CN108893697B - 一种纳米结构高温润滑复合涂层制备方法 - Google Patents

一种纳米结构高温润滑复合涂层制备方法 Download PDF

Info

Publication number
CN108893697B
CN108893697B CN201810783949.1A CN201810783949A CN108893697B CN 108893697 B CN108893697 B CN 108893697B CN 201810783949 A CN201810783949 A CN 201810783949A CN 108893697 B CN108893697 B CN 108893697B
Authority
CN
China
Prior art keywords
composite coating
powder
sample
spray
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810783949.1A
Other languages
English (en)
Other versions
CN108893697A (zh
Inventor
李博
高义民
李聪
郑巧玲
李烨飞
郑开宏
王娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Guangdong Institute of Materials and Processing
Original Assignee
Xian Jiaotong University
Guangdong Institute of Materials and Processing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University, Guangdong Institute of Materials and Processing filed Critical Xian Jiaotong University
Priority to CN201810783949.1A priority Critical patent/CN108893697B/zh
Publication of CN108893697A publication Critical patent/CN108893697A/zh
Application granted granted Critical
Publication of CN108893697B publication Critical patent/CN108893697B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种纳米结构高温润滑复合涂层制备方法,按质量分数称取NiCrAlY,Mo和Ag粉末,然后将粉末混合,加入甲醇并充入氮气密封后进行球磨制得混合粉末;将球磨好的混合粉末加入去离子水配置成悬浮液,然后进行喷雾造粒制备成纳米结构的喷涂粉末;将基底材料棒材切割成试样,对试样表面进行打磨,然后超声清洗,对超声清洗后的试样进行喷砂处理,喷砂处理后再次进行超声清洗;对超声清洗后的试样进行预热处理,然后利用制得的喷涂粉末采用等离子喷涂法对预热处理后的试样进行喷涂处理;对喷涂好的试样进行热处理,然后随炉冷却,制得NiCrAlY‑Mo‑Ag复合涂层。本发明有效改善复合涂层的组织结构,提高复合涂层的力学性能及宽温域内的摩擦学性能。

Description

一种纳米结构高温润滑复合涂层制备方法
技术领域
本发明属于涂层材料技术领域,具体涉及一种纳米结构高温润滑复合涂层制备方法。
背景技术
航空航天、核工业等高新技术产业的飞速发展,对高温、高压和高速等极端苛刻工况条件下工作的材料提出了更高的性能要求,如高推重比航空发动机涡轮轴、箔片空气轴承、热动力机械高温轴承、汽缸衬套、轴套等,其中相关运动部件的润滑与耐磨问题已成为影响整个装备系统可靠性和服役寿命的技术关键。因此,迫切需要运用摩擦学原理构筑新型高温润滑材料,以解决相关运动部件在苛刻环境下的润滑和耐磨问题。
MCrAlY(M=Co或/和Ni)高温下具有优异的抗氧化性能、抗腐蚀性能和耐磨损性能,通常可以作为高温润滑材料的基体材料使用。Mo具有固溶强化的作用,可以有效提高材料的强度。Ag是层片状结构,低温下具有较好的润滑性能,是较好的低温润滑剂。高温下,Ag可以与Mo氧化生成的MoO3发生反应生成Ag2MoO4高温润滑剂,实现材料的高温润滑性能。因此,该发明采用等离子喷涂技术,制备NiCrAlY-Mo-Ag复合涂层,实现涂层在宽温度范围内具有连续润滑性能。通常等离子喷涂使用的粉末为商用球行粉末,粉末通过简单的机械混合,然后制备成复合涂层。通过这种方式制备的复合涂层中各物相一般分布不均匀,涂层中的裂纹和气孔等缺陷较多,各物相之间的界面比较明显,涂层的结合强度较低,这很大程度影响了涂层的工程应用。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种纳米结构高温润滑复合涂层制备方法,以解决复合涂层中各物相分布不均匀,涂层中裂纹和气孔等缺陷较多,涂层结合强度较低的问题,有效改善复合涂层的组织结构,提高复合涂层的力学性能及宽温域内的摩擦学性能。
本发明采用以下技术方案:
一种纳米结构高温润滑复合涂层制备方法包括以下步骤:
S1、称取NiCrAlY,Mo和Ag粉末,然后将粉末混合,加入甲醇并充入氮气密封后进行球磨制得混合粉末;
S2、将步骤S1球磨好的混合粉末加入去离子水配置成悬浮液,然后进行喷雾造粒制备成纳米结构的喷涂粉末;
S3、将基底材料切割成试样,对试样表面进行清洁处理,对处理后的试样进行喷砂处理,喷砂处理后再次进行超声清洗;
S4、对步骤S3超声清洗后的试样进行预热处理,然后利用步骤S2制得的喷涂粉末采用等离子喷涂法对预热处理后的试样进行喷涂处理;
S5、对步骤S4喷涂好的试样进行热处理,然后随炉冷却,制得NiCrAlY-Mo-Ag复合涂层。
具体的,步骤S1中,按质量分数计,NiCrAlY为60~75%,Mo为10~15%,Ag为15~25%。
进一步的,步骤S1中,球磨工艺为:转速240~260r/min,球料质量比为(8~12):1,球磨15~25h,球磨结束后,筛粉并进行烘干处理。
具体的,步骤S2中,首先将混合粉末加入去离子水配制悬浮液,然后在悬浮液中加入羟甲基纤维素钠分散剂,甘油溶解剂,Na2MoO3反絮凝剂以及聚乙二醇粘结剂,将悬浮液搅拌均匀后进行喷雾造粒,将喷雾造粒制备好的粉末进行过筛,选择喷涂粉末进行喷涂。
进一步的,悬浮液中粉末颗粒的质量百分数为28~32%,Na2MoO3反絮凝剂的质量百分数为0.8~1.5%,甘油溶解剂的质量百分数为1~1.5%,Na2MoO3反絮凝剂的质量百分数为0.6~1.2%,聚乙二醇粘结剂的质量百分数为1.5~2.5%,喷涂粉末的粒径为50~100nm。
具体的,步骤S3中,试样的尺寸为将喷砂结束后的试样在酒精中超声清洗20~60min,基底材料选用Inconel718高温合金。
具体的,步骤S4中,在Ar和H2气氛中进行喷涂,Ar流量为38~45L/min,H2流量为4.5~6L/min,喷涂角度80~100°,送粉率为40~45g/min,电流500~600A,电压55~65V,喷涂距离105~115mm,待试样预热至300~500℃时进行喷涂处理。
具体的,步骤S5中,热处理的真空度为1×10-2Pa~5×10-2Pa,温度为300~700℃,升温速度为5~15℃/min,保温时间为1~3h。
具体的,采用所述方法制备的NiCrAlY-Mo-Ag复合涂层显微硬度为430.4~478.8HV,结合强度为44.4~62.8MPa,摩擦系数低于0.6,磨损率低于6×10-5mm3/N.m,复合涂层净厚度为200~400μm。
进一步的,步骤S4预热处理后,先在试样表面喷涂一层厚度为80~120μm的NiAl结合层。
与现有技术相比,本发明至少具有以下有益效果:
本发明一种纳米结构高温润滑复合涂层制备方法,通采用喷雾造粒和热处理相结合的方法,制得NiCrAlY-Mo-Ag复合涂层,不仅改善了NiCrAlY-Mo-Ag复合涂层的组织结构,而且有效提高了复合涂层的显微硬度和结合强度等力学性能,同时使复合涂层在宽温域内具有优异连续润滑的性能。
进一步的,NiCrAlY为60~75%,Mo为10~15%,Ag为15~25%,与传统同类型复合涂层相比,可获得宽温域内具有优异润滑性能的复合涂层。
进一步的,通过高能球磨,一方面可以使复合粉末充分混合均匀,从而有效解决传统复合涂层结合强度较低的问题,另一方面细小的颗粒具有细晶强化的作用,可以有效提高复合涂层的强度。
进一步的,本发明配置悬浮液可以保证混合粉末在溶液中分散均匀,有效防止混合粉末沉积,使造粒过程中悬浮液的输送顺畅。
进一步的,选取本发明中比例的悬浮液是为了使悬浮液输送更加顺畅,有效提高喷雾造粒效率。
进一步的,为了与高温摩擦试验机更好地匹配,选择试样尺寸为在酒精中超声清洗20~60min,使试样表面的油渍及难溶物质可以完全清洗,因此显著提高涂层的结合强度。
进一步的,在本发明所选用的试验参数中,喷嘴与基底试样表面尽量保持垂直,一方面可以保证喷涂距离一致,另一方面可以使熔融颗粒均匀有效的附着在基底表面。本发明所选用喷涂距离可以保证涂层在基底表面附着均匀,同时具有致密结构。
进一步的,复合涂层中含有一定的裂纹和气孔等缺陷,热处理可以进一步减少涂层中的裂纹和气孔等缺陷,显著提高复合涂层的力学性能及摩擦学性能。
进一步的,在试样与复合涂层之间喷涂一层NiAl结合层,进一步提高涂层的结合强度。
综上所述,本发明采用喷雾造粒的方法制备出了具有纳米结构的喷涂粉末颗粒,进一步应用于制备新型宽温域润滑复合涂层。与传统等离子喷涂复合涂层相比,该发明制备的复合涂层有效消除了传统复合涂层中的层状结构,复合涂层中各物相分布均匀,有效提高了复合涂层的力学性能及摩擦性能。同时,通过热处理和增加结合层,可获得综合性能优异的复合涂层。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为复合涂层未处理状态的组织结构;
图2为复合涂层400℃热处理后的组织结构;
图3为复合涂层500℃热处理后的组织结构;
图4为复合涂层500℃热处理后TEM形貌;
图5为复合涂层600℃热处理后的组织结构。
具体实施方式
本发明提供了一种纳米结构高温润滑复合涂层制备方法,采用喷雾造粒的方法制备了纳米结构的喷涂粉末,然后采用等离子喷涂技术制备NiCrAlY-Mo-Ag复合涂层,有效消除了传统商品喷涂粉末制备出的复合涂层的层状结构,复合涂层中各物相分布比较均匀,裂纹和气孔等缺陷相对较少。复合涂层的显微硬度较高为430.4HV,结合强度也高达44.4MPa,在室温~900℃温度范围内的摩擦系数均低于0.6,磨损率均低于6×10-5mm3/N.m,具有较好的摩擦学性能。热处理可进一步提高复合涂层的显微硬度和结合强度等力学性能,降低复合涂层在室温~900℃温度范围内的摩擦系数和磨损率。500℃真空热处理后,复合涂层具有较高的显微硬度和结合强度,分别为478.8HV和62.8MPa,同时在室温~900℃温度范围内具有最低的摩擦系数和磨损率,在宽温域内具有优异的摩擦学性。
本发明一种纳米结构高温润滑复合涂层制备方法,通过喷雾造粒和热处理有效改善了复合涂层的组织结构,减少复合涂层中的裂纹和气孔等缺陷,提高复合涂层的显微硬度和结合强度等力学性能,同时实现复合涂层在宽温域内具有连续润滑的性能;具体步骤如下:
S1、混合粉末配比及球磨
按复合涂层的成分设计比例称取粉末,按质量分数计算,分别称取60~75%的NiCrAlY,10~15%的Mo,15~25%的Ag;
将称好的混合粉末放在二氧化锆球磨罐中,加入一定量的甲醇作为过程控制剂,充入氮气,密封后在高能球磨机上进行球磨;
球磨工艺为:转速240~260r/min,球料质量比为(8~12):1,球磨15~25h,球磨结束后,取出球磨罐,筛粉并对其进行烘干;
S2、喷雾造粒
将球磨好的混合粉末制备成悬浮液,悬浮液中粉末颗粒的含量(质量百分数)为28~32%;
首先按悬浮液中的固含量称取一定量混合均匀的混合粉末,按比例加入去离子水,配制悬浮液,悬浮液中加入0.8~1.5%的羟甲基纤维素钠分散剂,加入1~1.5%的甘油溶解剂,加入0.6~1.2%的Na2MoO3反絮凝剂,最后加入1.5~2.5%的聚乙二醇粘结剂,将悬浮液搅拌均匀,进行喷雾造粒,将喷雾造粒制备好的粉末进行过筛,选择合适粒径的喷涂粉末;
S3、基底材料处理
基底材料选择Inconel718高温合金,尺寸为将切好的试样表面进行打磨、超声清洗处理,然后将清洗好的试样进行喷砂处理,喷砂结束后再次在酒精中进行超声清洗处理20~60min,去除试样表面残留的砂子;
S4、喷涂
喷涂前,首先将喷雾造粒制得的喷涂粉末在烘箱进行烘干处理,以保证喷涂过程中送粉顺畅;喷涂试验在实验室的SulZer Metco 9M仪器上进行的,喷涂试验前,首先对试样进行预热处理,待试样预热至300~500℃时进行喷涂试验;
喷涂过程中,Ar流量为38~45L/min,H2流量为4.5~6L/min,喷涂角度80~100°,送粉率为40~45g/min,电流500~600A,电压55~65V,喷涂距离105~115mm。
为了提高涂层的结合强度,在试样与复合涂层之间喷涂一层NiAl结合层,结合层厚度为80~120μm,复合涂层厚度为200~400μm。
S5、热处理
将喷涂好的样品放入真空热处理炉中300~700℃分别保温1~3h真空热处理,升温速度为5~15℃/min,然后随炉冷却,热处理炉的真空度为1×10-2Pa~5×10-2Pa,获得组织致密均匀,结合强度高,宽温域内具有连续润滑性能的新型纳米结构高温润滑复合涂层。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中的描述和所示的本发明实施例的组件可以通过各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
采用喷雾干燥法制备纳米结构喷涂粉末。将按比例混合的粉末放入球磨罐中进行高能球磨,制备混合均匀的纳米混合粉末,然后将混合粉末制备成悬浮液进行喷雾造粒。将制备出的纳米结构喷涂粉末进行筛分,选择合适粒径的粉末进行喷涂试验。喷涂前首先将准备好的喷涂粉末在真空干燥箱中进行烘干处理,以保证喷涂过程中送粉顺畅。喷涂前对基底试样进行预热处理,可以提高复合涂层的结合强度。复合涂层与基底材料之间喷涂一层NiAl结合层,可有效提高复合涂层的结合强度。制备的涂层有效消除了传统复合涂层的层状结构,涂层中各物相分布比较均匀,裂纹和气孔等缺陷相对较少,如图1所示。涂层的显微硬度为430.4HV,依照ASTM C633标准要求,在万能试验机上测得复合涂层的结合强度为44.4MPa。同时在UMT高温摩擦试验机上测试复合在宽温域内的摩擦学性能,测得复合涂层在室温~900℃温度范围内的摩擦系数均低于0.6,磨损率均低于6×10-5mm3/N.m,具有较好的摩擦学性能。
实施例2
对实施例1复合涂层在真空热处理炉中进行400℃真空热处理,升温速度为10℃/min,保温1h,然后随炉冷却。热处理后,复合涂层组织中裂纹和气孔等缺陷相对减少,如图2所示。复合涂层的显微硬度为464.6HV,较热处理前明显升高。依照ASTM C633标准要求,在万能试验机上测得复合涂层的结合强度为49.0MPa,较热处理前相对升高。同时在UMT高温摩擦试验机上测试复合涂层在宽温域内的摩擦学性能,测得复合涂层在室温~900℃温度范围内的摩擦系数均低于0.5,磨损率均低于5.5×10-5mm3/N.m。经过400℃热处理,复合涂层在宽温域内的摩擦学性能得到相应提高。
实施例3
对实施例1复合涂层在真空热处理炉中进行500℃真空热处理,升温速度为10℃/min,保温1h,然后随炉冷却。热处理后,复合涂层组织中裂纹和气孔等缺陷明显减少,组织分布均匀,如图3所示。复合涂层组织中弥散分布着一些纳米级的析出相,如图4所示。这些细小析出相可有效提高复合涂层的性能,复合涂层的显微硬度升高为478.8HV,较热处理前和400℃热处理后明显升高。依照ASTM C633标准要求,在万能试验机上测得复合涂层的结合强度为62.8MPa,较热处理前和400℃热处理后显著升高。同时在UMT高温摩擦试验机上测试复合涂层在宽温域内的摩擦学性能,测得复合涂层在室温~900℃温度范围内的摩擦系数和磨损率均低于热处理前和400℃热处理后。经过500℃热处理,复合涂层在宽温域内的摩擦学性能进一步得到提高。
实施例4
对实施例1复合涂层在真空热处理炉中进行600℃真空热处理,升温速度为10℃/min,保温1h,然后随炉冷却。热处理后,复合涂层组织中裂纹和气孔等缺陷较500℃热处理后相对增多,如图5所示。说明热处理温度可能过高,复合涂层中的裂纹发生了扩展。复合涂层的显微硬度为456.6HV,较500℃热处理后明显降低,但明显高于未处理复合涂层。依照ASTM C633标准要求,在万能试验机上测得复合涂层的结合强度为52.9MPa,较500℃热处理后显著降低,但高于未处理复合涂层。同时在UMT高温摩擦试验机上测试复合涂层在宽温域内的摩擦学性能,测得复合涂层在室温~900℃温度范围内的摩擦系数和磨损率均高于500℃热处理后,但明显低于未处理复合涂层。热处理可以有效提高复合涂层的显微硬度和结合强度等力学性能,提高复合涂层在室温~900℃温度范围内的摩擦学性能。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (4)

1.一种纳米结构高温润滑复合涂层制备方法,其特征在于,包括以下步骤:
S1、称取NiCrAlY,Mo和Ag粉末,然后将粉末混合,加入甲醇并充入氮气密封后进行球磨制得混合粉末,按质量分数计,NiCrAlY为60~75%,Mo为10~15%,Ag为15~25%,球磨工艺为:转速240~260r/min,球料质量比为(8~12):1,球磨15~25h,球磨结束后,筛粉并进行烘干处理;
S2、将步骤S1球磨好的混合粉末加入去离子水配置成悬浮液,然后进行喷雾造粒制备成纳米结构的喷涂粉末,首先将混合粉末加入去离子水配制悬浮液,然后在悬浮液中加入羟甲基纤维素钠分散剂,甘油溶解剂,Na2MoO3反絮凝剂以及聚乙二醇粘结剂,将悬浮液搅拌均匀后进行喷雾造粒,将喷雾造粒制备好的粉末进行过筛,选择喷涂粉末进行喷涂,悬浮液中粉末颗粒的质量百分数为28~32%,Na2MoO3反絮凝剂的质量百分数为0.8~1.5%,甘油溶解剂的质量百分数为1~1.5%,Na2MoO3反絮凝剂的质量百分数为0.6~1.2%,聚乙二醇粘结剂的质量百分数为1.5~2.5%,喷涂粉末的粒径为50~100nm;
S3、将基底材料切割成试样,对试样表面进行清洁处理,对处理后的试样进行喷砂处理,喷砂处理后再次进行超声清洗;
S4、对步骤S3超声清洗后的试样进行预热处理,然后利用步骤S2制得的喷涂粉末采用等离子喷涂法对预热处理后的试样进行喷涂处理;
S5、先在步骤S4喷涂好的试样表面喷涂一层厚度为80~120μm的NiAl结合层,然后进行热处理,然后随炉冷却,制得NiCrAlY-Mo-Ag复合涂层,NiCrAlY-Mo-Ag复合涂层显微硬度为430.4~478.8HV,结合强度为44.4~62.8MPa,摩擦系数低于0.6,磨损率低于6×10-5mm3/N.m,复合涂层净厚度为200~400μm。
2.根据权利要求1所述的一种纳米结构高温润滑复合涂层制备方法,其特征在于,步骤S3中,试样的尺寸为将喷砂结束后的试样在酒精中超声清洗20~60min,基底材料选用Inconel718高温合金。
3.根据权利要求1所述的一种纳米结构高温润滑复合涂层制备方法,其特征在于,步骤S4中,在Ar和H2气氛中进行喷涂,Ar流量为38~45L/min,H2流量为4.5~6L/min,喷涂角度80~100°,送粉率为40~45g/min,电流500~600A,电压55~65V,喷涂距离105~115mm,待试样预热至300~500℃时进行喷涂处理。
4.根据权利要求1所述的一种纳米结构高温润滑复合涂层制备方法,其特征在于,步骤S5中,热处理的真空度为1×10-2Pa~5×10-2Pa,温度为300~700℃,升温速度为5~15℃/min,保温时间为1~3h。
CN201810783949.1A 2018-07-17 2018-07-17 一种纳米结构高温润滑复合涂层制备方法 Expired - Fee Related CN108893697B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810783949.1A CN108893697B (zh) 2018-07-17 2018-07-17 一种纳米结构高温润滑复合涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810783949.1A CN108893697B (zh) 2018-07-17 2018-07-17 一种纳米结构高温润滑复合涂层制备方法

Publications (2)

Publication Number Publication Date
CN108893697A CN108893697A (zh) 2018-11-27
CN108893697B true CN108893697B (zh) 2019-10-11

Family

ID=64349675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810783949.1A Expired - Fee Related CN108893697B (zh) 2018-07-17 2018-07-17 一种纳米结构高温润滑复合涂层制备方法

Country Status (1)

Country Link
CN (1) CN108893697B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110017A (zh) * 2022-07-19 2022-09-27 陕西科技大学 一种高温多循环自润滑复合涂层及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104278227A (zh) * 2013-07-02 2015-01-14 中国科学院兰州化学物理研究所 一种全金属相宽温域自润滑涂层的制备技术
CN104357782A (zh) * 2014-11-14 2015-02-18 北京矿冶研究总院 一种降低高温合金与防护涂层界面元素互扩散的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9624568B2 (en) * 2008-04-08 2017-04-18 Federal-Mogul Corporation Thermal spray applications using iron based alloy powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104278227A (zh) * 2013-07-02 2015-01-14 中国科学院兰州化学物理研究所 一种全金属相宽温域自润滑涂层的制备技术
CN104357782A (zh) * 2014-11-14 2015-02-18 北京矿冶研究总院 一种降低高温合金与防护涂层界面元素互扩散的方法

Also Published As

Publication number Publication date
CN108893697A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
CN104162662B (zh) 表面改性的非晶合金涂层及其制备方法
Yuan et al. Microstructures and tribological properties of plasma sprayed WC–Co–Cu–BaF2/CaF2 self-lubricating wear resistant coatings
Torkashvand et al. Influence of nozzle configuration and particle size on characteristics and sliding wear behaviour of HVAF-sprayed WC-CoCr coatings
Chen et al. Microstructure and properties of HVOF-sprayed NiCrAlY coatings modified by rare earth
Chen et al. Microstructure and tribological property of HVOF-sprayed adaptive NiMoAl–Cr3C2–Ag composite coating from 20° C to 800° C
Liu et al. Simultaneously enhancing wear and corrosion resistance of HVAF-sprayed Fe-based amorphous coating from Mo clad feedstock
CN106119762A (zh) 一种硼化物金属陶瓷涂层材料及制备方法
CN104214205B (zh) 一种耐磨箔片式动压止推气体轴承及制备方法
Liu et al. Tribological properties of adaptive phosphate composite coatings with addition of silver and molybdenum disulfide
Cao et al. Tribological and mechanical behaviors of engine bearing with CuSn10 layer and h-BN/graphite coating prepared by spraying under different temperatures
CN109504933A (zh) 一种NiAl-Cr2O3-Mo-Ag高温润滑复合涂层及制备方法
Li et al. Microstructure, mechanical and tribological properties of NiAl matrix composites with addition of BaO/TiO2 binary oxides
Sharma et al. Development and characterization of high-velocity flame sprayed Ni/TiO 2/Al 2 O 3 coatings on hydro turbine steel
Li et al. Effect of heat treatment on the microstructure, mechanical property and tribological property of plasma-sprayed high temperature lubricating composite coating from nanostructured powder
Christy et al. Influence of graphite and polytetrafluoroethylene dispersions on mechanical, abrasive, and erosive wear performance of thermal spray coatings
Li et al. Mechanical, tribological, and oxidation resistance properties of NiCrAlY coating by atmospheric plasma spraying
CN108893697B (zh) 一种纳米结构高温润滑复合涂层制备方法
An et al. Effect of silver content on tribological property and thermal stability of HVOF-sprayed nickel-based solid lubrication coating
Wu et al. Controllable in-situ synthesis of MoS2/C in plasma-sprayed YSZ coatings: Microstructure, mechanical and tribological properties
CN101412943A (zh) 修复金属摩擦副表面的组合物及其制备方法
Zhu et al. Tribological properties of the WC-10Co-4Cr-4CaF2 wear-resistant self-lubricating coating at different temperatures
Bobzin et al. Development of oxide dispersion strengthened MCrAlY coatings
CN110230018A (zh) 一种金属基宽温域自润滑涂层的制备方法
US10047014B2 (en) Plasma-sprayed tin coating having excellent hardness and toughness, the preparation method therefor, and a mold coated with said tin coating
Kumar et al. Comparative investigation on thermally sprayed Al2O3, Al2O3–13%(TiO2) and Al2O3–40%(TiO2) composite coatings from room to 400° C temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191011

CF01 Termination of patent right due to non-payment of annual fee