CN108889329B - Carbon nitride quantum dot modified hierarchical pore TiO2-SiO2Photocatalyst and process for producing the same - Google Patents
Carbon nitride quantum dot modified hierarchical pore TiO2-SiO2Photocatalyst and process for producing the same Download PDFInfo
- Publication number
- CN108889329B CN108889329B CN201810871692.5A CN201810871692A CN108889329B CN 108889329 B CN108889329 B CN 108889329B CN 201810871692 A CN201810871692 A CN 201810871692A CN 108889329 B CN108889329 B CN 108889329B
- Authority
- CN
- China
- Prior art keywords
- carbon nitride
- nitride quantum
- quantum dots
- hierarchical porous
- photocatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000002096 quantum dot Substances 0.000 title claims description 9
- 239000002149 hierarchical pore Substances 0.000 title abstract description 11
- 230000008569 process Effects 0.000 title abstract description 3
- 239000011941 photocatalyst Substances 0.000 claims abstract description 28
- FMLYSTGQBVZCGN-UHFFFAOYSA-N oxosilicon(2+) oxygen(2-) titanium(4+) Chemical compound [O-2].[Ti+4].[Si+2]=O.[O-2].[O-2] FMLYSTGQBVZCGN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000001354 calcination Methods 0.000 claims abstract description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract 5
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract 5
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 27
- 239000004038 photonic crystal Substances 0.000 claims description 20
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 16
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 13
- 238000003756 stirring Methods 0.000 claims description 13
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 claims description 13
- 239000003054 catalyst Substances 0.000 claims description 12
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 10
- 230000007062 hydrolysis Effects 0.000 claims description 8
- 238000006460 hydrolysis reaction Methods 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 4
- 239000004202 carbamide Substances 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 238000000502 dialysis Methods 0.000 claims description 4
- 239000001509 sodium citrate Substances 0.000 claims description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- -1 polytetrafluoroethylene Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 14
- 230000015556 catabolic process Effects 0.000 abstract description 13
- 238000006731 degradation reaction Methods 0.000 abstract description 13
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 abstract description 12
- SEEPANYCNGTZFQ-UHFFFAOYSA-N sulfadiazine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=NC=CC=N1 SEEPANYCNGTZFQ-UHFFFAOYSA-N 0.000 abstract description 12
- 229960004306 sulfadiazine Drugs 0.000 abstract description 12
- 230000001699 photocatalysis Effects 0.000 abstract description 11
- 239000003795 chemical substances by application Substances 0.000 abstract description 10
- 239000011148 porous material Substances 0.000 abstract description 10
- 239000002351 wastewater Substances 0.000 abstract description 10
- 239000002957 persistent organic pollutant Substances 0.000 abstract description 9
- 238000002360 preparation method Methods 0.000 abstract description 9
- 238000011068 loading method Methods 0.000 abstract description 7
- 230000003115 biocidal effect Effects 0.000 abstract description 6
- 230000003197 catalytic effect Effects 0.000 abstract description 5
- 230000006872 improvement Effects 0.000 abstract description 5
- 238000011065 in-situ storage Methods 0.000 abstract description 4
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 3
- 230000001737 promoting effect Effects 0.000 abstract 1
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 229910003082 TiO2-SiO2 Inorganic materials 0.000 description 15
- 239000004793 Polystyrene Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 239000002131 composite material Substances 0.000 description 7
- 229920002223 polystyrene Polymers 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000011022 opal Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052724 xenon Inorganic materials 0.000 description 5
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 5
- 239000011324 bead Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000013335 mesoporous material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910021426 porous silicon Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
- C02F2101/345—Phenols
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/40—Organic compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
- Physical Water Treatments (AREA)
Abstract
本发明涉及一种氮化碳量子点改性多级孔结构TiO2‑SiO2光催化剂及其制备方法。本发明的主要特征是,通过原位负载的方法在合成有序多级孔TiO2‑SiO2材料的过程中,引入氮化碳量子点,煅烧法除去模板剂后,得到氮化碳量子点改性多级孔结构TiO2‑SiO2光催化剂。与现有技术相比,本发明采用的方法简便易操作,且能高效的利用原料并能使氮化碳量子点负载在多级孔氧化钛氧化硅的孔壁中,促进光催化活性的提高,同时有序的多级孔结构也提供了很好的客体分子扩散和传输的通道,使制备得到的光催化剂对苯酚、磺胺嘧啶等有机污染物以及实际高浓度抗生素废水都有较好的催化降解活性。
The invention relates to a TiO 2 -SiO 2 photocatalyst modified by carbon nitride quantum dots with a multi-level porous structure and a preparation method thereof. The main feature of the present invention is that carbon nitride quantum dots are introduced in the process of synthesizing ordered hierarchical porous TiO 2 ‑SiO 2 materials by an in-situ loading method, and carbon nitride quantum dots are obtained after the template agent is removed by a calcination method. Modified Hierarchical Porous Structured TiO 2 ‑SiO 2 Photocatalysts. Compared with the prior art, the method adopted in the present invention is simple and easy to operate, and can utilize the raw materials efficiently and can make the carbon nitride quantum dots supported in the pore walls of the hierarchical porous titanium oxide silicon oxide, thereby promoting the improvement of the photocatalytic activity, and at the same time. The ordered hierarchical pore structure also provides a good channel for the diffusion and transport of guest molecules, so that the prepared photocatalyst has good catalytic degradation activity against organic pollutants such as phenol and sulfadiazine, as well as the actual high-concentration antibiotic wastewater. .
Description
技术领域technical field
本发明涉及纳米光催化材料领域,通过原位负载的方式在多级孔结构氧化钛氧化硅孔壁中负载氮化碳量子点,提出一种新型光催化剂及其制备方法。The invention relates to the field of nanometer photocatalytic materials, and provides a novel photocatalyst and a preparation method thereof by supporting carbon nitride quantum dots in the pore walls of titanium oxide and silicon oxide with a hierarchical pore structure by in-situ loading.
背景技术Background technique
介孔氧化硅是近年来发展起来的一种新型纳米材料,它具有高达 1000m2/g的比表面积,连续可调的孔径以及高度长程有序的孔道,较高的热稳定性等。这些优异的结构性能使得它们在催化,药物负载,废气吸附,分离提纯以及太阳能光电转换等方面具有巨大的应用价值,一经报道就得到了各个相关领域的广泛关注。尤其是近年来,随着合成技术的不断创新,各种结构如KIT、MSU和SBA介孔氧化硅不断见诸报道,介孔材料的研究呈现出蓬勃发展的景象,有关它们的合成方法、合成机理和应用等方面的研究已经取得了丰硕的成果。Mesoporous silica is a new type of nanomaterial developed in recent years. It has a specific surface area of up to 1000 m2/g, continuously adjustable pore size, highly long-range ordered channels, and high thermal stability. These excellent structural properties make them of great application value in catalysis, drug loading, exhaust gas adsorption, separation and purification, and solar-to-photoelectric conversion. Once reported, they have attracted extensive attention in various related fields. Especially in recent years, with the continuous innovation of synthesis technology, various structures such as KIT, MSU and SBA mesoporous silica have been reported, and the research on mesoporous materials has shown a booming scene. The research on mechanism and application has achieved fruitful results.
具有有序大孔结构的光子晶体(PC)成为了近年来的研究热点。周期性“蛋白石”模板的自组装可指导前驱体材料的渗透和沉积,以产生“反蛋白石”(inverse opals,IOs)光子晶体结构。反蛋白石光子晶体的慢光效应和多光散射效应可以延长光路,增加光的吸收,从而提高材料的光催化活性。将光子晶体结构与介孔结构结合制备出多级孔的氧化硅材料,该材料兼具介孔氧化硅材料高比表面积、高热稳定性以及光子晶体材料的结构优势。然而,由于氧化硅本身不具备催化活性,限制了多级孔氧化硅材料在光催化降解污染物中的应用。将氧化钛引入多级孔氧化硅材料中,得到多级孔结构TiO2-SiO2光子晶体光催化剂,该材料同时兼具多级孔的结构优势又具有光催化活性,能够有效降解污染物。但是,氧化钛的禁带宽度为3.2eV,对应紫外光的吸收,可见光活性不足。Photonic crystals (PCs) with ordered macroporous structures have become a research hotspot in recent years. Self-assembly of periodic "opal" templates can guide the infiltration and deposition of precursor materials to generate "inverse opals" (IOs) photonic crystal structures. The slow light effect and multi-light scattering effect of inverse opal photonic crystals can extend the optical path and increase the absorption of light, thereby improving the photocatalytic activity of the material. The photonic crystal structure and the mesoporous structure are combined to prepare a hierarchically porous silicon oxide material, which has the high specific surface area, high thermal stability and structural advantages of the mesoporous silicon oxide material as well as the photonic crystal material. However, due to the lack of catalytic activity of silica itself, the application of hierarchically porous silica materials in photocatalytic degradation of pollutants is limited. Titanium oxide is introduced into the hierarchical porous silica material to obtain a hierarchical porous TiO2-SiO2 photonic crystal photocatalyst, which has both the structural advantages of hierarchical pores and photocatalytic activity, and can effectively degrade pollutants. However, the forbidden band width of titanium oxide is 3.2 eV, corresponding to the absorption of ultraviolet light, and the visible light activity is insufficient.
石墨相氮化碳(g-C3N4),禁带宽度为2.7eV,是一种优良的具有化学稳定性非金属半导体,被广泛应用于有机污染物降解。近年来,石墨相氮化碳量子点(CNQDs)具有很强的蓝光发射以及上转换行为的受到广泛关注。结合CNQDs与多级孔结构氧化钛氧化硅中的TiO2 形成Z构架,提高材料比表面积、对可见光的利用率以及电荷转移效率,有利于实现光催化剂对有机污染物的有效降解。Graphitic carbon nitride (g-C3N4), with a forbidden band width of 2.7 eV, is an excellent non-metallic semiconductor with chemical stability and is widely used in the degradation of organic pollutants. In recent years, graphitic carbon nitride quantum dots (CNQDs) have attracted extensive attention due to their strong blue light emission and upconversion behavior. Combining CNQDs with TiO2 in hierarchically porous titania and silica forms a Z framework, which improves the specific surface area, utilization of visible light, and charge transfer efficiency of the material, which is beneficial to the effective degradation of organic pollutants by photocatalysts.
基于氮化碳量子点设计光催化剂的报道还很少,将氮化碳量子点与多级孔材料结合制备高效光催化剂的报道也基本没有。基于以上背景,本发明使氮化碳量子点负载在多级孔氧化钛氧化硅的孔壁中,促进光催化活性的提高,同时有序的多级孔结构也提供了很好的客体分子扩散和传输的通道,使制备得到的光催化剂对苯酚、磺胺嘧啶等有机污染物以及实际抗生素废水都有较好的催化降解活性。There are few reports on the design of photocatalysts based on carbon nitride quantum dots, and there are basically no reports on the preparation of high-efficiency photocatalysts by combining carbon nitride quantum dots with hierarchically porous materials. Based on the above background, the present invention enables carbon nitride quantum dots to be supported in the pore walls of hierarchically porous titania-silica to promote the improvement of photocatalytic activity, and at the same time, the ordered hierarchical porous structure also provides good guest molecule diffusion and transport. The prepared photocatalyst has good catalytic degradation activity for organic pollutants such as phenol and sulfadiazine as well as actual antibiotic wastewater.
发明内容SUMMARY OF THE INVENTION
本发明采用原位负载的方法,一步法制备氮化碳量子点改性多级孔结构TiO2-SiO2光催化剂。在制备该复合光催化剂的过程中,添加乙酰丙酮作为钛源水解抑制剂,缓解钛源过快水解,同时添加硅源 (硅酸四丁酯)、已制备好的氮化碳量子点和钛源(钛酸异丙酯),灌注入聚苯乙烯小球模板中,利用三者在酸性体系中,非离子表面活性剂形成的胶束上同步水解,简便的合成出催化剂。使用高温煅烧去除模板,得到氮化碳量子点改性多级孔结构TiO2-SiO2光催化剂,对磺胺嘧啶、苯酚等有机污染物以及实际抗生素废水具有较好的光催化降解效果。The invention adopts an in-situ loading method to prepare a carbon nitride quantum dot modified TiO2-SiO2 photocatalyst with a hierarchical porous structure in one step. In the process of preparing the composite photocatalyst, acetylacetone was added as a hydrolysis inhibitor of the titanium source to alleviate the excessive hydrolysis of the titanium source, and at the same time, the silicon source (tetrabutyl silicate), the prepared carbon nitride quantum dots and the titanium source were added. The source (isopropyl titanate) is poured into the polystyrene bead template, and the catalyst is easily synthesized by using the three to simultaneously hydrolyze on the micelle formed by the nonionic surfactant in the acidic system. High temperature calcination was used to remove the template, and carbon nitride quantum dots modified TiO2-SiO2 photocatalyst was obtained, which had good photocatalytic degradation effect on organic pollutants such as sulfadiazine and phenol and actual antibiotic wastewater.
本发明为制备上述光催化剂,所采用的工艺步骤如下:The present invention is to prepare the above-mentioned photocatalyst, and the technological steps adopted are as follows:
通过固相水热法,以柠檬酸钠和尿素为原料,制备氮化碳量子点溶液;将造孔剂溶解于乙醇溶液中,剧烈搅拌一定时间,然后降低搅拌速度,加入硅酸四丁酯、盐酸、乙酰丙酮、钛酸异丙酯、氮化碳量子点溶液、得到混合溶液,搅拌,灌注入聚苯乙烯模板中,在一定温度和湿度下水解干燥一定时间,然后在空气中于一定温度煅烧一定时间去除模板,得到氮化碳量子点改性多级孔结构TiO2-SiO2光子晶体光催化剂。The carbon nitride quantum dot solution was prepared by solid-phase hydrothermal method using sodium citrate and urea as raw materials; the pore-forming agent was dissolved in the ethanol solution, vigorously stirred for a certain period of time, and then the stirring speed was reduced, and tetrabutyl silicate was added , hydrochloric acid, acetylacetone, isopropyl titanate, carbon nitride quantum dot solution, obtained mixed solution, stirred, poured into polystyrene template, hydrolyzed and dried at a certain temperature and humidity for a certain period of time, and then in the air for a certain period of time The template is removed by calcination at a temperature for a certain period of time to obtain a TiO2-SiO2 photonic crystal photocatalyst modified by carbon nitride quantum dots with a hierarchical porous structure.
所述反应体系为酸性溶液,促进正硅酸乙酯水解的同时控制钛酸异丙酯的水解速度,避免钛酸异丙酯过快水解导致钛不能单分散在介孔骨架中;The reaction system is an acidic solution, which promotes the hydrolysis of ethyl orthosilicate while controlling the hydrolysis speed of isopropyl titanate, and avoids that the titanium cannot be monodispersed in the mesoporous framework due to the excessive hydrolysis of isopropyl titanate;
所述的盐酸溶液浓度为2mol/L–6mol/L;所述的造孔剂包括 F127、P123等;所述的搅拌时间为0.5-2h;所述的水解温度为30℃ -60℃,湿度为40-60%;所述的煅烧温度为400–600℃;所述的煅烧时间为2h-6h。The concentration of the hydrochloric acid solution is 2mol/L-6mol/L; the pore-forming agent includes F127, P123, etc.; the stirring time is 0.5-2h; the hydrolysis temperature is 30°C-60°C, and the humidity is 40-60%; the calcination temperature is 400-600° C.; the calcination time is 2h-6h.
本发明的优势体现在:The advantages of the present invention are reflected in:
1)本发明的方法,通过造孔剂和模板剂在一定温度和湿度下水解干燥,其共同作用得到同时具有有序的介孔孔道和反蛋白石结构的多级孔结构,使得氧化钛和透析得到的氮化碳量子点在多级孔的骨架中复合,三者产生协同作用,提高光催化活性;1) In the method of the present invention, the pore-forming agent and the template agent are hydrolyzed and dried at a certain temperature and humidity, and their combined action obtains a hierarchical pore structure with ordered mesoporous channels and inverse opal structures at the same time, so that titanium oxide and dialysis The obtained carbon nitride quantum dots are compounded in the framework of the hierarchical pores, and the three have a synergistic effect to improve the photocatalytic activity;
2)氮化碳量子点与钛的同步引入可以使两者能够相互作用共掺杂在多级孔氧化硅的孔壁中,并保证了有序畅通的孔道及较高的比表面积;2) The simultaneous introduction of carbon nitride quantum dots and titanium can enable them to interact and co-dope in the pore walls of hierarchical porous silicon oxide, and ensure orderly and smooth channels and high specific surface area;
3)有序的介孔孔道和反蛋白石结构提供了很好的客体分子扩散和传输的通道,也有利于光催化活性的提高;3) The ordered mesoporous channels and inverse opal structure provide a good channel for the diffusion and transport of guest molecules, which is also conducive to the improvement of photocatalytic activity;
4)制备得到的氮化碳量子点改性多级孔结构TiO2-SiO2光催化剂对磺胺嘧啶、苯酚等有机污染物以及高浓度实际抗生素废水都有较好的催化降解活性;4) The prepared carbon nitride quantum dots modified hierarchical porous structure TiO2-SiO2 photocatalyst has good catalytic degradation activity to organic pollutants such as sulfadiazine, phenol and high-concentration actual antibiotic wastewater;
5)氮化碳量子点与多级孔结构产生协同作用,促进光催化活性的提高;5) The carbon nitride quantum dots have a synergistic effect with the hierarchical pore structure to promote the improvement of photocatalytic activity;
6)相对于传统的掺杂、复合等改性方法,原位合成法设备简单,操作便捷,且能高效的利用原料,大大降低了生产成本,有利于工业化推广。6) Compared with the traditional modification methods such as doping and compounding, the in-situ synthesis method is simple in equipment, convenient in operation, and can efficiently utilize raw materials, greatly reducing production costs and facilitating industrialization.
附图说明Description of drawings
图1.(a)Me-TSCN-IO,(b)Me-TS-IO,(c)Me-TSCN,(d)Me-TS, (e)TSCN-IO,(f)TS-IO,(g)bulk-TSCN,(h)bulk-TS的SEM照片。Figure 1. (a) Me-TSCN-IO, (b) Me-TS-IO, (c) Me-TSCN, (d) Me-TS, (e) TSCN-IO, (f) TS-IO, ( g) SEM images of bulk-TSCN, (h) bulk-TS.
图2.(a)Me-TSCN-IO,(b)Me-TS-IO,(c)Me-TSCN,(d)Me-TS, (e)TSCN-IO,(f)TS-IO,(g)bulk-TSCN,(h)bulk-TS的TEM照片。Figure 2. (a) Me-TSCN-IO, (b) Me-TS-IO, (c) Me-TSCN, (d) Me-TS, (e) TSCN-IO, (f) TS-IO, ( g) TEM images of bulk-TSCN, (h) bulk-TS.
图3.Me-TSCN-IO的HRTEM照片。Figure 3. HRTEM photograph of Me-TSCN-IO.
图4.氮化碳量子点改性多级孔结构TiO2-SiO2光子晶体光催化剂(Me-TSCN-IO)的XRD谱图。Figure 4. XRD patterns of carbon nitride quantum dots modified hierarchically porous TiO2-SiO2 photonic crystal photocatalyst (Me-TSCN-IO).
图5.样品的(a)氮气吸附脱附等温线(b)孔径分布曲线。Figure 5. (a) nitrogen adsorption and desorption isotherms (b) pore size distribution curves of the samples.
图6.样品的阻抗图。Figure 6. Impedance plot of the sample.
图7.Me-TSCN-IO在加装AM1.5滤光片的300W氙灯下对10mg/L (a)苯酚(b)磺胺嘧啶的降解活性图。Figure 7. Degradation activity of Me-TSCN-IO to 10 mg/L (a) phenol (b) sulfadiazine under 300W xenon lamp with AM1.5 filter.
图8.Me-TSCN-IO对实际抗生素废水的降解活性图。Figure 8. Degradation activity graph of Me-TSCN-IO on actual antibiotic wastewater.
图9.样品Me-TSCN-IO对(a)苯酚(b)磺胺嘧啶光催化降解的循环稳定性图。Figure 9. Cyclic stability plot of sample Me-TSCN-IO for photocatalytic degradation of (a) phenol (b) sulfadiazine.
具体实施方式Detailed ways
本发明下面将通过具体的实施例进行更详细的描述,但本发明的保护范围并不受限于这些实施例。The present invention will be described in more detail below through specific embodiments, but the protection scope of the present invention is not limited to these embodiments.
氮化碳量子点(CNQDs)的制备:Preparation of carbon nitride quantum dots (CNQDs):
以尿素和柠檬酸钠为前驱体,采用低温固体水热法,经过透析处理后制备得到水相氮化碳量子点。具体的,将0.081g柠檬酸钠和0.101g尿素研磨混合均匀后转移到聚四氟乙烯反应釜内衬中。将不锈钢外套旋紧密封好,在电热恒温鼓风干燥箱中180℃下保持2h。取出高压反应釜后在室温下自然冷却,将得到褐色固体用无水乙醇超声洗涤三次后,装入MWCO3500规格透析袋中,室温下在20mL去离子水中透析24h,得到微黄色氮化碳量子点水溶液。Using urea and sodium citrate as precursors, a low-temperature solid hydrothermal method is used to prepare water-phase carbon nitride quantum dots after dialysis treatment. Specifically, 0.081 g of sodium citrate and 0.101 g of urea were ground and mixed uniformly, and then transferred to the lining of the polytetrafluoroethylene reactor. Tightly seal the stainless steel jacket and keep it in an electric heating constant temperature blast drying oven at 180°C for 2h. After taking out the autoclave, it was naturally cooled at room temperature, and the brown solid was ultrasonically washed with absolute ethanol for three times, then put into a MWCO3500 dialysis bag, and dialyzed in 20 mL of deionized water for 24 hours at room temperature to obtain yellowish carbon nitride quantum dots. aqueous solution.
实施例1Example 1
合成Me-TSCN-IO,制备过程中同时加入氮化碳量子点,造孔剂如P123,硅酸四丁酯和钛酸异丙酯,并以聚苯乙烯为模板,具体的为:To synthesize Me-TSCN-IO, carbon nitride quantum dots, pore-forming agents such as P123, tetrabutyl silicate and isopropyl titanate are added at the same time in the preparation process, and polystyrene is used as a template, and the specifics are:
50mL烧杯中加入30mL EtOH后,再加入2gP123,搅拌30min 至完全溶解。在透明溶液中加入0.89mL硅酸四丁酯(TEOS)、1mL HCl(4mol/L)、1mL抑制剂乙酰丙酮、4.8mL钛酸异丙酯(TTIP) 与5mL CNQDs水溶液。室温下搅拌2h后,将前驱体溶液灌注到355 nm PS模板中。恒温恒湿箱以温度40℃,湿度55%水解3天后,转入70℃烘箱干燥3天,空气氛围下于马弗炉中500℃煅烧4h(升温速度1℃/min),使得氧化钛和氮化碳量子点在骨架中复合,即得到氮化碳量子点改性的多级孔氧化钛氧化硅复合光催化剂。After adding 30mL EtOH to the 50mL beaker, add 2g P123 and stir for 30min until it is completely dissolved. In the clear solution, 0.89 mL of tetrabutyl silicate (TEOS), 1 mL of HCl (4 mol/L), 1 mL of inhibitor acetylacetone, 4.8 mL of isopropyl titanate (TTIP) and 5 mL of CNQDs aqueous solution were added. After stirring for 2 h at room temperature, the precursor solution was perfused into the 355 nm PS template. The constant temperature and humidity box was hydrolyzed for 3 days at a temperature of 40 °C and a humidity of 55%, then transferred to a 70 °C oven for drying for 3 days, and calcined in a muffle furnace at 500 °C for 4 hours under an air atmosphere (
对比例1Comparative Example 1
合成Me-TS-IO,制备过程中只加入造孔剂如P123,硅酸四丁酯和钛酸异丙酯,即氮化碳量子点的加入量为0,并以聚苯乙烯为模板:To synthesize Me-TS-IO, only pore-forming agents such as P123, tetrabutyl silicate and isopropyl titanate are added in the preparation process, that is, the addition amount of carbon nitride quantum dots is 0, and polystyrene is used as a template:
50mL烧杯中加入30mL EtOH后,再加入2g P123,搅拌30min 至完全溶解。在透明溶液中加入0.89mL硅酸四丁酯(TEOS)、1mL HCl、1mL抑制剂乙酰丙酮、4.8mL钛酸异丙酯(TTIP)与5mL去离子水。室温下搅拌2h后,将前驱体溶液灌注到355nm PS模板中。恒温恒湿箱以温度40℃,湿度55%水解3天后,转入70℃烘箱干燥 3天,空气氛围下于马弗炉中500℃煅烧4h(升温速度1℃/min),即得到多级孔氧化钛氧化硅复合光催化剂。After adding 30mL EtOH to the 50mL beaker, add 2g P123 and stir for 30min until it is completely dissolved. To the clear solution was added 0.89 mL of tetrabutyl silicate (TEOS), 1 mL of HCl, 1 mL of inhibitor acetylacetone, 4.8 mL of isopropyl titanate (TTIP) and 5 mL of deionized water. After stirring for 2 h at room temperature, the precursor solution was poured into the 355 nm PS template. The constant temperature and humidity box was hydrolyzed for 3 days at a temperature of 40 °C and a humidity of 55%, then transferred to a 70 °C oven for drying for 3 days, and calcined in a muffle furnace at 500 °C for 4 hours in an air atmosphere (heating rate of 1 °C/min) to obtain a multi-stage Porous titanium oxide silicon oxide composite photocatalyst.
对比例2Comparative Example 2
合成Me-TSCN,制备过程中同时加入氮化碳量子点,造孔剂如 P123,硅酸四丁酯和钛酸异丙酯,无聚苯乙烯小球为模板:To synthesize Me-TSCN, carbon nitride quantum dots were added during the preparation process, pore-forming agents such as P123, tetrabutyl silicate and isopropyl titanate, and no polystyrene beads were used as templates:
50mL烧杯中加入30mL EtOH后,再加入2g P123,搅拌30min 至完全溶解。在透明溶液中加入0.89mL硅酸四丁酯(TEOS)、1mL HCl、1mL抑制剂乙酰丙酮、4.8mL钛酸异丙酯(TTIP)与5mL CNQDs 水溶液,室温下搅拌2h后放入恒温恒湿箱内以温度40℃,湿度55%水解3天后,转入70℃烘箱干燥3天,空气氛围下于马弗炉中500℃煅烧4h(升温速度1℃/min),即得到氮化碳量子点改性的介孔氧化钛氧化硅复合光催化剂。After adding 30mL EtOH to the 50mL beaker, add 2g P123 and stir for 30min until it is completely dissolved. Add 0.89 mL of tetrabutyl silicate (TEOS), 1 mL of HCl, 1 mL of inhibitor acetylacetone, 4.8 mL of isopropyl titanate (TTIP) and 5 mL of CNQDs aqueous solution to the transparent solution, stir at room temperature for 2 hours, and then put it into constant temperature and humidity. After hydrolysis for 3 days at a temperature of 40 °C and a humidity of 55% in the box, it is transferred to a 70 °C oven for drying for 3 days, and calcined in a muffle furnace at 500 °C for 4 hours in an air atmosphere (heating rate of 1 °C/min) to obtain carbon nitride quantum Dot-modified mesoporous titania-silica composite photocatalysts.
对比例3Comparative Example 3
合成TSCN-IO,制备过程中加入只加入氮化碳量子点、硅酸四丁酯和钛酸异丙酯,即造孔剂如P123的加入量为0时,以聚苯乙烯小球为模板所得催化剂:To synthesize TSCN-IO, only carbon nitride quantum dots, tetrabutyl silicate and isopropyl titanate were added in the preparation process, that is, when the amount of pore-forming agent such as P123 was 0, polystyrene beads were used as templates The resulting catalyst:
50mL烧杯中加入30mL EtOH后,搅拌30min至完全溶解。在透明溶液中加入0.89mL硅酸四丁酯(TEOS)、1mL HCl、1mL抑制剂乙酰丙酮、4.8mL钛酸异丙酯(TTIP)与5mL CNQDs水溶液。室温下搅拌2h后,将前驱体溶液灌注到355nm PS模板中。恒温恒湿箱以温度40℃,湿度55%水解3天后,转入70℃烘箱干燥3天,空气氛围下于马弗炉中500℃煅烧4h(升温速度1℃/min),使得氧化钛和氮化碳量子点在骨架中复合,即得到氮化碳量子点改性大孔结构氧化钛氧化硅复合光催化剂。After adding 30 mL of EtOH to a 50 mL beaker, stir for 30 min until completely dissolved. To the clear solution were added 0.89 mL of tetrabutyl silicate (TEOS), 1 mL of HCl, 1 mL of inhibitor acetylacetone, 4.8 mL of isopropyl titanate (TTIP) and 5 mL of CNQDs aqueous solution. After stirring for 2 h at room temperature, the precursor solution was poured into the 355 nm PS template. The constant temperature and humidity box was hydrolyzed for 3 days at a temperature of 40 °C and a humidity of 55%, then transferred to a 70 °C oven for drying for 3 days, and calcined in a muffle furnace at 500 °C for 4 hours under an air atmosphere (
对比例4Comparative Example 4
合成bulk-TS,制备过程中加入只加入硅酸四丁酯和钛酸异丙酯,即造孔剂如P123和氮化碳量子点的加入量都为0时,无聚苯乙烯小球作为模板所得催化剂:To synthesize bulk-TS, only tetrabutyl silicate and isopropyl titanate are added in the preparation process, that is, when the addition amount of pore-forming agents such as P123 and carbon nitride quantum dots is 0, no polystyrene beads are used as Template obtained catalyst:
50mL烧杯中加入30mL无水乙醇、0.89mL硅酸四丁酯(TEOS)、 1mL HCl、1mL抑制剂乙酰丙酮、4.8mL钛酸异丙酯(TTIP)与5 mL去离子水,室温下搅拌2h后放入恒温恒湿箱内以温度40℃,湿度55%水解3天后,转入70℃烘箱干燥3天,空气氛围下于马弗炉中 500℃煅烧4h(升温速度1℃/min),即得到块状的氧化钛氧化硅复合光催化剂。Add 30 mL absolute ethanol, 0.89 mL tetrabutyl silicate (TEOS), 1 mL HCl, 1 mL inhibitor acetylacetone, 4.8 mL isopropyl titanate (TTIP) and 5 mL deionized water to a 50 mL beaker, and stir at room temperature for 2 h Then put it into a constant temperature and humidity box to hydrolyze for 3 days at a temperature of 40 °C and a humidity of 55%, then transfer it to a 70 °C oven for drying for 3 days, and calcinate it in a muffle furnace at 500 °C for 4 hours in an air atmosphere (
实验与数据Experiments and Data
本发明提供的光催化降解模拟污染物的活性考察方法如下:The method for investigating the activity of photocatalytic degradation of simulated pollutants provided by the present invention is as follows:
取50mg复合光催化剂,加入石英玻璃管中,再量取50mL 10 mg/L目标有机物污染物溶液加入,磁力搅拌下使催化剂对有机物预吸附30min,使之达到吸附-脱附平衡,取样作为光降解初始浓度。然后在300W氙灯下进行光催化降解有机污染物反应,每隔一定时间取样置于离心管中离心,取上层清液用过滤头滤除催化剂,若目标为模拟有机物废水如苯酚、磺胺嘧啶则通过高效液相色谱来测试降解量,若目标为实际废水如华北制药集团有限责任公司抗生素实际废水则通过COD测定仪和TOC分析仪测试化学需氧量(COD)和总有机碳(TOC),然后制图分析。Take 50 mg of composite photocatalyst, put it into a quartz glass tube, and add 50 mL of 10 mg/L target organic pollutant solution. Under magnetic stirring, the catalyst is pre-adsorbed to the organic matter for 30 min to reach the adsorption-desorption equilibrium. Degradation initial concentration. Then carry out photocatalytic degradation of organic pollutants under a 300W xenon lamp, take samples at regular intervals and place them in a centrifuge tube for centrifugation, take the supernatant and filter the catalyst with a filter head. If the target is to simulate organic waste water such as phenol and sulfadiazine, pass High performance liquid chromatography is used to test the amount of degradation. If the target is actual wastewater such as the actual wastewater of antibiotics from North China Pharmaceutical Group Co., Ltd., the COD analyzer and TOC analyzer are used to test the chemical oxygen demand (COD) and total organic carbon (TOC), and then cartographic analysis.
图1为实施例1和对比例1-4得到的样品的扫描电子显微镜(SEM) 照片。从SEM照片上可以看到氮化碳量子点改性多级孔结构 TiO2-SiO2光子晶体(Me-TSCN-IO)、多级孔结构TiO2-SiO2光子晶体(Me-TS-IO)、氮化碳量子点改性大孔结构TiO2-SiO2光子晶体 (TSCN-IO)具有明显的反蛋白石大孔结构,氮化碳量子点改性介孔结构TiO2-SiO2(Me-TSCN)和普通TiO2-SiO2(bulk-TS)则不具有规则的大孔结构。FIG. 1 is a scanning electron microscope (SEM) photograph of the samples obtained in Example 1 and Comparative Examples 1-4. From the SEM photos, it can be seen that carbon nitride quantum dots modified hierarchical porous TiO2-SiO2 photonic crystal (Me-TSCN-IO), hierarchical porous TiO2-SiO2 photonic crystal (Me-TS-IO), nitrided Carbon quantum dots modified macroporous structure TiO2-SiO2 photonic crystal (TSCN-IO) has obvious inverse opal macroporous structure, carbon nitride quantum dots modified mesoporous structure TiO2-SiO2 (Me-TSCN) and ordinary TiO2-SiO2 (bulk-TS) does not have a regular macroporous structure.
图2为实施例1和对比例1-4得到的样品的透射电子显微镜(TEM) 照片。从TEM照片上可以看到Me-TSCN-IO、Me-TS-IO、TSCN-IO具有明显的反蛋白石大孔结构,Me-TSCN和bulk-TS则不具有规则的大孔结构。2 is a transmission electron microscope (TEM) photograph of the samples obtained in Example 1 and Comparative Examples 1-4. From the TEM images, it can be seen that Me-TSCN-IO, Me-TS-IO, and TSCN-IO have obvious inverse opal macroporous structures, while Me-TSCN and bulk-TS do not have regular macroporous structures.
图3为实施例1得到的Me-TSCN-IO样品的高倍透射电子显微镜 (HRTEM)照片。从HRTEM照片上可以看到清晰的介孔结构和反蛋白石结构,证明了多级孔结构的形成,并且可以观察到不同的晶格条纹,分别对应氮化碳的(002)晶面和(100)晶面以及氧化钛的(101)晶面,证明了氮化碳量子点的成功负载。3 is a high-power transmission electron microscope (HRTEM) photograph of the Me-TSCN-IO sample obtained in Example 1. A clear mesoporous structure and an inverse opal structure can be seen from the HRTEM images, proving the formation of a hierarchical pore structure, and different lattice fringes can be observed, corresponding to the (002) plane and the (100) plane of carbon nitride, respectively. ) plane and the (101) plane of titanium oxide, demonstrating the successful loading of carbon nitride quantum dots.
图4为实施例1和对比例1-4得到的样品的XRD谱图。广角XRD 谱图上可以观察到氧化钛的出峰,因为氮化碳的量太少而没有观察到氮化碳的出峰。FIG. 4 is the XRD patterns of the samples obtained in Example 1 and Comparative Examples 1-4. On the wide-angle XRD spectrum, the peak of titanium oxide can be observed, and the peak of carbon nitride is not observed because the amount of carbon nitride is too small.
图5为实施案例1、对比例2-3所制备的样品的氮气吸附脱附等温线和孔径分布曲线图。由氮气吸附脱附等温线图可以看出 Me-TSCN-IO兼具大孔材料TSCN-IO和介孔材料Me-TSCN的回滞环,说明Me-TSCN-IO具备多级孔结构。由孔径分布曲线图可以说明介孔的引入使得Me-TSCN-IO具有比大孔材料TSCN-IO更大的孔容。Figure 5 is a graph showing the nitrogen adsorption and desorption isotherms and pore size distribution curves of samples prepared in Example 1 and Comparative Examples 2-3. From the nitrogen adsorption and desorption isotherm, it can be seen that Me-TSCN-IO has both the hysteresis loops of macroporous material TSCN-IO and mesoporous material Me-TSCN, indicating that Me-TSCN-IO has a hierarchical pore structure. From the pore size distribution curve, it can be explained that the introduction of mesopores makes Me-TSCN-IO have a larger pore volume than the macroporous material TSCN-IO.
图6为实施例1和对比例1-3得到的样品的阻抗图。从图中可以看到,氮化碳量子点改性的多级孔氧化钛氧化硅光子晶体具有最小的阻抗半径,说明氮化碳量子点的负载促进了光生电子和空穴的分离。6 is an impedance diagram of the samples obtained in Example 1 and Comparative Examples 1-3. It can be seen from the figure that the carbon nitride quantum dot-modified hierarchically porous titania-silicon oxide photonic crystal has the smallest impedance radius, indicating that the loading of carbon nitride quantum dots promotes the separation of photogenerated electrons and holes.
图7为实施例1和对比例1-4所得光催化剂在加装AM1.5滤光片的300W氙灯下对10mg/L苯酚和磺胺嘧啶的降解活性图。对于苯酚和磺胺嘧啶二者的降解,氮化碳量子点改性的多级孔TiO2-SiO2光子晶体Me-TSCN-IO其催化活性比无氮化碳量子点改性的多级孔TiO2-SiO2光子晶体Me-TS-IO具有更优异的光催化活性,证明了氮化碳量子点的负载有助于光催化活性的提升;并且,氮化碳量子点改性的多级孔TiO2-SiO2光子晶体Me-TSCN-IO比单纯介孔结构氮化碳量子点改性TiO2-SiO2材料Me-TSCN、单纯大孔结构的氮化碳量子点改性TiO2-SiO2光子晶体TSCN-IO以及块状TiO2-SiO2材料bulk-TS 催化剂效果好,证明了多级孔结构具有比单纯介孔以及大孔结构更具有优势。综合而言,氮化碳量子点和多级孔结构的协同作用使材料光催化降解苯酚和磺胺嘧啶等有机污染的活性提高。Figure 7 is a graph showing the degradation activity of the photocatalysts obtained in Example 1 and Comparative Examples 1-4 to 10 mg/L phenol and sulfadiazine under a 300W xenon lamp equipped with an AM1.5 filter. For the degradation of both phenol and sulfadiazine, the catalytic activity of the carbon nitride quantum dot-modified hierarchical porous TiO2-SiO2 photonic crystal Me-TSCN-IO is higher than that of the non-carbon nitride quantum dot modified hierarchical porous TiO2-SiO2 Photonic crystal Me-TS-IO has more excellent photocatalytic activity, which proves that the loading of carbon nitride quantum dots contributes to the improvement of photocatalytic activity; Crystal Me-TSCN-IO ratio Mesoporous carbon nitride quantum dots modified TiO2-SiO2 material Me-TSCN, simple macroporous carbon nitride quantum dots modified TiO2-SiO2 photonic crystal TSCN-IO and bulk TiO2 -SiO2 material bulk-TS catalyst has good effect, which proves that the hierarchical pore structure has more advantages than pure mesopore and macroporous structure. In summary, the synergistic effect of carbon nitride quantum dots and hierarchical pore structure enhances the photocatalytic activity of the material for the degradation of organic pollutants such as phenol and sulfadiazine.
图8为实施例1所得光催化剂在加装AM1.5滤光片的300W氙灯下对华北制药集团责任有限公司(河北,石家庄)高浓度抗生素实际废水的降解活性图。从图中可以看出,随着光照的进行,高浓度抗生素实际废水的COD和TOC值逐渐降低,光照14h后COD去除率达到33.24%,TOC去除率达到27.65%(原水COD=206400mg/L,TOC=63750 mg/L)。说明了所制备的催化剂对于实际高浓度抗生素废水具有良好的光催化降解效果。8 is a graph showing the degradation activity of the photocatalyst obtained in Example 1 on the actual wastewater of high-concentration antibiotics of North China Pharmaceutical Group Co., Ltd. (Shijiazhuang, Hebei) under a 300W xenon lamp with an AM1.5 filter added. It can be seen from the figure that with the progress of illumination, the COD and TOC values of the actual wastewater with high concentrations of antibiotics gradually decreased. TOC=63750 mg/L). It shows that the prepared catalyst has a good photocatalytic degradation effect on the actual high-concentration antibiotic wastewater.
图9为实施例1所得光催化剂在加装AM1.5滤光片的300W氙灯下对苯酚以及磺胺嘧啶光催化降解的循环稳定性图。从图中可以看出,经过五次循环实验,催化剂对苯酚和磺胺嘧啶的光催化降解效果没有明显降低,说明催化剂具有良好的稳定性,可重复使用。Fig. 9 is a cycle stability diagram of the photocatalyst obtained in Example 1 for photocatalytic degradation of phenol and sulfadiazine under a 300W xenon lamp equipped with an AM1.5 filter. It can be seen from the figure that after five cycles of experiments, the photocatalytic degradation effect of the catalyst on phenol and sulfadiazine does not significantly decrease, indicating that the catalyst has good stability and can be reused.
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但是应当认识到上述的描述不应被认为是对本发明的限制。While the content of the present invention has been described in detail through the above preferred embodiments, it should be appreciated that the above description should not be construed as limiting the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810871692.5A CN108889329B (en) | 2018-08-02 | 2018-08-02 | Carbon nitride quantum dot modified hierarchical pore TiO2-SiO2Photocatalyst and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810871692.5A CN108889329B (en) | 2018-08-02 | 2018-08-02 | Carbon nitride quantum dot modified hierarchical pore TiO2-SiO2Photocatalyst and process for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108889329A CN108889329A (en) | 2018-11-27 |
CN108889329B true CN108889329B (en) | 2020-10-13 |
Family
ID=64353087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810871692.5A Active CN108889329B (en) | 2018-08-02 | 2018-08-02 | Carbon nitride quantum dot modified hierarchical pore TiO2-SiO2Photocatalyst and process for producing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108889329B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110170319A (en) * | 2019-05-21 | 2019-08-27 | 华东理工大学 | Bigger serface SiO2The preparation of the tungsten oxide of substrate/titanium catalysis material |
CN110368922A (en) * | 2019-06-25 | 2019-10-25 | 盐城师范学院 | A kind of construction method of indium sesquioxide optic catalytic composite material |
CN112570021B (en) * | 2019-09-30 | 2023-07-14 | 中国石油化工股份有限公司 | Nanometer material and preparation method thereof |
CN110961092B (en) * | 2019-12-23 | 2023-02-07 | 常州纳欧新材料科技有限公司 | Carbon quantum dot/titanium oxide/conductive mica composite degradable tetracycline hydrochloride photocatalytic material and preparation method thereof |
CN111229279B (en) * | 2020-02-12 | 2022-08-16 | 华东理工大学 | Carbon nitride quantum dot-loaded hierarchical-pore inverse opal structure CuO-SiO 2 Preparation and use thereof |
CN111229215B (en) * | 2020-03-09 | 2021-03-30 | 华东理工大学 | A kind of metal highly dispersed supported catalyst based on carbon quantum dots induced and its preparation method and application |
CN111640924B (en) * | 2020-06-05 | 2022-01-21 | 新昌县华发机械股份有限公司 | Shell-core structure porous carbon-TiO2Positive electrode material of lithium-sulfur battery and preparation method thereof |
CN112007521B (en) * | 2020-09-07 | 2021-10-01 | 江南大学 | A kind of preparation method of high flux composite nanofiltration membrane |
CN113941357B (en) * | 2021-12-02 | 2024-06-04 | 塔里木大学 | Si-TiO2/g-C3N4Ternary composite photocatalytic material and preparation method thereof |
CN115212908B (en) * | 2022-07-03 | 2024-08-06 | 复旦大学 | g-C3N4/TiO2/SiO2 nanocomposite mesoporous material and preparation method thereof |
CN115212875B (en) * | 2022-07-10 | 2023-09-01 | 华东理工大学 | Preparation method of high-efficiency photocatalytic methane dry reforming monoatomic ruthenium doped-porous titanium silicon material |
CN116440940B (en) * | 2023-06-14 | 2023-08-15 | 北京兴德通医药科技股份有限公司 | Carbon quantum dot catalyst, preparation method thereof and prepared carbon quantum dot |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101274246A (en) * | 2007-12-26 | 2008-10-01 | 中国科学院上海硅酸盐研究所 | Sol-gel preparation method of silicon dioxide/titanium dioxide hollow microspheres |
CN105964286A (en) * | 2016-05-18 | 2016-09-28 | 江苏理工学院 | Nitrogen-doped graphene quantum dot and graphite-phase carbon nitride composite photocatalyst and preparation method thereof |
CN106000440A (en) * | 2016-06-07 | 2016-10-12 | 南昌航空大学 | Preparation method of g-C3N4 quantum dots loaded titanium dioxide nanoparticles |
CN106111176A (en) * | 2016-06-21 | 2016-11-16 | 南昌航空大学 | A kind of preparation method of g CNQDs/GO composite photocatalyst material |
CN106475127A (en) * | 2016-08-30 | 2017-03-08 | 武汉理工大学 | A kind of nitrogen-doped graphene quantum dot/mesopore titania photocatalyst and preparation method thereof |
-
2018
- 2018-08-02 CN CN201810871692.5A patent/CN108889329B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101274246A (en) * | 2007-12-26 | 2008-10-01 | 中国科学院上海硅酸盐研究所 | Sol-gel preparation method of silicon dioxide/titanium dioxide hollow microspheres |
CN105964286A (en) * | 2016-05-18 | 2016-09-28 | 江苏理工学院 | Nitrogen-doped graphene quantum dot and graphite-phase carbon nitride composite photocatalyst and preparation method thereof |
CN106000440A (en) * | 2016-06-07 | 2016-10-12 | 南昌航空大学 | Preparation method of g-C3N4 quantum dots loaded titanium dioxide nanoparticles |
CN106111176A (en) * | 2016-06-21 | 2016-11-16 | 南昌航空大学 | A kind of preparation method of g CNQDs/GO composite photocatalyst material |
CN106475127A (en) * | 2016-08-30 | 2017-03-08 | 武汉理工大学 | A kind of nitrogen-doped graphene quantum dot/mesopore titania photocatalyst and preparation method thereof |
Non-Patent Citations (4)
Title |
---|
"High thermostable ordered mesoporous SiO2–TiO2 coated circulating-bed biofilm reactor for unpredictable photocatalytic and biocatalytic performance";Linlin Zhang et al.;《Applied Catalysis B: Environmental》;20150713;第180卷;第521-529页 * |
"Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light";Jingyang Su et al.;《Journal of Hazardous Materials》;20160503;第316卷;摘要和第2.2节 * |
"Ti3+ self-doped mesoporous black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible-lightdriven photocatalysts";Mengqiao Hu et al.;《Applied Catalysis B: Environmental》;20171229;第226卷;第2.2节和图6 * |
"TiO2-SiO2二维大孔薄膜的制备及其光催化活性研究";杨小龙等;《影像科学与光化学》;20150930;第33卷(第5期);摘要、1实验部分和第2.1节 * |
Also Published As
Publication number | Publication date |
---|---|
CN108889329A (en) | 2018-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108889329B (en) | Carbon nitride quantum dot modified hierarchical pore TiO2-SiO2Photocatalyst and process for producing the same | |
CN109395763B (en) | Sulfur-doped g-C3N4C-dot porous composite photocatalyst and preparation method and application thereof | |
CN101767770A (en) | Method for preparing ZrO2-CeO2/CNTs composite nanotube by hydrothermal method | |
CN108620061B (en) | A preparation method of mesoporous tungsten oxide (WO3) doped bismuth tungstate (Bi2WO6) composite photocatalyst | |
CN1861252A (en) | Zeolite based nano-titanium dioxide double function material and its prepn. method | |
CN101791547B (en) | A kind of preparation method of TiO2 nanocrystal/nanotube composite photocatalyst | |
CN108435228A (en) | One kind preparing g-C based on hard template method3N4The technique of nanotube | |
CN1837053A (en) | A kind of method for preparing mesoporous ceria | |
CN105771948A (en) | Double-shell titanium dioxide catalyst with high photocatalytic hydrogen generation performance and preparation method thereof | |
CN102060330A (en) | Method for synthetizing bismuth molybdate octahedral nanoparticle by microwave radiation heating | |
CN103611549A (en) | Preparation method of copper-zinc-tin-sulfur/graphene oxide composite semiconductor photocatalyst | |
CN108889328A (en) | A kind of quantum-dot modified counter opal g-C3N4 catalyst of carbonitride | |
CN100467122C (en) | Nitrogen and phosphorus co-doped titanium oxide hierarchical porous photocatalytic material and preparation method thereof | |
CN111889104B (en) | A kind of preparation method and application of 0D/2D composite calcium oxide metal oxide nano-catalyst material | |
CN101503212A (en) | Method for preparing mesoporous titanium dioxide | |
CN107096537B (en) | Fe2O3Doped TiO 22Floating type environment repairing material loaded with expanded perlite and preparation method thereof | |
CN103191708B (en) | A kind of quantum dot TiO2 loaded SiO2 photocatalyst and preparation method thereof | |
CN102774886B (en) | Mesoporous zirconia nano material and method for preparing same | |
CN110394175B (en) | Method for preparing copper-doped mesoporous titanium dioxide by template method and application | |
CN114849752A (en) | Hexagonal boron nitride/garland graphite type carbon nitride heterojunction composite photocatalyst and preparation method and application thereof | |
CN106345441B (en) | A kind of mesoporous wall titanium nano pipe light catalyst and the preparation method and application thereof | |
CN110803710B (en) | A method for preparing zinc oxide material based on surfactant-free microemulsion | |
CN105688874B (en) | A kind of TiO with classification cavernous structure2Nano-powder and preparation method thereof | |
CN108704660A (en) | The preparation and application of the oxygen-rich silicon dioxide titanium nanometer composite material of nitrogen vacancy modification | |
CN108671956A (en) | A kind of preparation method of ion filled graphite phase carbon nitride nanometer sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |