CN108891564B - Radiation-resistant underwater operation robot - Google Patents
Radiation-resistant underwater operation robot Download PDFInfo
- Publication number
- CN108891564B CN108891564B CN201810865978.2A CN201810865978A CN108891564B CN 108891564 B CN108891564 B CN 108891564B CN 201810865978 A CN201810865978 A CN 201810865978A CN 108891564 B CN108891564 B CN 108891564B
- Authority
- CN
- China
- Prior art keywords
- hydraulic
- air
- resistant
- water surface
- air distributor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C11/00—Equipment for dwelling or working underwater; Means for searching for underwater objects
- B63C11/52—Tools specially adapted for working underwater, not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Earth Drilling (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种耐辐射水下作业机器人,包括水下航行器,水下航行器通过液压管路、气管与可浮于水面的水面辅助支持设备连接,且气管穿过水面辅助支持设备与气泵连接;气泵与控制端连接;水面辅助支持设备可驱动水下航行器运行。本发明最大限度减少了电子学部分在水下的存在,使设备在强辐射区域的生存能力得到极大的提升;本发明采用气动和液压混合控制驱动单元,在使用时,当外部加装机械臂或者其他设备,均可不依靠电子学设备实现驱动。
The invention discloses a radiation-resistant underwater operation robot, comprising an underwater vehicle, the underwater vehicle is connected with a water surface auxiliary support device that can float on the water surface through a hydraulic pipeline and an air pipe, and the air pipe passes through the water surface auxiliary support device and is connected to the water surface auxiliary support device. The air pump is connected; the air pump is connected with the control end; the surface auxiliary support equipment can drive the underwater vehicle to run. The invention minimizes the existence of the electronic part under water, so that the survivability of the equipment in the strong radiation area is greatly improved; the invention adopts the pneumatic and hydraulic hybrid control drive unit, when in use, when the external mechanical equipment is installed Arms or other devices can be driven without relying on electronic devices.
Description
技术领域technical field
本发明属于特种机器人技术领域,具体涉及耐辐射水下作业机器人。The invention belongs to the technical field of special robots, in particular to a radiation-resistant underwater working robot.
背景技术Background technique
核反应堆水池、乏燃料水池及其他放射性物质保存的水池内有较高的放射性存在,在常态及事故情况下对水下情况进行检查和进行水下作业时,作业设备不断地受到射线照射,会造成作业设备电子学部分异常乃至失效,在核事故情况下,作业现场有可能出现极高的放射性,作业设备有可能迅速失效,无法完成所需工作。There is a relatively high level of radioactivity in the nuclear reactor pool, spent fuel pool and other pools where radioactive substances are stored. During the inspection of underwater conditions and underwater operations under normal and accident conditions, the operating equipment is constantly exposed to radiation, which will cause The electronic part of the operation equipment is abnormal or even failed. In the case of a nuclear accident, extremely high radioactivity may occur at the operation site, and the operation equipment may fail rapidly and cannot complete the required work.
目前,市场仅有有限的设备可供使用,这些设备多采用电子学部分屏蔽、控制部分移至水面以外、水下部分仅保留电机相对耐辐射部件等,但都不可避免的有电子学器件分存在,依然受到辐射环境的影响。At present, there are only limited equipment available in the market. These equipments are mostly shielded by electronics, the control part is moved outside the water surface, and the underwater part only retains the relatively radiation-resistant parts of the motor, etc., but all of them inevitably have electronic components. Exist, still affected by the radiation environment.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种耐辐射水下作业机器人,解决了现有技术中存在的作业设备带有大量电子学器件,抗辐射能力差的问题。The purpose of the present invention is to provide a radiation-resistant underwater operation robot, which solves the problem of poor radiation-resistant capability in existing operation equipment with a large number of electronic devices.
本发明所采用的技术方案是,耐辐射水下作业机器人,包括水下航行器,水下航行器通过液压管路、气管与可浮于水面的水面辅助支持设备连接,且气管穿过水面辅助支持设备与气泵连接;气泵与控制端连接;水面辅助支持设备可驱动水下航行器运行;The technical solution adopted in the present invention is that the radiation-resistant underwater operation robot includes an underwater vehicle, and the underwater vehicle is connected with a water surface auxiliary support device that can float on the water surface through a hydraulic pipeline and an air pipe, and the air pipe passes through the water surface to assist The support equipment is connected with the air pump; the air pump is connected with the control terminal; the surface auxiliary support equipment can drive the underwater vehicle to run;
水面辅助支持设备包括浮体,浮体内设置有液压系统;液压系统包括水平设置的电动机,电动机的输出轴连接滚珠丝杠,滚珠丝杠的丝杠螺母与连接杆连接,连接杆连接液压油泵的活塞,液压油泵的固定端连接液压管路;电动机与控制端连接。The water surface auxiliary support equipment includes a floating body, and a hydraulic system is arranged in the floating body; the hydraulic system includes a horizontally arranged electric motor, the output shaft of the electric motor is connected with the ball screw, the screw nut of the ball screw is connected with the connecting rod, and the connecting rod is connected with the piston of the hydraulic oil pump , The fixed end of the hydraulic oil pump is connected to the hydraulic pipeline; the motor is connected to the control end.
水下航行器包括横截面为一组对边呈1/2圆弧状的长方形耐压壳,耐压壳的四个侧面均开设有排气孔a;液压管路穿过耐压壳与设置于耐压壳内的液压缸的固定端连接;液压缸旁边设置有与其平行的气体分配器,气体分配器下方设置有储气腔,储气腔下表面开设有排气孔b;液压缸活塞杆的自由端连接与其垂直的气体分配器滑杆,气体分配器滑杆一端连接气体分配器滑片;气体分配器滑片随着气体分配器滑杆的动作可关闭或者打开气体分配器上的气体分配孔;气管穿过耐压壳与主管一端连接,主管另一端连接于气体分配器一端;气体分配孔中一个孔通过管路与储气腔连接,气体分配孔中其余的孔通过支管与排气管道连通;排气管道与排气孔连通。The underwater vehicle includes a set of rectangular pressure-resistant shells with opposite sides in the shape of 1/2 arc, and the four sides of the pressure-resistant shell are provided with exhaust holes a; the hydraulic pipeline passes through the pressure-resistant shell and is provided with It is connected to the fixed end of the hydraulic cylinder in the pressure-resistant shell; a gas distributor parallel to it is arranged beside the hydraulic cylinder, an air storage cavity is arranged under the gas distributor, and an exhaust hole b is opened on the lower surface of the air storage cavity; the hydraulic cylinder piston The free end of the rod is connected to the vertical gas distributor sliding rod, and one end of the gas distributor sliding rod is connected to the gas distributor sliding plate; the gas distributor sliding blade can close or open the gas distributor sliding rod with the action of the gas distributor sliding rod. Gas distribution hole; the gas pipe is connected to one end of the main pipe through the pressure-resistant shell, and the other end of the main pipe is connected to one end of the gas distributor; one hole in the gas distribution hole is connected to the gas storage chamber through a pipeline, and the other holes in the gas distribution hole are connected to the gas distribution hole through a branch pipe. The exhaust duct communicates; the exhaust duct communicates with the exhaust hole.
耐压壳下表面连接有保护支架,储气腔位于保护支架内部。A protective bracket is connected to the lower surface of the pressure shell, and the air storage cavity is located inside the protective bracket.
液压管路为两个;液压系统为两套;液压缸为两个;气体分配器为三个;每个液压管路通过一套液压系统驱动一个液压缸。There are two hydraulic pipelines; two sets of hydraulic systems; two hydraulic cylinders; three gas distributors; each hydraulic pipeline drives one hydraulic cylinder through a set of hydraulic systems.
气体分配器滑杆至少一端连接气体分配器滑片。At least one end of the gas distributor sliding rod is connected to the gas distributor sliding plate.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明耐辐射水下作业机器人台,最大限度减少了电子学部分在水下的存在,使设备在强辐射区域的生存能力得到极大的提升;本发明采用气动和液压混合控制驱动单元,在使用时,当外部加装机械臂或者其他设备,均可不依靠电子学设备实现驱动。整体而言,本发明相对于传统设备,耐辐射能力大幅提高,辐射环境下作业的可靠性大幅加强,且设备建造成本低,易于建造和生产。The radiation-resistant underwater operation robot platform of the invention minimizes the existence of the electronic part under water, so that the survivability of the equipment in the strong radiation area is greatly improved; the invention adopts a pneumatic and hydraulic hybrid control drive unit, and When in use, when a mechanical arm or other equipment is installed externally, it can be driven without relying on electronic equipment. On the whole, compared with the traditional equipment, the present invention greatly improves the radiation resistance, greatly enhances the reliability of the operation under the radiation environment, and the equipment has low construction cost and is easy to construct and produce.
附图说明Description of drawings
图1是本发明耐辐射水下作业机器人的结构示意图;Fig. 1 is the structural representation of the radiation-resistant underwater working robot of the present invention;
图2是本发明耐辐射水下作业机器人中水面辅助支持设备的结构示意图;Fig. 2 is the structural schematic diagram of the water surface auxiliary support equipment in the radiation-resistant underwater working robot of the present invention;
图3是本发明耐辐射水下作业机器人中水下航行器的外部结构示意图;Fig. 3 is the external structure schematic diagram of the underwater vehicle in the radiation-resistant underwater working robot of the present invention;
图4是本发明耐辐射水下作业机器人中水下航行器的内部结构示意图;4 is a schematic diagram of the internal structure of the underwater vehicle in the radiation-resistant underwater working robot of the present invention;
图5是本发明耐辐射水下作业机器人中水下航行器的内部结构示意图。FIG. 5 is a schematic diagram of the internal structure of the underwater vehicle in the radiation-resistant underwater working robot of the present invention.
图中,1.水下航行器,2.液压管路,3.气管,4.水面辅助支持设备, 5.浮体,6.电动机,7.连接杆,8.液压油泵,9.耐压壳,10.排气孔a, 11.液压缸,12.气体分配器,13.储气腔,14.排气孔b,15.气体分配器滑杆,16.气体分配器滑片,17.气体分配孔,18.主管,19.支管,20. 排气管道,21.保护支架,22.支撑件。In the figure, 1. Underwater vehicle, 2. Hydraulic pipeline, 3. Air pipe, 4. Surface auxiliary support equipment, 5. Floating body, 6. Electric motor, 7. Connecting rod, 8. Hydraulic oil pump, 9. Pressure resistant shell , 10. Exhaust hole a, 11. Hydraulic cylinder, 12. Gas distributor, 13. Air storage chamber, 14. Exhaust hole b, 15. Gas distributor slide bar, 16. Gas distributor slide, 17. Gas distribution hole, 18. Main pipe, 19. Branch pipe, 20. Exhaust pipe, 21. Protective bracket, 22. Support piece.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
本发明耐辐射水下作业机器人,包括水下航行器1,水下航行器1通过液压管路2、气管3与可浮于水面的水面辅助支持设备4连接,且气管3穿过水面辅助支持设备4与气泵连接;气泵与控制端连接;水面辅助支持设备4可驱动水下航行器1运行;The radiation-resistant underwater working robot of the present invention includes an
水面辅助支持设备4包括浮体5,浮体5内设置有液压系统;液压系统包括水平设置的电动机6,电动机6的输出轴连接滚珠丝杠,滚珠丝杠的丝杠螺母与连接杆7连接,连接杆7连接液压油泵8的活塞,液压油泵8的固定端连接液压管路2;电动机6与控制端连接。The water surface auxiliary support equipment 4 includes a floating body 5, and a hydraulic system is arranged in the floating body 5; the hydraulic system includes a horizontally arranged electric motor 6, the output shaft of the electric motor 6 is connected with a ball screw, and the screw nut of the ball screw is connected with the connecting rod 7, and the connection The rod 7 is connected to the piston of the
进一步的:further:
水下航行器1包括横截面为一组对边呈1/2圆弧状的长方形耐压壳9,耐压壳9的四个侧面均开设有排气孔a10;液压管路2穿过耐压壳9与设置于耐压壳9内的液压缸11的固定端连接;液压缸11旁边设置有与其平行的气体分配器12,气体分配器12下方设置有储气腔13,储气腔13下表面开设有排气孔b14;液压缸11活塞杆的自由端连接与其垂直的气体分配器滑杆15,气体分配器滑杆15一端连接气体分配器滑片16;气体分配器滑片16随着气体分配器滑杆15的动作可关闭或者打开气体分配器12上的气体分配孔17;气管3穿过耐压壳9与主管18一端连接,主管18另一端连接于气体分配器12 一端;气体分配孔17中一个孔通过管路与储气腔13连接,气体分配孔17中其余的孔通过支管19与排气管道20连通;排气管道20与排气孔10连通。The
进一步的:further:
耐压壳9下表面连接有保护支架21,储气腔13位于保护支架21 内部。A
进一步的:further:
液压管路2为两个;液压系统为两套;液压缸11为两个;气体分配器12为三个;每个液压管路2通过一套液压系统驱动一个液压缸11。There are two hydraulic pipelines 2; two sets of hydraulic systems; two
进一步的:further:
气体分配器滑杆15至少一端连接气体分配器滑片16。At least one end of the gas
本发明一种耐辐射水下作业机器人平台的优化方案为:The optimization scheme of a radiation-resistant underwater working robot platform of the present invention is as follows:
如图1所示,包括水下航行器1,水下航行器1通过两路液压管路2、一路气管3与可浮于水面的水面辅助支持设备4连接,且气管 3穿过水面辅助支持设备4与气泵连接;气泵与控制端连接;水面辅助支持设备4可驱动水下航行器1运行。As shown in FIG. 1 , including an
如图2所示,水面辅助支持设备4包括浮体5,浮体5内设置有两套液压系统;液压系统包括水平设置的电动机6,电动机6的输出轴连接滚珠丝杠,滚珠丝杠的丝杠螺母与连接杆7连接,连接杆7连接液压油泵8的活塞,液压油泵8的固定端连接液压管路2。两套液压系统中的两个电动机6互相平行且方向相同,且两个电动机6通过支撑件22固定。As shown in FIG. 2 , the water surface auxiliary support device 4 includes a floating body 5, and two sets of hydraulic systems are arranged in the floating body 5; The nut is connected with the connecting rod 7 , the connecting rod 7 is connected with the piston of the
如图3所示,水下航行器1包括横截面为一组对边呈1/2圆弧状的长方形耐压壳9,耐压壳9的四个侧面均开设有排气孔a10,用于向不同方向排出具备一定压力的气体,进而通过与水的反作用实现水下航行器1的水下姿态改变。(如图4所示)两路液压管路2穿过耐压壳9分别与两个液压缸11的固定端连接,且液压管路2中封存有一小段液压油;液压缸11旁边设置有与其平行的三个气体分配器12,气体分配器12下方设置有圆柱状储气腔13,储气腔13下表面开设有排气孔b14,通过调整进入储气腔13的气体体积可实现对水下航行器1浮力的微调,以此控制水下航行器3在水中深度。液压缸11 活塞杆的自由端连接与其垂直的气体分配器滑杆15,气体分配器滑杆15至少一端连接气体分配器滑片16;气体分配器滑片16随着气体分配器滑杆15的动作可关闭或者打开气体分配器12上的气体分配孔17;(如图5所示)气管3穿过耐压壳9与主管18一端连接,主管18另一端连接于气体分配器12一端;气体分配孔17中一个孔通过管路与储气腔13连接,气体分配孔17中其余的孔通过支管19与排气管道20连通;排气管道20与排气孔10连通。耐压壳9下表面连接有保护支架21,储气腔13位于保护支架21内部。保护支架21 内可安装摄像机、探测器、机械臂等工作设备,也可外挂各种探测及作业设备。As shown in FIG. 3 , the
本发明耐辐射水下作业机器人的工作过程为:按照需要启动控制端,当需要机器人在水平面运动时,启动电动机6,电动机6工作使与其连接的滚珠丝杠运动,滚珠丝杠带动其丝杠螺母移动,从而使连接杆7活动,连接杆7挤压液压油泵8的活塞,将与液压油泵8连接的液压管路2的油挤压至液压缸11,从而使液压缸11的活塞杆伸出,活塞杆带动与其垂直连接的气体分配器滑杆15,从而带动气体分配器滑片16滑动,在三个气体分配器12的配合下,使相应的气体分配孔17打开;启动气泵,主管18通过气管3接收来自外部的压缩气体,通过气体分配孔17使压缩气体通过支管19进入排气管道20,从而喷出排气孔10,通过与水的反作用,水下航行器1在水下水平面的方向、姿态即可改变。The working process of the radiation-resistant underwater working robot of the present invention is as follows: start the control end as required, and start the motor 6 when the robot is required to move in the horizontal plane, the motor 6 works to move the ball screw connected to it, and the ball screw drives the screw. The nut moves, so that the connecting rod 7 moves, the connecting rod 7 squeezes the piston of the
当需要机器人在垂直面运动时,操作过程及运动过程与上面大致相同,区别在于,在三个气体分配器12的配合下,使通过管道通向储气腔13的气体分配孔17打开,主管18通过气管3接收来自外部的压缩气体,通过气体分配孔17使压缩气体通过管道进入储气腔13,通过调整进入储气腔13气体体积实现对水下航行器1浮力的微调,以此控制水下航行器3在水中深度。When the robot needs to move in the vertical plane, the operation process and the movement process are roughly the same as the above, the difference is that with the cooperation of the three gas distributors 12, the
本发明一种耐辐射水下作业机器人平台,最大限度减少了电子学部分在水下的存在,使设备在强辐射区域的生存能力得到极大的提升;本发明采用气动和液压混合控制驱动单元,在使用时,当外部加装机械臂或者其他设备,均可不依靠电子学设备实现驱动。整体而言,本发明相对于传统设备,耐辐射能力大幅提高,辐射环境下作业的可靠性大幅加强,且设备建造成本低,易于建造和生产。The invention is a radiation-resistant underwater operation robot platform, which minimizes the existence of the electronic part under water, and greatly improves the survivability of the equipment in the strong radiation area; the invention adopts a pneumatic and hydraulic hybrid control drive unit , When in use, when an external mechanical arm or other equipment is installed, it can be driven without relying on electronic equipment. On the whole, compared with the traditional equipment, the present invention greatly improves the radiation resistance, greatly enhances the reliability of the operation under the radiation environment, and the equipment has low construction cost and is easy to construct and produce.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810865978.2A CN108891564B (en) | 2018-08-01 | 2018-08-01 | Radiation-resistant underwater operation robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810865978.2A CN108891564B (en) | 2018-08-01 | 2018-08-01 | Radiation-resistant underwater operation robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108891564A CN108891564A (en) | 2018-11-27 |
CN108891564B true CN108891564B (en) | 2020-08-04 |
Family
ID=64352870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810865978.2A Expired - Fee Related CN108891564B (en) | 2018-08-01 | 2018-08-01 | Radiation-resistant underwater operation robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108891564B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118723026A (en) * | 2024-07-24 | 2024-10-01 | 李攀 | A cable-powered underwater robot energy supply system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203078741U (en) * | 2013-02-05 | 2013-07-24 | 中国海洋大学 | In-situ detection device of strength of beach and shallow sea sediments |
CN104369842B (en) * | 2014-08-12 | 2017-04-12 | 浙江大学 | Water surface auxiliary robot based on autonomous underwater vehicle and use method |
CN206569240U (en) * | 2017-03-08 | 2017-10-20 | 广东海洋大学 | A kind of underwater robot sink-float and attitude controller |
CN208979081U (en) * | 2018-08-01 | 2019-06-14 | 西安誉博机器人系统技术有限公司 | A kind of radiation hardness underwater operation robot platform |
-
2018
- 2018-08-01 CN CN201810865978.2A patent/CN108891564B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN108891564A (en) | 2018-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN205226751U (en) | Pipeline inspection microrobot | |
CN113607463B (en) | Deep sea sampling system based on ROV | |
CN107524653A (en) | A kind of hydraulic system of deep ocean work type underwater robot | |
CN102513702A (en) | Vacuum laser welding equipment and method | |
CN108891564B (en) | Radiation-resistant underwater operation robot | |
CN107152506A (en) | Pressure self-balancing formula electromechanical servo acting device under a kind of hyperbaric environment | |
CN208979081U (en) | A kind of radiation hardness underwater operation robot platform | |
CN112857738A (en) | Servo device and method matched with swing table | |
EP2907139B1 (en) | Apparatus and method to control sensor position in limited access areas within a nuclear reactor | |
CN108263573A (en) | A kind of nuclear power plant's sucked type float assembly | |
CN114260924B (en) | Underwater mechanical arm | |
CN105225707A (en) | The float assembly of a kind of nuclear power station under water with sucker | |
CN109001405A (en) | Full waters can use water quality monitoring equipment and system | |
US20150340108A1 (en) | Water jet peening device | |
CN114615787B (en) | Sealing transmission rod for self-sealing protection of stripping film of heavy ion accelerator storage room | |
CN109343103B (en) | Vacuum gas circuit system for vacuum target chamber of charged particle detection spectrometer | |
CN103615430A (en) | ROV hydraulic isolation pump station used for deep sea sampler | |
CN104047292B (en) | Foundation ditch Light deformation control system and method | |
CN111824954B (en) | Underwater pushing device for spent fuel pool | |
CN108665986A (en) | Crawling robot for evaporator heat transfer tube sheet | |
CN102673749B (en) | Underwater rotation angle control device for underwater rotation process | |
CN108459324A (en) | Water supply pipe blockage detector based on acoustics | |
CN108791693A (en) | underwater deformation displacement compensation system | |
CN107401537A (en) | A kind of dead electricity closes valve hydraulic station | |
CN208387039U (en) | A kind of lithography device dedicated for pcb board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200804 |