CN108875841A - A kind of pumped storage unit vibration trend forecasting method - Google Patents
A kind of pumped storage unit vibration trend forecasting method Download PDFInfo
- Publication number
- CN108875841A CN108875841A CN201810692295.1A CN201810692295A CN108875841A CN 108875841 A CN108875841 A CN 108875841A CN 201810692295 A CN201810692295 A CN 201810692295A CN 108875841 A CN108875841 A CN 108875841A
- Authority
- CN
- China
- Prior art keywords
- unit
- signal
- vibration
- trend
- prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000013277 forecasting method Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 57
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 32
- 238000011156 evaluation Methods 0.000 claims abstract description 13
- 239000000284 extract Substances 0.000 claims abstract description 7
- 238000011161 development Methods 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims description 28
- 238000012544 monitoring process Methods 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 12
- 238000002955 isolation Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000001228 spectrum Methods 0.000 claims description 7
- 238000000605 extraction Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 5
- 238000012417 linear regression Methods 0.000 claims description 4
- 238000004445 quantitative analysis Methods 0.000 claims description 4
- 241001123248 Arma Species 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 238000012549 training Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000010977 unit operation Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 238000005065 mining Methods 0.000 claims description 2
- 238000012098 association analyses Methods 0.000 claims 3
- 238000012843 least square support vector machine Methods 0.000 claims 2
- 230000003044 adaptive effect Effects 0.000 claims 1
- 238000005086 pumping Methods 0.000 claims 1
- 238000010219 correlation analysis Methods 0.000 abstract description 9
- 238000012423 maintenance Methods 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 3
- 230000002123 temporal effect Effects 0.000 abstract 1
- 230000008569 process Effects 0.000 description 6
- 238000012706 support-vector machine Methods 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000012097 association analysis method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004092 self-diagnosis Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Theoretical Computer Science (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种抽蓄机组振动趋势预测方法,它先在线获取机组非平稳振动的历史和实时数据,再将数据传递给用户终端,随后利用经验小波分解对振动信号进行时频域分析,接着提取能量熵和奇异值综合特征,然后对信号特征数据集合按照一定规则进行离散化处理后与机组运行工况进行关联分析,利用Apriori算法进行频繁项挖掘,解析数据特征与机组故障的时空相关性,通过关联分析结果划分出机组安全运行区域,最后构建时间序列模型,采用时间序列趋势预测方法,预测其未来有限时间内的发展趋势,进而对机组运行状态趋势进行预测与评估,为实施机组状态检修提供技术支持。本发明不仅能够准确预测趋势,还具有评估指标较全面和评估较方便的优点。
The invention discloses a vibration trend prediction method of a pumped-storage unit, which first acquires the historical and real-time data of the non-stationary vibration of the unit online, and then transmits the data to the user terminal, and then uses empirical wavelet decomposition to analyze the vibration signal in the time-frequency domain, Then extract the comprehensive features of energy entropy and singular value, then discretize the signal feature data set according to certain rules, and then carry out correlation analysis with the operating conditions of the unit, use the Apriori algorithm to mine frequent items, and analyze the temporal and spatial correlation between data features and unit failures The safe operation area of the unit is divided through the correlation analysis results, and finally the time series model is constructed, and the time series trend prediction method is used to predict its future development trend in a limited time, and then the unit’s operating status trend is predicted and evaluated. Condition-based maintenance provides technical support. The invention not only can accurately predict the trend, but also has the advantages of comprehensive evaluation indexes and convenient evaluation.
Description
技术领域technical field
本发明涉及一种抽蓄机组振动趋势预测方法。The invention relates to a vibration trend prediction method of a pumped storage unit.
背景技术Background technique
抽水蓄能电站的水泵水轮机组工况复杂、启停频繁,振动部位较多且分布较广泛,影响因素多(包括水力因素、机械因素和电磁因素)。目前广泛使用的趋势预测方法是通过在线监测系统获得机组振动状态的历史数据趋势图,主观分析机组以后可能的运行状态,或对特征参数使用最小二乘法实现回归拟合,但是振动信号一般都是非线性、非平稳的,因此传统的数理统计方法很难对其状态实现准确的趋势预测。由于层次分析法权重的选择不当,往往不能满足判断矩阵一致性的要求,无法得到反映抽蓄机组全面状态的评估指标。因此,现有的抽蓄机组振动趋势预测方法存在着趋势预测不准确和评估指标不全面的问题。The pump turbine unit of the pumped storage power station has complex working conditions, frequent start and stop, many vibration parts and wide distribution, and many influencing factors (including hydraulic factors, mechanical factors and electromagnetic factors). The trend prediction method widely used at present is to obtain the historical data trend chart of the vibration state of the unit through the online monitoring system, subjectively analyze the possible operating state of the unit in the future, or use the least square method to achieve regression fitting on the characteristic parameters, but the vibration signal is generally non-linear. Linear and non-stationary, so traditional mathematical statistics methods are difficult to achieve accurate trend prediction of its state. Due to the improper selection of the weight of the AHP, it often cannot meet the requirements of the consistency of the judgment matrix, and cannot obtain the evaluation index reflecting the overall state of the pumped storage unit. Therefore, the existing vibration trend prediction methods for pumped storage units have the problems of inaccurate trend prediction and incomplete evaluation indicators.
发明内容Contents of the invention
本发明的目的在于,提供一种抽蓄机组振动趋势预测方法。本发明不仅能够准确预测趋势,还具有评估指标较全面的优点。The object of the present invention is to provide a vibration trend prediction method of a pumped storage unit. The invention not only can accurately predict the trend, but also has the advantage of comprehensive evaluation indexes.
本发明的技术方案:一种抽蓄机组振动趋势预测方法,包括以下步骤:The technical solution of the present invention: a method for predicting the vibration trend of a pumped-storage unit, comprising the following steps:
a1、在线数据获取,通过采用485通讯协议,从抽蓄电站振摆监测和监控系统在线获取机组非平稳振动的历史和实时数据;a1. On-line data acquisition. By adopting the 485 communication protocol, the history and real-time data of the non-stationary vibration of the unit are obtained online from the pumped-storage power station vibration monitoring and monitoring system;
b1、数据传递,将在线获取的机组非平稳振动的历史和实时数据转换成机组非平稳振动信号,并依次经过网络隔离装置、WEB服务器、硬件防火墙和电厂局域网传递给用户终端;b1. Data transmission, converting the historical and real-time data of unit non-stationary vibration obtained online into unit non-stationary vibration signals, and sequentially passing through the network isolation device, WEB server, hardware firewall and power plant LAN to the user terminal;
c1、信号分析,用户终端对于机组非平稳振动信号,利用经验小波分解对机组非平稳振动信号进行时频域分析;c1. Signal analysis. For the non-stationary vibration signal of the unit, the user terminal uses empirical wavelet decomposition to analyze the non-stationary vibration signal of the unit in time-frequency domain;
d1、特征提取,在利用经验小波分解对机组非平稳振动信号进行时频域分析的基础上,从机组非平稳振动信号中提取描述机组振动状态的综合特征,得能量熵和奇异值;d1, feature extraction, on the basis of using empirical wavelet decomposition to analyze the non-stationary vibration signal of the unit in the time-frequency domain, extract the comprehensive features describing the vibration state of the unit from the non-stationary vibration signal of the unit, and obtain energy entropy and singular value;
e1、振动的关联与定量分析,对能量熵和奇异值的数据集合,利用集合经验模态分解(EEMD)或改进的经验小波分解法(EWT)对振动信号进行分解,得到一系列的单频率分量,再进行离散化处理后与机组运行工况进行关联分析,利用Apriori算法进行频繁项挖掘,解析机组振动数据特征与机组故障的时空相关性,通过关联分析结果划分出机组安全运行区域;e1. Correlation and quantitative analysis of vibration. For the data set of energy entropy and singular value, the vibration signal is decomposed by Ensemble Empirical Mode Decomposition (EEMD) or Improved Empirical Wavelet Decomposition (EWT) to obtain a series of single frequency After discretizing the components, perform correlation analysis with the operating conditions of the unit, use the Apriori algorithm to mine frequent items, analyze the time-space correlation between the vibration data characteristics of the unit and the failure of the unit, and divide the safe operation area of the unit through the correlation analysis results;
f1、构建时间序列分解模型、多元线性回归模型和ARMA模型,采用时间序列趋势预测方法,预测未来有限时间内的发展趋势,进而对机组运行状态趋势进行预测与评估,为实施机组状态检修提供技术支持。f1. Construct time series decomposition model, multiple linear regression model and ARMA model, use time series trend prediction method to predict the development trend in a limited time in the future, and then predict and evaluate the trend of unit operation status, and provide technology for the implementation of unit condition maintenance support.
前述的一种抽蓄机组振动趋势预测方法中,步骤f1中的时间序列趋势预测方法,包括以下步骤:In the aforementioned vibration trend prediction method of a pumped-storage unit, the time series trend prediction method in step f1 includes the following steps:
a2、提取机组状态参量的时间序列;a2. Extract the time series of unit state parameters;
b2、利用经验小波分解将机组状态参量的时间序列分解为不同分解域的子序列,得平稳性的波动项和非线性的趋势项;b2. Use empirical wavelet decomposition to decompose the time series of unit state parameters into subsequences of different decomposition domains, and obtain the stationary fluctuation item and the nonlinear trend item;
c2、对于平稳性的波动项采用AR预测模型,得信号A,对于非线性的趋势项采用最小二乘支持向量机的预测模型,得信号B;c2. Use the AR prediction model for the stationary fluctuation item to obtain signal A, and use the least squares support vector machine prediction model for the non-linear trend item to obtain signal B;
d2、将信号A和信号B进行重构信号,实现机组状态趋势预测。d2. Reconstruct the signals of signal A and signal B to realize the prediction of unit state trend.
前述的一种抽蓄机组振动趋势预测方法中,步骤b1中,数据传递,还可以将在线获取的机组非平稳振动的历史和实时数据转换成机组非平稳振动信号,依次经过网络隔离装置、WEB服务器、硬件防火墙和阿里云传递给移动终端上的APP中。In the aforementioned method for predicting the vibration trend of pumped storage units, in step b1, data transmission can also convert the historical and real-time data of unit non-stationary vibration obtained online into unit non-stationary vibration signals, and then pass through the network isolation device, WEB The server, hardware firewall and Alibaba Cloud are delivered to the APP on the mobile terminal.
前述的一种抽蓄机组振动趋势预测方法中,所述最小二乘支持向量机的预测模型表示为In the aforementioned vibration trend prediction method of a pumped-storage unit, the prediction model of the least squares support vector machine is expressed as
其中X为输入向量,n为常数,k为1~n中的某一个值,m为空间维数,τ为延迟时间常数。Among them X is the input vector, n is a constant, k is a certain value in 1~n, m is the space dimension, τ is the delay time constant.
前述的一种抽蓄机组振动趋势预测方法中,所述AR模型表示为In the aforementioned vibration trend prediction method for pumped storage units, the AR model is expressed as
式中:为自回归参数,i=1…p,p为阶次;at为白噪声,表示残差。In the formula: is the autoregressive parameter, i=1...p, p is the order; a t is the white noise, which means the residual.
前述的一种抽蓄机组振动趋势预测方法中,所述AR模型建模时通过AIC准则确定模型的阶次并进行模型的参数估计。In the aforementioned vibration trend prediction method of pumped-storage units, the order of the model is determined by the AIC criterion when the AR model is modeled, and the parameters of the model are estimated.
前述的一种抽蓄机组振动趋势预测方法中,步骤d2中重构信号的方法,包括以下步骤:In the aforementioned vibration trend prediction method of a pumped-storage unit, the method for reconstructing the signal in step d2 includes the following steps:
a3、对机组状态参量的时间序列进行多层小波分解,得到描述趋势项和波动项的各层子序列:a3. Perform multi-layer wavelet decomposition on the time series of the state parameters of the unit, and obtain the sub-sequences of each layer describing the trend item and the fluctuation item:
X=ak+d1+d2+…+dk X=a k +d 1 +d 2 +...+d k
式中,ak为趋势项,di为波动项,i=1,2,…,k为小波分解层数;In the formula, a k is the trend item, d i is the fluctuation item, i=1, 2, ..., k is the number of wavelet decomposition layers;
b3、对于趋势项ak建立LSSVM预测模型,进行模型训练以及新值预测,对结果进行精确评价;b3. Establish an LSSVM prediction model for the trend item a k , perform model training and new value prediction, and accurately evaluate the results;
c3、对于各个波动项di,i=1,2,…,k分别进行AR建模,对结果进行精度评价;c3. Perform AR modeling for each fluctuation item d i , i=1, 2, ..., k, and evaluate the accuracy of the results;
d3、得到趋势项和各个波动项的预测结果后进行叠加计算,得到原始振动序列的预测序列计算实测值和预测值的误差指标,进行精度评价;d3. After obtaining the prediction results of the trend item and each fluctuation item, perform superposition calculation to obtain the prediction sequence of the original vibration sequence Calculate the error index of the measured value and the predicted value, and evaluate the accuracy;
e3、对原始振动序列的预测结果的精度进行评价,分析预测结果和实际值的偏离程度,对预测效果的评价采用以下常用误差指标。e3. Evaluate the accuracy of the prediction result of the original vibration sequence, analyze the degree of deviation between the prediction result and the actual value, and use the following common error indicators to evaluate the prediction effect.
前述的一种抽蓄机组振动趋势预测方法中,所述常用误差指标包括In the aforementioned vibration trend prediction method of a pumped-storage unit, the commonly used error indicators include
平均相对误差:和Average relative error: and
均方根误差: root mean square error:
其中k为1~N中的某一个值,为平均值。Where k is a value from 1 to N, is the average value.
前述的一种抽蓄机组振动趋势预测方法中,所述信号分析表现为,对于一个信号f(t),EWT将其分解成N+1个单一频率成分的模态函数fk(t)。In the aforementioned vibration trend prediction method of a pumped storage unit, the signal analysis shows that for a signal f(t), EWT decomposes it into N+1 modal functions f k (t) of single frequency components.
其中,fk(t)的调幅-调频信号(AM-FM)可以定义为:where the AM-FM signal of f k (t) can be defined as:
fk(t)=Fk(t)cos(φk(t))f k (t)=F k (t)cos(φ k (t))
其中,k为0~N中的某一个值,Fk为频域函数,φk为角向量。Among them, k is a value from 0 to N, F k is a frequency domain function, and φ k is an angle vector.
非平稳信号的分解方法都希望能够从原始信号中分解出AM-FM成分的fk(t)。EWT通过自适应的分割傅里叶频谱构造小波滤波器来提取信号的AM-FM成分。假设将Fourier支持[0,π]分割成N个连续的部分。每段用∧n表示:All non-stationary signal decomposition methods hope to decompose the f k (t) of the AM-FM component from the original signal. EWT extracts the AM-FM components of the signal by constructing a wavelet filter by adaptively dividing the Fourier spectrum. Assume that the Fourier support [0, π] is split into N consecutive parts. Each segment is represented by ∧ n :
Λn=[ωn-1,ωn],n=1,2,…,NΛ n = [ω n-1 , ω n ], n=1, 2, ..., N
其中,ωn为每一段的边界,ωn选取的方式很多,一般的取傅里叶谱中两个相邻极大值点之间的终点,且ω0=0,ωn=π。以ωn为中心定义一个宽度为Tn=2τn的过渡段。根据Meyer小波的构造方式对每个∧n构建带通滤波器,其经验小波函数和经验尺度函数定义为:Among them, ω n is the boundary of each section, and ω n can be selected in many ways. Generally, the end point between two adjacent maximum points in the Fourier spectrum is taken, and ω 0 =0, ω n =π. With ω n as the center, a transition section with width T n =2τ n is defined. According to the construction method of Meyer wavelet, a bandpass filter is constructed for each ∧ n , and its empirical wavelet function and the empirical scaling function defined as:
其中,in,
假设傅里叶变化记为F[·],傅里叶逆变换记为F-1[·];然后根据传统小波变换的求解方式来定义经验小波变换,经验小波变换的细节系数由经验小波函数Ψn(t)与信号f(t)内积求得:Assuming that the Fourier transform is recorded as F[·], and the Fourier inverse transform is recorded as F -1 [·]; then the empirical wavelet transform is defined according to the solution method of the traditional wavelet transform, and the detailed coefficients of the empirical wavelet transform are determined by the empirical wavelet function The inner product of Ψ n (t) and signal f(t) is obtained:
经验小波近似系数由信号f(t)和尺度函数Ψ1(t)的内积求得:The empirical wavelet approximation coefficients are obtained from the inner product of the signal f(t) and the scaling function Ψ 1 (t):
其中,和分别是经验小波函数和尺度函数的傅里叶变换;和分别是经验小波函数和尺度函数的共轭复数。in, and are the Fourier transform of empirical wavelet function and scaling function; and are the complex conjugates of the empirical wavelet function and scaling function, respectively.
原始信号可以根据经验小波函数和尺度函数重构:The original signal can be reconstructed from the empirical wavelet function and scaling function:
其中,*表示卷积;∧表示傅里叶变换。Among them, * means convolution; ∧ means Fourier transform.
由此可以得到经验小波所分解的模态fk(t):From this, the mode f k (t) decomposed by the empirical wavelet can be obtained:
前述的一种抽蓄机组振动趋势预测方法中,所述特征提取表现为,假设原始信号经过经验小波变换后得到一系列模态,cs(t),s=1,2,...,K,K为分解后的层数,E1,E2,…,EK是每层模态对应的能量值。能量特征的计算过程如下所示:In the aforementioned vibration trend prediction method of a pumped storage unit, the feature extraction is assuming that the original signal is subjected to empirical wavelet transformation to obtain a series of modes, c s (t), s=1, 2,..., K, K is the number of decomposed layers, E 1 , E 2 ,..., E K is the energy value corresponding to each layer mode. The calculation process of the energy feature is as follows:
首先计算每层模态的能量特征:First calculate the energy signature of each layer mode:
然后计算所有模态的总能量值:Then calculate the total energy value for all modes:
最后计算能量熵特征;Finally calculate the energy entropy feature;
信号经验小波变换后还将提取所有模态构成矩阵的奇异值特征。奇异值特征是对矩阵进行奇异值分解后得到的一系列特征向量。根据矩阵论原理,奇异值是反映了一个矩阵固有属性的一个值,并且该值具有稳定性。同时,奇异值具有尺度不变性和旋转不变性。因此奇异值特征是一个很可靠的评价指标用来区分不同的故障The singular value features of all modal matrixes will also be extracted after the signal empirical wavelet transform. Singular value features are a series of eigenvectors obtained by performing singular value decomposition on a matrix. According to the principle of matrix theory, a singular value is a value that reflects the inherent properties of a matrix, and this value is stable. At the same time, singular values are scale invariant and rotation invariant. Therefore, the singular value feature is a very reliable evaluation index to distinguish different faults.
原始信号在经过经验小波变换后,每层的能量有第一层到最后一层逐层递减,当前Q层模态已经几乎能包含原始信号的绝大部分能量信息时,便取前Q层模态来构建最初的特征矩阵A:After the original signal undergoes empirical wavelet transform, the energy of each layer decreases gradually from the first layer to the last layer. When the current Q-layer mode can almost contain most of the energy information of the original signal, the former Q-layer mode is taken. state to construct the initial characteristic matrix A:
A=[c1,c2,…,cQ]T A=[c 1 ,c 2 ,...,c Q ] T
假设实数矩阵A的大小为PQ,同时满足以下条件:Assume that the size of the real matrix A is PQ and satisfy the following conditions:
A=U∧VT A= U∧VT
其中U和V分别为大小为QQ何PP的正交矩阵,∧为一个大小为QP的故障特征矩阵,并且所有的组成元素σi(i=1,2,...,Q)(Q≤P)按照模态层数由低到高排列。这些故障矩阵元素是矩阵A的一些奇异值。因此将向量[σ1,σ2,...,σQ]作为另一种故障特征。Where U and V are orthogonal matrices of size QQ and PP respectively, ∧ is a fault feature matrix of size QP, and all the constituent elements σ i (i=1, 2,..., Q)(Q≤ P) Arranged from low to high according to the number of modal layers. These failure matrix elements are some singular values of matrix A. Therefore, the vector [σ 1 , σ 2 , . . . , σ Q ] is taken as another fault feature.
与现有技术相比,本发明改进了现有的抽蓄机组振动趋势预测方法,通过建立反映机组振动状态关键特征参数的趋势预测模型,从多个角度优化预测算法,并构建基于时间序列组合的预测模型;采用小波变换理论提取信号的细节特征,将机组振动状态参量分解为非线性的趋势项和平稳性的波动项,分别利用最小二乘支持向量机(LSSVM)理论和自回归(AR)模型进行趋势预测,最后利用加法原则重构信号实现机组振动状态参量的趋势预测,抽蓄机组振动趋势预测较准确且评估指标较全面。此外,本发明将上述模型运用于机组状态在线监测系统中,并在抽蓄电站机组状态监测系统原有框架下,通过增设部分设备和软件接口(主要包括WEB服务器、横向隔离装置、硬件防火墙和网络交换机),将数据传送至装有TN8000APP的移动终端上,实现通过移动终端对机组状态进行监测、分析,以及实时推送预警报警和故障信息等功能,通过移动终端TN8000APP对机组状态进行监测,并能对机组振动趋势自动进行分析,方便抽蓄电站运维人员对机组状态进行评估。因此,本发明不仅能够准确预测趋势,还具有评估指标较全面和评估较方便的优点。Compared with the prior art, the present invention improves the existing vibration trend prediction method of the pumped-storage unit, by establishing a trend prediction model reflecting the key characteristic parameters of the vibration state of the unit, optimizing the prediction algorithm from multiple angles, and constructing a combination based on time series using the wavelet transform theory to extract the detailed features of the signal, decomposing the vibration state parameters of the unit into nonlinear trend items and stationary fluctuation items, respectively using least squares support vector machine (LSSVM) theory and autoregressive (AR ) model to predict the trend, and finally use the addition principle to reconstruct the signal to realize the trend prediction of the vibration state parameters of the unit. The vibration trend prediction of the pumped storage unit is more accurate and the evaluation index is more comprehensive. In addition, the present invention applies the above-mentioned model to the on-line unit state monitoring system, and under the original framework of the pumped-storage power station unit state monitoring system, by adding some equipment and software interfaces (mainly including WEB servers, horizontal isolation devices, hardware firewalls and Network switch), transmit the data to the mobile terminal equipped with TN8000APP, realize the monitoring and analysis of the unit status through the mobile terminal, and push the functions of early warning and alarm and fault information in real time, monitor the unit status through the mobile terminal TN8000APP, and It can automatically analyze the vibration trend of the unit, which is convenient for the operation and maintenance personnel of the pumped storage power station to evaluate the status of the unit. Therefore, the present invention not only can accurately predict the trend, but also has the advantages of comprehensive evaluation indicators and convenient evaluation.
附图说明Description of drawings
图1是本发明的抽蓄机组振动趋势预测模型;Fig. 1 is the vibration trend prediction model of the pumped-storage unit of the present invention;
图2是Apriori算法流程图;Fig. 2 is the flowchart of Apriori algorithm;
图3是组合预测模型示意图。Figure 3 is a schematic diagram of the combined forecasting model.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。The present invention will be further described below in conjunction with the accompanying drawings and embodiments, but not as a basis for limiting the present invention.
实施例。一种抽蓄机组振动趋势预测方法,如图1所示,该预测方法主要包含六个步骤,即:在线数据获取、数据传递、信号分析、特征提取、振动的关联与定量分析、趋势预测。Example. A vibration trend prediction method for pumped storage units, as shown in Figure 1, the prediction method mainly includes six steps, namely: online data acquisition, data transmission, signal analysis, feature extraction, vibration correlation and quantitative analysis, and trend prediction.
首先第一步在线数据获取,通过相关接口设计与配置,从某抽蓄电站振摆监测、监控等系统在线获取机组非平稳振动的历史和实时数据,为信号分析、特征提取与状态评价及故障诊断提供信息资源。Firstly, the first step is online data acquisition. Through related interface design and configuration, historical and real-time data of unit non-stationary vibration are obtained online from vibration monitoring and monitoring systems of a pumped-storage power station for signal analysis, feature extraction, status evaluation and fault analysis. Diagnostics provide information resources.
第二步数据传递,将在线获取的机组非平稳振动的历史和实时数据转换成机组非平稳振动信号,并依次经过网络隔离装置、WEB服务器、硬件防火墙和电厂局域网传递给用户终端;或者将在线获取的机组非平稳振动的历史和实时数据转换成机组非平稳振动信号,依次经过网络隔离装置、WEB服务器、硬件防火墙和阿里云传递给移动终端上的APP中。The second step of data transmission is to convert the historical and real-time data of the non-stationary vibration of the unit obtained online into the non-stationary vibration signal of the unit, and then transmit it to the user terminal through the network isolation device, WEB server, hardware firewall and power plant LAN; The acquired historical and real-time data of unit non-stationary vibration are converted into unit non-stationary vibration signals, which are sequentially transmitted to the APP on the mobile terminal through the network isolation device, WEB server, hardware firewall and Alibaba Cloud.
第三步信号分析,对于某抽蓄机组非平稳振动信号,利用经验小波分解(EWT)对振动信号进行时频域分析。The third step is signal analysis. For the non-stationary vibration signal of a pumped-storage unit, empirical wavelet decomposition (EWT) is used to analyze the vibration signal in the time-frequency domain.
对于一个信号f(t),EWT将其分解成N+1个单一频率成分的模态函数fk(t)。For a signal f(t), EWT decomposes it into N+1 mode functions f k (t) of single frequency components.
其中,fk(t)的调幅-调频信号(AM-FM)可以定义为:where the AM-FM signal of f k (t) can be defined as:
fk(t)=Fk(t)cos(φk(t))f k (t)=F k (t)cos(φ k (t))
其中,k为0~N中的某一个值,Fk为频域函数,φk为角向量。Among them, k is a value from 0 to N, F k is a frequency domain function, and φ k is an angle vector.
非平稳信号的分解方法都希望能够从原始信号中分解出AM-FM成分的fk(t)。EWT通过自适应的分割傅里叶频谱构造小波滤波器来提取信号的AM-FM成分。假设将Fourier支持[0,π]分割成N个连续的部分。每段用∧n表示:All non-stationary signal decomposition methods hope to decompose the f k (t) of the AM-FM component from the original signal. EWT extracts the AM-FM components of the signal by constructing a wavelet filter by adaptively dividing the Fourier spectrum. Assume that the Fourier support [0, π] is split into N consecutive parts. Each segment is represented by ∧ n :
∧n=[ωn-1,ωn],n=1,2,…,N∧ n = [ω n-1 , ω n ], n = 1, 2, ..., N
其中,ωn为每一段的边界,ωn选取的方式很多,一般的取傅里叶谱中两个相邻极大值点之间的终点,且ω0=0,ωn=π。以ωn为中心定义一个宽度为Tn=2τn的过渡段。根据Meyer小波的构造方式对每个∧n构建带通滤波器,其经验小波函数和经验尺度函数定义为:Among them, ω n is the boundary of each section, and ω n can be selected in many ways. Generally, the end point between two adjacent maximum points in the Fourier spectrum is taken, and ω 0 =0, ω n =π. With ω n as the center, a transition section with width T n =2τ n is defined. According to the construction method of Meyer wavelet, a bandpass filter is constructed for each ∧ n , and its empirical wavelet function and the empirical scaling function defined as:
其中,in,
假设傅里叶变化记为F[·],傅里叶逆变换记为F-1[·];然后根据传统小波变换的求解方式来定义经验小波变换,经验小波变换的细节系数由经验小波函数Ψn(t)与信号f(t)内积求得:Assuming that the Fourier transform is recorded as F[·], and the Fourier inverse transform is recorded as F -1 [·]; then the empirical wavelet transform is defined according to the solution method of the traditional wavelet transform, and the detailed coefficients of the empirical wavelet transform are determined by the empirical wavelet function The inner product of Ψ n (t) and signal f(t) is obtained:
经验小波近似系数由信号f(t)和尺度函数Ψ1(t)的内积求得:The empirical wavelet approximation coefficients are obtained from the inner product of the signal f(t) and the scaling function Ψ 1 (t):
其中,和分别是经验小波函数和尺度函数的傅里叶变换;和分别是经验小波函数和尺度函数的共轭复数。in, and are the Fourier transform of empirical wavelet function and scaling function; and are the complex conjugates of the empirical wavelet function and scaling function, respectively.
原始信号可以根据经验小波函数和尺度函数重构:The original signal can be reconstructed from the empirical wavelet function and scaling function:
其中,*表示卷积;∧表示傅里叶变换。Among them, * means convolution; ∧ means Fourier transform.
由此可以得到经验小波所分解的模态fk(t):From this, the mode f k (t) decomposed by the empirical wavelet can be obtained:
第四步特征提取,在信号分析的基础上,提取能量熵和奇异值等描述机组振动状态的综合特征。The fourth step is feature extraction. On the basis of signal analysis, comprehensive features such as energy entropy and singular value are extracted to describe the vibration state of the unit.
熵特征是度量不确定性和不确定性的指标,当出现故障时,故障部位会产生冲击,因此振动信号相对于的频率响应也会发生改变,能量的分布和大小也将发生改变。首先将信号经过经验小波变换后得到一系列的模态,然后对这些模态求取能量特征和能量熵特征。由于相比于故障信号,正常工作信号具有更强的确定性和平稳性,因此正常工况的信号性比喻故障信号的熵值要大。The entropy feature is an index to measure uncertainty and uncertainty. When a fault occurs, the fault part will have an impact, so the frequency response of the vibration signal relative to the vibration signal will also change, and the distribution and size of the energy will also change. Firstly, a series of modes are obtained after the signal is transformed by empirical wavelet, and then energy characteristics and energy entropy characteristics are calculated for these modes. Compared with the fault signal, the normal working signal has stronger certainty and stability, so the entropy value of the signal of the normal working condition is larger than the fault signal.
假设原始信号经过经验小波变换后得到一系列模态,cs(t),s=1,2,…,K,K为分解后的层数,E1,E2,…,EK是每层模态对应的能量值。能量特征的计算过程如下所示:Assuming that the original signal is subjected to empirical wavelet transformation to obtain a series of modes, c s (t), s=1, 2, ..., K, K is the number of decomposed layers, E 1 , E 2 , ..., E K is each The energy value corresponding to the layer mode. The calculation process of the energy feature is as follows:
首先计算每层模态的能量特征:First calculate the energy signature of each layer mode:
然后计算所有模态的总能量值:Then calculate the total energy value for all modes:
最后计算能量熵特征;Finally calculate the energy entropy feature;
信号经验小波变换后还将提取所有模态构成矩阵的奇异值特征。奇异值特征是对矩阵进行奇异值分解后得到的一系列特征向量。根据矩阵论原理,奇异值是反映了一个矩阵固有属性的一个值,并且该值具有稳定性。同时,奇异值具有尺度不变性和旋转不变性。因此奇异值特征是一个很可靠的评价指标用来区分不同的故障The singular value features of all modal matrixes will also be extracted after the signal empirical wavelet transform. Singular value features are a series of eigenvectors obtained by performing singular value decomposition on a matrix. According to the principle of matrix theory, a singular value is a value that reflects the inherent properties of a matrix, and this value is stable. At the same time, singular values are scale invariant and rotation invariant. Therefore, the singular value feature is a very reliable evaluation index to distinguish different faults.
原始信号在经过经验小波变换后,每层的能量有第一层到最后一层逐层递减,当前Q层模态已经几乎能包含原始信号的绝大部分能量信息时,便取前Q层模态来构建最初的特征矩阵A:After the original signal undergoes empirical wavelet transform, the energy of each layer decreases gradually from the first layer to the last layer. When the current Q-layer mode can almost contain most of the energy information of the original signal, the former Q-layer mode is taken. state to construct the initial characteristic matrix A:
A=[c1,c2,…,cQ]T A=[c 1 ,c 2 ,...,c Q ] T
假设实数矩阵A的大小为PQ,同时满足以下条件:Assume that the size of the real matrix A is PQ and satisfy the following conditions:
A=U∧VT A= U∧VT
其中U和V分别为大小为QQ何PP的正交矩阵,∧为一个大小为QP的故障特征矩阵,并且所有的组成元素σi(i=1,2,…,Q)(Q≤P)按照模态层数由低到高排列。这些故障矩阵元素是矩阵A的一些奇异值。因此将向量[σ1,σ2,…,σQ]作为另一种故障特征。Where U and V are orthogonal matrices of size QQ and PP respectively, ∧ is a fault feature matrix of size QP, and all the constituent elements σ i (i=1, 2,..., Q)(Q≤P) Arranged from low to high according to the number of modal layers. These failure matrix elements are some singular values of matrix A. Therefore, the vector [σ 1 , σ 2 , . . . , σ Q ] is taken as another fault feature.
第五步振动的关联与定量分析,对某抽蓄电站机组振摆信号特征数据集合按照一定规则进行离散化处理后与机组运行工况进行关联分析,利用Apriori算法进行频繁项挖掘,解析机组振动数据特征与机组故障的时空相关性,通过关联分析结果划分出机组安全运行区域。The fifth step is the correlation and quantitative analysis of vibration. The vibration signal characteristic data set of a pumped storage power station is discretized according to certain rules and then correlated with the operating conditions of the unit. The Apriori algorithm is used to mine frequent items to analyze the vibration of the unit. The spatio-temporal correlation between the data characteristics and the unit failure, and the safe operation area of the unit are divided through the correlation analysis results.
其中Apriori算法是一种挖掘数据隐含信息、发现频繁项集的有效数据关联分析方法,通过限制候选产生发现频繁项集,流程图如图2所示。使用Apriori算法挖掘离散化后的抽水蓄能机组振摆数据的步骤如下:首先,通过扫描建立的抽水蓄能机组振摆信号特征与运行状态分析数据库,累计机组运行状态量的出现次数,并收集满足设定的最小支持度的状态项,找出频繁1项集的集合,记为L1。然后,根据Apriori性质,使用L1找出频繁2项集的集合L2,使用L2找出L3,如此下去,直到不能再找到频繁k项集。通过振摆信号与机组状态间的相关性分析,获得机组安全运行区域,为机组运行安全域判别提供支持。Among them, the Apriori algorithm is an effective data association analysis method for mining hidden information of data and discovering frequent itemsets. It discovers frequent itemsets by limiting candidate generation. The flow chart is shown in Figure 2. The steps of using the Apriori algorithm to mine the discretized vibration data of the pumped storage unit are as follows: First, through scanning the established pumped storage unit vibration signal characteristics and operating state analysis database, the number of occurrences of the unit’s operating state quantity is accumulated, and collected Find the set of frequent 1-itemsets for the state items that meet the set minimum support, and denote it as L1. Then, according to the Apriori property, use L1 to find out the set L2 of frequent 2-itemsets, use L2 to find out L3, and so on, until no more frequent k-itemsets can be found. Through the correlation analysis between the swing signal and the state of the unit, the safe operation area of the unit is obtained, which provides support for the identification of the safe area of the unit operation.
第六步趋势预测,构建时间序列分解模型、多元线性回归模型、ARMA模型,采用时间序列趋势预测方法,预测其未来有限时间内的发展趋势,进而对机组运行状态趋势进行预测与估计,为实施机组状态检修提供技术支持。The sixth step is trend forecasting, constructing time series decomposition model, multiple linear regression model, and ARMA model, using time series trend forecasting method to predict its future development trend within a limited time, and then predicting and estimating the trend of unit operating status. Unit condition maintenance provides technical support.
其中第六步机组振动状态趋势预测流程如下:1)提取机组状态参数时间序列;2)小波分解将机组状态参量的时间序列分解为不同分解域(非线性的趋势项和平稳性的波动项)的子序列;3)对于平稳性的波动项采用AR预测模型,对于非线性的趋势项采用最小二乘支持向量机的预测模型;4)重构信号实现机组状态趋势预测。具体实施如下:The sixth step of unit vibration state trend prediction process is as follows: 1) Extract the time series of unit state parameters; 2) Wavelet decomposition decomposes the time series of unit state parameters into different decomposition domains (non-linear trend items and stationary fluctuation items) 3) The AR prediction model is used for the stationary fluctuation item, and the least squares support vector machine prediction model is used for the non-linear trend item; 4) The reconstructed signal realizes the unit state trend prediction. The specific implementation is as follows:
1)基于最小二乘支持向量机的时间序列建模构造输入向量:1) Construct input vector based on time series modeling of least squares support vector machine:
原始时间序列是一组一维的实测值,在建立LSSVM模型前需要对该时序进行相空间重构,得到其对应的相空间矩阵作为LSSVM模型的输入向量。The original time series is a set of one-dimensional measured values. Before establishing the LSSVM model, it is necessary to reconstruct the phase space of the time series, and obtain its corresponding phase space matrix as the input vector of the LSSVM model.
其中X为输入向量,n为常数,k为1~n中的某一个值,m为空间维数,τ为延迟时间常数。Among them X is the input vector, n is a constant, k is a certain value in 1~n, m is the space dimension, τ is the delay time constant.
2)AR建模2) AR modeling
线性回归模型的随机差分方程(AR模型)表示为:The stochastic difference equation (AR model) of the linear regression model is expressed as:
式中:为自回归参数,i=1…p,p为阶次;at为白噪声,表示残差。In the formula: is the autoregressive parameter, i=1...p, p is the order; a t is the white noise, which means the residual.
建立AR模型时需要确定模型的阶次并进行模型的参数估计。确定模型阶数的常用准则有AIC准则:When building an AR model, it is necessary to determine the order of the model and estimate the parameters of the model. A common criterion for determining the order of the model is the AIC criterion:
式中:p为模型阶次;N为数据个数;为不同阶次下的预测误差。In the formula: p is the order of the model; N is the number of data; is the prediction error at different levels.
建模过程中应先给定模型阶次,预估模型参数,可以得到各阶模型,最后取AIC(p)第一个极小值对应的阶次来确定模型的最佳阶次,最终可以确定AR模型。In the modeling process, the order of the model should be given first, and the parameters of the model should be estimated to obtain models of each order. Finally, the order corresponding to the first minimum value of AIC(p) should be taken to determine the optimal order of the model. Finally, it can be Determine the AR model.
组合预测建模Portfolio Predictive Modeling
设水电机组状态量序列为Xt={X1…Xn},其预测建模步骤如下:Assuming that the state quantity sequence of the hydroelectric unit is X t ={X 1 …X n }, the predictive modeling steps are as follows:
I、利用小波变换将其进行多层分解,得到描述趋势项和波动项的各层子序列:1. Utilize wavelet transform to carry out multi-layer decomposition to obtain the subsequences of each layer describing the trend item and the fluctuation item:
X=ak+d1+d2+…+dk X=a k +d 1 +d 2 +...+d k
II、式中,ak为趋势项,di为波动项,i=1,2,…,k为小波分解层数。II. In the formula, a k is the trend item, d i is the fluctuation item, i=1, 2, ..., k is the number of wavelet decomposition layers.
III、对于趋势项ak建立LSSVM预测模型,进行模型训练以及新值预测,对结果进行精确评价。III. Establish an LSSVM prediction model for the trend item a k , perform model training and new value prediction, and accurately evaluate the results.
IV、对于各个波动项di,i=1,2,…,k分别进行AR建模,对结果进行精度评价。IV. Perform AR modeling for each fluctuation item d i , i=1, 2, . . . , k, and evaluate the accuracy of the results.
V、得到各部分序列的预测结果后进行叠加计算,得到原始振动序列的预测序列计算实测值和预测值的误差指标,进行精度评价。高组合预测模型的实现过程如图3所示。V. After obtaining the prediction results of each partial sequence, perform superposition calculation to obtain the prediction sequence of the original vibration sequence Calculate the error index of the measured value and the predicted value to evaluate the accuracy. The implementation process of the high-combination forecasting model is shown in Figure 3.
VI、对结果进行预测性能评价,也就是对预测结果的精度进行评价,分析预测结果和实际值的偏离程度,对预测效果的评价可以采用以下的常用误差指标:VI. Evaluate the prediction performance of the results, that is, evaluate the accuracy of the prediction results, analyze the degree of deviation between the prediction results and the actual value, and use the following common error indicators to evaluate the prediction effect:
VII、平均相对误差: VII. Average relative error:
VIII、均方根误差: VIII. Root mean square error:
其中k为1~N中的某一个值,为平均值。Where k is a value from 1 to N, is the average value.
本发明实施例的移动终端APP,可以通过移动设备对机组状态进行监测和趋势分析,同时将告警、预警和设备故障信息实时推送至移动设备。The mobile terminal APP in the embodiment of the present invention can monitor and analyze the status of the unit through the mobile device, and simultaneously push the alarm, early warning and equipment failure information to the mobile device in real time.
为实现移动应用,在原抽蓄电站机组状态监测系统基础上增设了相关设备,主要包括WEB服务器、横向隔离装置、硬件防火墙和III区网络交换机。WEB服务器部署在安全III区,通过单向网络隔离装置和II区进行隔离,数据从II区单向传输至WEB服务器进行管理和存储。WEB服务器通过防火墙与局域网相连,将数据发布至局域网,局域网上的用户可以通过专用软件对数据进行监测、分析。WEB服务器通过防火墙接入Internet(使用专线或者通过局域网接入),连接到部署在阿里云上的移动应用专用服务器,通过服务器将状态数据以及告警、预警信息发布至移动终端,移动终端用户可以通过专用APP浏览和分析数据。数据存储在WEB服务器上,通过阿里云上的专用服务器进行发布,阿里云上并不存储任何数据。为确保数据的安全,数据的传输过程是加密的,在移动端再对数据进行解密后显示。为确保WEB服务器的安全,WEB服务器在Internet上只与移动应用专用服务器连接(通过防火墙安全策略实现),来自其他计算机上的连接将被认为是非法的而被拒绝。In order to realize the mobile application, related equipment was added on the basis of the original unit status monitoring system of the pumped storage power station, mainly including WEB server, horizontal isolation device, hardware firewall and network switch in Zone III. The WEB server is deployed in the safe area III, and is isolated from the II area through the one-way network isolation device, and the data is transmitted from the II area to the WEB server for management and storage. The WEB server is connected to the local area network through the firewall, and the data is released to the local area network. Users on the local area network can monitor and analyze the data through special software. The WEB server is connected to the Internet through the firewall (using a dedicated line or through a local area network), connected to the dedicated server for mobile applications deployed on Alibaba Cloud, and publishes status data, alarms, and early warning information to mobile terminals through the server. Mobile terminal users can pass Dedicated APP to browse and analyze data. The data is stored on the WEB server and published through a dedicated server on Alibaba Cloud, which does not store any data. In order to ensure data security, the data transmission process is encrypted, and the data is decrypted and displayed on the mobile terminal. In order to ensure the security of the WEB server, the WEB server is only connected to the mobile application server on the Internet (realized through the firewall security policy), and connections from other computers will be considered illegal and rejected.
移动终端APP功能主要包括以下几方面:Mobile terminal APP functions mainly include the following aspects:
1)实时监测,TN8000APP可以对振动、摆度、轴向位移、压力脉动、空气间隙、局部放电以及工况参数等进行实时监测,系统提供曲线图、数值表、棒图、波形图、频谱图等多种可视化图表供用户选择,可从不同角度、不同层次对机组状态进行监测,随时随地把握机组运行状态。1) Real-time monitoring. TN8000APP can monitor vibration, swing, axial displacement, pressure pulsation, air gap, partial discharge and working condition parameters in real time. The system provides graphs, numerical tables, bar graphs, waveform graphs, and spectrum graphs A variety of visual charts and charts are available for users to choose, and the status of the unit can be monitored from different angles and levels, and the operating status of the unit can be grasped anytime and anywhere.
2)数据分析和趋势预测,系统通过振动趋势预测模型对机组状态进行预测分析,方便抽蓄电站运维人员对机组状态进行评估。2) Data analysis and trend prediction. The system predicts and analyzes the status of the unit through the vibration trend prediction model, which is convenient for the operation and maintenance personnel of the pumped storage power station to evaluate the status of the unit.
3)事件推送,系统可将预警、告警信息实时推送到移动终端,及时提醒用户关注机组状态变化,预防事故发生。系统同时也提供查询历史事件信息功能。3) Event push, the system can push the early warning and alarm information to the mobile terminal in real time, reminding the user to pay attention to the status change of the unit in time to prevent accidents. The system also provides the function of querying historical event information.
4)系统自诊断,通过移动APP,可以实时监测机组状态监测系统本身的状态,包括传感器状态、采集装置状态、系统网络状态、软件运行状态等,及时发现系统运行过程中的缺陷,确保系统长期、稳定运行。4) System self-diagnosis. Through the mobile APP, the status of the unit status monitoring system itself can be monitored in real time, including sensor status, acquisition device status, system network status, software running status, etc., and defects in the system operation process can be found in time to ensure the long-term stability of the system. ,Stable operation.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810692295.1A CN108875841A (en) | 2018-06-29 | 2018-06-29 | A kind of pumped storage unit vibration trend forecasting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810692295.1A CN108875841A (en) | 2018-06-29 | 2018-06-29 | A kind of pumped storage unit vibration trend forecasting method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108875841A true CN108875841A (en) | 2018-11-23 |
Family
ID=64296816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810692295.1A Withdrawn CN108875841A (en) | 2018-06-29 | 2018-06-29 | A kind of pumped storage unit vibration trend forecasting method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108875841A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109946075A (en) * | 2018-12-25 | 2019-06-28 | 东北大学 | A bearing condition monitoring and fault diagnosis method |
CN110175541A (en) * | 2019-05-13 | 2019-08-27 | 武汉大学 | A kind of method that sea level variability nonlinear trend is extracted |
CN110298132A (en) * | 2019-07-05 | 2019-10-01 | 国家电网有限公司 | A kind of turbine-generator units bearing throw trend forecasting method |
CN110673997A (en) * | 2019-09-06 | 2020-01-10 | 苏州浪潮智能科技有限公司 | Method and device for predicting disk failure |
CN110943481A (en) * | 2019-12-04 | 2020-03-31 | 重庆大学 | Unit combination method considering wind turbine generator safety domain with frequency response control |
CN110991055A (en) * | 2019-12-08 | 2020-04-10 | 中国航空综合技术研究所 | Residual life prediction system for rotary mechanical products |
CN111489027A (en) * | 2020-04-08 | 2020-08-04 | 五凌电力有限公司近尾洲水电厂 | A method and system for predicting trend of waveform data of hydroelectric unit |
CN111695248A (en) * | 2020-05-27 | 2020-09-22 | 淮阴工学院 | Rapid early warning method for degradation state trend of pumped storage unit |
CN112668419A (en) * | 2020-12-17 | 2021-04-16 | 太原理工大学 | Engine emission prediction method based on vibration signal |
CN112949986A (en) * | 2021-02-01 | 2021-06-11 | 中国人民解放军海军工程大学 | Steam power system operation stability evaluation method and system, electronic equipment and storage medium |
CN113052370A (en) * | 2021-03-15 | 2021-06-29 | 哈尔滨工程大学 | Marine environment element statistical prediction method based on space-time experience orthogonal function |
CN113077172A (en) * | 2021-04-19 | 2021-07-06 | 瑞湖智科数据(苏州)有限公司 | Equipment state trend analysis and fault diagnosis method |
CN114139767A (en) * | 2021-11-02 | 2022-03-04 | 中国华能集团清洁能源技术研究院有限公司 | Equipment health trend prediction method, system, computer equipment and storage medium |
CN114298413A (en) * | 2021-12-28 | 2022-04-08 | 浙江大学 | A Method for Predicting Vibration Trend of Hydroelectric Units |
CN114442543A (en) * | 2021-10-29 | 2022-05-06 | 南京河海南自水电自动化有限公司 | Computer monitoring method suitable for early warning of hydropower station fault |
CN114863651A (en) * | 2021-01-15 | 2022-08-05 | 湖南五凌电力科技有限公司 | Intelligent early warning method for monitoring state of auxiliary machine |
CN115511880A (en) * | 2022-11-07 | 2022-12-23 | 长江勘测规划设计研究有限责任公司 | A Method of Using Machine Vision to Recognize and Measure Biaxial Vibration Amplitude and Frequency |
CN115685949A (en) * | 2022-12-29 | 2023-02-03 | 深圳市信润富联数字科技有限公司 | Method and device for adjusting data sampling frequency in discrete machining production process |
CN115795999A (en) * | 2022-10-26 | 2023-03-14 | 国网新源控股有限公司 | Performance abnormity early warning method for long-term service pumped storage unit |
CN118287244A (en) * | 2024-03-22 | 2024-07-05 | 常熟市龙腾特种钢有限公司 | Intelligent adjustment control system and method for coal mill |
CN118936858A (en) * | 2024-07-26 | 2024-11-12 | 重庆市特种设备检测研究院(重庆市特种设备事故应急调查处理中心) | A method and system for health monitoring of strongly non-stationary equipment based on high-order time-frequency analysis |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104268658A (en) * | 2014-09-29 | 2015-01-07 | 招商局重庆交通科研设计院有限公司 | Bridge structure safety monitoring data prediction method |
CN104899432A (en) * | 2015-05-19 | 2015-09-09 | 上海大学 | Kernel function combination-based PSO-LSSVM fluctuating wind speed prediction method |
CN106529145A (en) * | 2016-10-27 | 2017-03-22 | 浙江工业大学 | Bridge monitoring data prediction method based on ARIMA-BP neural network |
-
2018
- 2018-06-29 CN CN201810692295.1A patent/CN108875841A/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104268658A (en) * | 2014-09-29 | 2015-01-07 | 招商局重庆交通科研设计院有限公司 | Bridge structure safety monitoring data prediction method |
CN104899432A (en) * | 2015-05-19 | 2015-09-09 | 上海大学 | Kernel function combination-based PSO-LSSVM fluctuating wind speed prediction method |
CN106529145A (en) * | 2016-10-27 | 2017-03-22 | 浙江工业大学 | Bridge monitoring data prediction method based on ARIMA-BP neural network |
Non-Patent Citations (5)
Title |
---|
YUNXIAO FU等: ""Product function correntropy and its application in rolling bearing fault identification"", 《MEASUREMENT》 * |
姜鑫 等: ""数据挖掘技术在水电厂主设备状态检修中的应用研究"", 《水电自动化与大坝监测》 * |
孙慧芳 等: ""基于时间序列组合模型的水电机组状态趋势预测"", 《水力发电学报》 * |
罗萌: ""水电机组振动故障诊断与趋势预测研究"", 《万方数据库》 * |
陆冠鹏: ""深圳抽蓄机组在线监测系统设计"", 《吉林水利》 * |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109946075A (en) * | 2018-12-25 | 2019-06-28 | 东北大学 | A bearing condition monitoring and fault diagnosis method |
CN110175541B (en) * | 2019-05-13 | 2022-06-14 | 武汉大学 | Method for extracting sea level change nonlinear trend |
CN110175541A (en) * | 2019-05-13 | 2019-08-27 | 武汉大学 | A kind of method that sea level variability nonlinear trend is extracted |
CN110298132A (en) * | 2019-07-05 | 2019-10-01 | 国家电网有限公司 | A kind of turbine-generator units bearing throw trend forecasting method |
CN110673997A (en) * | 2019-09-06 | 2020-01-10 | 苏州浪潮智能科技有限公司 | Method and device for predicting disk failure |
CN110673997B (en) * | 2019-09-06 | 2023-01-10 | 苏州浪潮智能科技有限公司 | Disk Failure Prediction Method and Device |
CN110943481A (en) * | 2019-12-04 | 2020-03-31 | 重庆大学 | Unit combination method considering wind turbine generator safety domain with frequency response control |
CN110991055A (en) * | 2019-12-08 | 2020-04-10 | 中国航空综合技术研究所 | Residual life prediction system for rotary mechanical products |
CN110991055B (en) * | 2019-12-08 | 2022-09-16 | 中国航空综合技术研究所 | Residual life prediction system for rotary mechanical products |
CN111489027A (en) * | 2020-04-08 | 2020-08-04 | 五凌电力有限公司近尾洲水电厂 | A method and system for predicting trend of waveform data of hydroelectric unit |
CN111695248A (en) * | 2020-05-27 | 2020-09-22 | 淮阴工学院 | Rapid early warning method for degradation state trend of pumped storage unit |
CN111695248B (en) * | 2020-05-27 | 2024-01-05 | 淮阴工学院 | Quick early warning method for degradation state trend of pumped storage unit |
CN112668419B (en) * | 2020-12-17 | 2022-05-24 | 太原理工大学 | Engine emission prediction method based on vibration signal |
CN112668419A (en) * | 2020-12-17 | 2021-04-16 | 太原理工大学 | Engine emission prediction method based on vibration signal |
CN114863651A (en) * | 2021-01-15 | 2022-08-05 | 湖南五凌电力科技有限公司 | Intelligent early warning method for monitoring state of auxiliary machine |
CN112949986A (en) * | 2021-02-01 | 2021-06-11 | 中国人民解放军海军工程大学 | Steam power system operation stability evaluation method and system, electronic equipment and storage medium |
CN112949986B (en) * | 2021-02-01 | 2022-06-28 | 中国人民解放军海军工程大学 | Steam power system operation stability evaluation method and system, electronic equipment and storage medium |
CN113052370A (en) * | 2021-03-15 | 2021-06-29 | 哈尔滨工程大学 | Marine environment element statistical prediction method based on space-time experience orthogonal function |
CN113077172A (en) * | 2021-04-19 | 2021-07-06 | 瑞湖智科数据(苏州)有限公司 | Equipment state trend analysis and fault diagnosis method |
CN114442543A (en) * | 2021-10-29 | 2022-05-06 | 南京河海南自水电自动化有限公司 | Computer monitoring method suitable for early warning of hydropower station fault |
CN114139767A (en) * | 2021-11-02 | 2022-03-04 | 中国华能集团清洁能源技术研究院有限公司 | Equipment health trend prediction method, system, computer equipment and storage medium |
CN114298413A (en) * | 2021-12-28 | 2022-04-08 | 浙江大学 | A Method for Predicting Vibration Trend of Hydroelectric Units |
CN114298413B (en) * | 2021-12-28 | 2024-07-23 | 浙江大学 | A method for predicting the swing trend of hydropower units |
CN115795999A (en) * | 2022-10-26 | 2023-03-14 | 国网新源控股有限公司 | Performance abnormity early warning method for long-term service pumped storage unit |
CN115511880A (en) * | 2022-11-07 | 2022-12-23 | 长江勘测规划设计研究有限责任公司 | A Method of Using Machine Vision to Recognize and Measure Biaxial Vibration Amplitude and Frequency |
CN115685949A (en) * | 2022-12-29 | 2023-02-03 | 深圳市信润富联数字科技有限公司 | Method and device for adjusting data sampling frequency in discrete machining production process |
CN118287244A (en) * | 2024-03-22 | 2024-07-05 | 常熟市龙腾特种钢有限公司 | Intelligent adjustment control system and method for coal mill |
CN118936858A (en) * | 2024-07-26 | 2024-11-12 | 重庆市特种设备检测研究院(重庆市特种设备事故应急调查处理中心) | A method and system for health monitoring of strongly non-stationary equipment based on high-order time-frequency analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108875841A (en) | A kind of pumped storage unit vibration trend forecasting method | |
Zhang et al. | Intelligent fault diagnosis and prognosis approach for rotating machinery integrating wavelet transform, principal component analysis, and artificial neural networks | |
CN110620759B (en) | Evaluation method and system of network security event hazard index based on multi-dimensional correlation | |
CN110035090B (en) | False data injection attack detection method for smart grid | |
US10235231B2 (en) | Anomaly fusion on temporal casualty graphs | |
CN106951984B (en) | Dynamic analysis and prediction method and device for system health degree | |
Wadduwage et al. | Identification of dominant low‐frequency modes in ring‐down oscillations using multiple Prony models | |
Soleimani et al. | Multi-layer episode filtering for the multi-step attack detection | |
CN113497726A (en) | Alarm monitoring method, alarm monitoring system, computer readable storage medium and electronic equipment | |
JP6210867B2 (en) | Data relationship analysis system and data management device | |
US12039045B2 (en) | Event analysis in an electric power system | |
Botev et al. | Detecting non-technical energy losses through structural periodic patterns in AMI data | |
CN110879151A (en) | Gas turbine remote monitoring and diagnosis system and method based on operation big data | |
CN114185760A (en) | System risk assessment method and device and charging equipment operation and maintenance detection method | |
CN117312807B (en) | Control state analysis method and system of circuit breaker | |
CN114201825B (en) | Evaluation method and system for equipment performance degradation state based on combined characteristics | |
CN106874676B (en) | A method for evaluating the state of an electric energy metering device | |
Dakheel et al. | Intrusion detection system in gas-pipeline industry using machine learning | |
CN117371207A (en) | Extra-high voltage converter valve state evaluation method, medium and system | |
CN102158372A (en) | Distributed system abnormity detection method | |
Shrivastava et al. | New data driven scheme for real-time power system transient stability assessment | |
CN117200458B (en) | Digital management method and device based on intelligent low-voltage switch cabinet | |
Yang et al. | Information theory based probabilistic approach to blade damage detection of turbomachine using sensor data | |
Man et al. | A combined prediction method for network security situation | |
Zhu et al. | Intrusion detection system based on data mining for host log |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20181123 |