Longmaxi Formation overmature shales: Combined effects of thermal maturity and organic matter composition
Cao et al. Classification and controlling factors of organic pores in continental shale gas reservoirs based on laboratory experimental results
Allan et al. A multiscale methodology for the analysis of velocity anisotropy in organic-rich shale
Peng et al. An integrated method for upscaling pore-network characterization and permeability estimation: example from the Mississippian Barnett Shale
Vafaie et al. Experimental investigation of the pore structure characteristics of the Garau gas shale formation in the Lurestan Basin, Iran
Kim et al. Permeability and porosity evolution of organic-rich shales from the green river formation as a result of maturation
Liang et al. Geological and geochemical characteristics of marine-continental transitional shale from the Lower Permian Taiyuan Formation, Taikang Uplift, southern North China Basin
Guo et al. Relationship between tight sandstone reservoir formation and hydrocarbon charging: A case study of a Jurassic reservoir in the eastern Kuqa Depression, Tarim Basin, NW China
Li et al. Scale-dependent nature of porosity and pore size distribution in lacustrine shales: An investigation by BIB-SEM and X-ray CT methods
Gao et al. A new and integrated imaging and compositional method to investigate the contributions of organic matter and inorganic minerals to the pore spaces of lacustrine shale in China
CN108152315A (zh) 一种干酪根生油能力的微观评价方法及其系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant