CN108875276B - 一种数据驱动的闭环系统稳定性监测方法 - Google Patents

一种数据驱动的闭环系统稳定性监测方法 Download PDF

Info

Publication number
CN108875276B
CN108875276B CN201810797357.5A CN201810797357A CN108875276B CN 108875276 B CN108875276 B CN 108875276B CN 201810797357 A CN201810797357 A CN 201810797357A CN 108875276 B CN108875276 B CN 108875276B
Authority
CN
China
Prior art keywords
description
closed
data
loop
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810797357.5A
Other languages
English (en)
Other versions
CN108875276A (zh
Inventor
罗浩
尹珅
刘天宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810797357.5A priority Critical patent/CN108875276B/zh
Publication of CN108875276A publication Critical patent/CN108875276A/zh
Application granted granted Critical
Publication of CN108875276B publication Critical patent/CN108875276B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本发明提供一种数据驱动的闭环系统稳定性监测方法,属于数据驱动故障诊断和控制技术领域。本发明首先采集过去某时刻闭环系统的闭环数据构造汉克尔矩阵;对所构造的汉克尔矩阵进行Cholesky分解,求取归一化的稳定象描述和归一化的稳定核描述;再利用步骤三构造得到的稳定象描述计算稳定裕度;根据稳定裕度设置监测阈值,采集系统当前闭环数据,重复上述步骤得到系统当前归一化的稳定象描述和系统当前归一化的稳定核描述;并计算系统当前的间隙度量;最后结合监测阈值和系统当前的间隙度量对系统进行实时监测。本发明解决了现有技术缺乏对数据驱动的闭环系统稳定性监测的问题。本发明可应用于系统故障在线评估和监测。

Description

一种数据驱动的闭环系统稳定性监测方法
技术领域
本发明属于数据驱动故障诊断和控制技术领域,具体涉及一种数据驱动的闭环系统稳定性监测方法。
背景技术
近年来,在计算机技术、电子、信息和通信技术快速发展的带动下,当今工业系统,例如化工生产、机械制造、能源系统等,在规模不断扩大的同时,集成化和复杂程度也变得越来越高。在复杂工业系统中,一个局部异常事件甚至都有可能导致整个工业系统性能下降或者导致重大的工业事故并造成巨大的经济损失。为了提高经济效益和保持行业竞争力,现代工业过程的安全性和可靠性成为了最关键的因素,并获得了学术界和工业领域的广泛关注。
在现有的基于模型的闭环反馈系统稳定性分析工具中,稳定裕度和间隙度量技术起到了至关重要的作用。但是由于这两项技术对系统模型的依赖,闭环反馈系统的稳定性往往只能离线进行分析,这使得系统故障对闭环系统稳定性的影响没有办法在线评估和监测。在现有的数据驱动故障诊断技术中:一方面,大多数方法仅仅考虑系统故障的监测和诊断问题,缺乏系统故障对闭环反馈系统稳定性影响的分析;另一方面,很少考虑和分析闭环数据中反馈控制器带来的数据间的耦合关系,严重影响了数据驱动故障诊断方法的实际应用效果。
发明内容
本发明为解决现有技术缺乏对数据驱动的闭环系统稳定性监测的问题,提供了一种数据驱动的闭环系统稳定性监测方法。
本发明所述一种数据驱动的闭环系统稳定性监测方法,通过以下技术方案实现:
步骤一、采集过去某时刻闭环系统的闭环数据,包括闭环系统的输入信号、输出信号以及参考输入信号;
步骤二、利用采集的数据构造汉克尔矩阵;
步骤三、对所构造的汉克尔矩阵进行Cholesky分解,构造系统的稳定象描述、系统的稳定核描述,并求取归一化的稳定象描述和归一化的稳定核描述;
步骤四、利用步骤三构造得到的稳定象描述计算稳定裕度;
步骤五、根据稳定裕度设置监测阈值,采集系统当前闭环数据,重复步骤二至步骤四,得到系统当前归一化的稳定象描述和系统当前归一化的稳定核描述;并计算系统当前的间隙度量;
步骤六、结合监测阈值和系统当前的间隙度量对系统进行实时监测。
作为对上述技术方案的进一步阐述:
进一步的,步骤二具体包括以下步骤:
步骤二一、利用反馈控制器K(z)=(A,B,C,D)参数构造稳定滤波器其中,A为反馈控制器的系统矩阵,B为反馈控制器的输入矩阵,C为反馈控制器的输出矩阵,D为反馈控制器的直通矩阵;
步骤二二、通过下述公式计算得到滤波后的参考输入信号w(z):
其中,ω(z)为参考输入信号;
步骤二三、选取维度参数sp,sf和N,构造关于系统滤波后的参考输入信号w(z)、输入信号u(z)、输出信号y(z)的汉克尔矩阵:
其中,wk表示w(z)在k时刻的采样值,yk表示y(z)在k时刻的采样值,uk表示u(z)在k时刻的采样值。
进一步的,步骤三具体包括以下步骤:
步骤三一、对所构造的汉克尔矩阵做如下Cholesky分解:
其中,表示分解后的矩阵;
步骤三二、构建系统的稳定象描述
其中,为系统稳定象描述对应的分量,为系统稳定象描述对应的分量;
步骤三三、求取如下左零空间:
其中,为所在左零空间对应的分量,为所得左零空间对应的分量;构建系统的稳定核描述
步骤三四、求取归一化的稳定象描述和归一化的稳定核描述
其中,对应奇异值分解中的 对应奇异值分解中的 为包含奇异值的对角矩阵,为包含奇异值的对角矩阵。
进一步的,步骤四中所述稳定裕度的具体计算过程包括:
其中,为稳定裕度,表示求取矩阵最大奇异值的倒数。
进一步的,步骤五具体包括以下步骤:
步骤五一、根据步骤四中所得到的稳定裕度设置监测阈值
步骤五二、采集系统当前闭环数据,重复步骤二至步骤四得到系统当前归一化的稳定象描述和系统当前归一化的稳定核描述
步骤五三、计算系统当前的间隙度量
或者
进一步的,步骤六具体为:
将步骤五中得到的间隙度量与所设定的监测阈值Jth进行比较,若则产生监测报警信息。
进一步的,步骤二一中所述稳定滤波器具体为:
其中,L表示观测器增益矩阵,其选取需要使得A-LC极点在单位圆之内。
本发明最为突出的特点和显著的有益效果是:
本发明所涉及的一种数据驱动的闭环系统稳定性监测方法,具有以下几方面优势:
1、本发明利用系统的输入输出闭环数据,即可对闭环系统的稳定性进行评估和监测,在闭环系统的稳定性遭到破坏时能够产生报警,能够监测到99%的系统故障。
2、本发明基于闭环过程数据,不依赖于系统模型,适用于绝大多数(90%以上)闭环控制系统。
附图说明
图1为本发明逻辑控制图;
图2为本发明方法流程图;
图3为实施例中闭环系统稳定性监测结果曲线图。
具体实施方式
具体实施方式一:结合图1、图2对本实施方式进行说明,本实施方式给出的一种数据驱动的闭环系统稳定性监测方法,具体包括以下步骤:
步骤一、采集过去某时刻闭环系统的闭环数据,包括闭环系统的输入信号、输出信号以及参考输入信号;
步骤二、利用采集的数据构造汉克尔矩阵;
步骤三、对所构造的汉克尔矩阵进行Cholesky分解,构造系统的稳定象描述、系统的稳定核描述,并求取归一化的稳定象描述和归一化的稳定核描述;
步骤四、利用步骤三构造得到的稳定象描述计算稳定裕度;
步骤五、根据稳定裕度设置监测阈值,采集系统当前闭环数据,重复步骤二至步骤四,得到系统当前归一化的稳定象描述和系统当前归一化的稳定核描述;并计算系统当前的间隙度量;
步骤六、结合监测阈值和系统当前的间隙度量对系统进行实时监测。
具体实施方式二:本实施方式与具体实施方式一不同的是,步骤二具体包括以下步骤:
步骤二一、利用所述闭环系统中的反馈控制器K(z)=(A,B,C,D)参数构造稳定滤波器其中,A为反馈控制器的系统矩阵,B为反馈控制器的输入矩阵,C为反馈控制器的输出矩阵,D为反馈控制器的直通矩阵;
步骤二二、通过下述公式计算得到滤波后的参考输入信号w(z):
其中,ω(z)为参考输入信号;
步骤二三、选取适当的维度参数sp,sf和N,构造关于系统滤波后的参考输入信号w(z)、输入信号u(z)、输出信号y(z)的汉克尔矩阵:
其中, wk表示w(z)在k时刻的采样值,yk表示y(z)在k时刻的采样值,uk表示u(z)在k时刻的采样值。
其他步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式二不同的是,步骤三具体包括以下步骤:
步骤三一、对所构造的汉克尔矩阵做如下Cholesky分解:
其中,表示分解后的矩阵;
步骤三二、构建系统的稳定象描述
其中,为系统稳定象描述对应的分量,为系统稳定象描述对应的分量;
步骤三三、求取如下左零空间:
其中,为所在左零空间对应的分量,为所得左零空间对应的分量;构建系统的稳定核描述
步骤三四、求取归一化的稳定象描述和归一化的稳定核描述
其中,对应奇异值分解中的 对应奇异值分解中的 为包含奇异值的对角矩阵,为包含奇异值的对角矩阵。
其他步骤及参数与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式三不同的是,步骤三具体包括:步骤四中所述稳定裕度的具体计算过程包括:
其中,为稳定裕度,表示求取矩阵最大奇异值的倒数。
其他步骤及参数与具体实施方式三相同。
具体实施方式五:本实施方式与具体实施方式四不同的是,步骤五具体包括以下步骤:
步骤五一、根据步骤四中所得到的稳定裕度设置监测阈值监测阈值
步骤五二、采集系统当前(在线)闭环数据,重复步骤二至步骤四得到系统当前归一化的稳定象描述和系统当前归一化的稳定核描述
步骤五三、计算系统当前的间隙度量
或者
其他步骤及参数与具体实施方式四相同。
具体实施方式六:本实施方式与具体实施方式五不同的是,步骤六具体为:
将步骤五中得到的间隙度量与所设定的监测阈值Jth进行比较,若则产生监测报警信息。
其他步骤及参数与具体实施方式五相同。
具体实施方式七:本实施方式与具体实施方式二、三、四、五或六不同的是,步骤二一中所述稳定滤波器具体为:
其中,L表示观测器增益矩阵,其选取需要使得A-LC极点在单位圆之内,也就是控制学里说的使得A-LC稳定。
其他步骤及参数与具体实施方式二、三、四、五或六相同。
实施例
利用以下仿真过程来验证本发明的有益效果:
选取正常系统G0(z)=(A0,B0,C0,D0)为:
反馈控制器K(z)=(A,B,C,D)为:
假设正常系统G0(z)将在运行过程中慢慢转变为故障系统Gf(z)=(Af,Bf,Cf,Df):
本实施例所述一种数据驱动的闭环系统稳定性监测方法按照以下步骤进行:
步骤一、采集过去某时刻闭环系统的闭环数据,包括闭环系统的输入信号、输出信号以及参考输入信号;
步骤二、利用采集的数据构造汉克尔矩阵;
步骤二一:选取构造稳定滤波器
步骤二二、通过下述公式计算得到滤波后的参考输入信号w(z):
步骤二三、选取维度参数sp=20,sf=60和N=5000,构造关于系统滤波后的参考输入信号w(z)、输入信号u(z)、输出信号y(z)的汉克尔矩阵:
步骤三、对所构造的汉克尔矩阵进行Cholesky分解,构造系统的稳定象描述、系统的稳定核描述,并求取归一化的稳定象描述和归一化的稳定核描述;
步骤四、利用步骤三构造得到的稳定象描述计算稳定裕度
步骤五、根据稳定裕度设置监测阈值Jth=0.12,采集系统当前闭环数据,重复步骤二至步骤四,得到系统当前归一化的稳定象描述和系统当前归一化的稳定核描述;并计算系统当前的间隙度量;
步骤六、结合监测阈值和系统当前的间隙度量对系统进行实时监测。
闭环系统的稳定性监测结果如图3所示。由图3可看出,本发明方法能够通过系统闭环数据有效地监测故障对闭环系统稳定性的影响。
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (4)

1.一种数据驱动的闭环系统稳定性监测方法,其特征在于,所述方法具体包括以下步骤:
步骤一、采集过去某时刻闭环系统的闭环数据,包括闭环系统的输入信号、输出信号以及参考输入信号;
步骤二、利用采集的数据构造汉克尔矩阵;
步骤三、对所构造的汉克尔矩阵进行Cholesky分解,构造系统的稳定象描述、系统的稳定核描述,并求取归一化的稳定象描述和归一化的稳定核描述;
步骤四、利用步骤三构造得到的稳定象描述计算稳定裕度;
步骤五、根据稳定裕度设置监测阈值,采集系统当前闭环数据,重复步骤二至步骤四,得到系统当前归一化的稳定象描述和系统当前归一化的稳定核描述;并计算系统当前的间隙度量;
步骤六、结合监测阈值和系统当前的间隙度量对系统进行实时监测;
步骤二具体包括以下步骤:
步骤二一、利用反馈控制器K(z)=(A,B,C,D)参数构造稳定滤波器其中,A为反馈控制器的系统矩阵,B为反馈控制器的输入矩阵,C为反馈控制器的输出矩阵,D为反馈控制器的直通矩阵;
步骤二二、通过下述公式计算得到滤波后的参考输入信号w(z):
其中,ω(z)为参考输入信号;
步骤二三、选取维度参数sp,sf和N,构造关于系统滤波后的参考输入信号w(z)、输入信号u(z)、输出信号y(z)的汉克尔矩阵:
其中,wk表示w(z)在k时刻的采样值,yk表示y(z)在k时刻的采样值,uk表示u(z)在k时刻的采样值;
步骤三具体包括以下步骤:
步骤三一、对所构造的汉克尔矩阵做如下Cholesky分解:
其中,表示分解后的矩阵;
步骤三二、构建系统的稳定象描述
其中,为系统稳定象描述对应的分量,为系统稳定象描述对应的分量;
步骤三三、求取如下左零空间:
其中,为所在左零空间对应的分量,为所得左零空间对应的分量;构建系统的稳定核描述
步骤三四、求取归一化的稳定象描述和归一化的稳定核描述
其中,UI对应奇异值分解中的UI对应奇异值分解中的ΣI为包含奇异值的对角矩阵,为包含奇异值的对角矩阵;
步骤四中所述稳定裕度的具体计算过程包括:
其中,为稳定裕度,表示求取矩阵最大奇异值的倒数。
2.根据权利要求1所述一种数据驱动的闭环系统稳定性监测方法,其特征在于,步骤五具体包括以下步骤:
步骤五一、根据步骤四中所得到的稳定裕度设置监测阈值
步骤五二、采集系统当前闭环数据,重复步骤二至步骤四得到系统当前归一化的稳定象描述和系统当前归一化的稳定核描述
步骤五三、计算系统当前的间隙度量
或者
3.根据权利要求2所述一种数据驱动的闭环系统稳定性监测方法,其特征在于,步骤六具体为:
将步骤五中得到的间隙度量与所设定的监测阈值Jth进行比较,若则产生监测报警信息。
4.根据权利要求1、2或3所述一种数据驱动的闭环系统稳定性监测方法,其特征在于,步骤二一中所述稳定滤波器具体为:
其中,L表示观测器增益矩阵,其选取需要使得A-LC极点在单位圆之内。
CN201810797357.5A 2018-07-19 2018-07-19 一种数据驱动的闭环系统稳定性监测方法 Active CN108875276B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810797357.5A CN108875276B (zh) 2018-07-19 2018-07-19 一种数据驱动的闭环系统稳定性监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810797357.5A CN108875276B (zh) 2018-07-19 2018-07-19 一种数据驱动的闭环系统稳定性监测方法

Publications (2)

Publication Number Publication Date
CN108875276A CN108875276A (zh) 2018-11-23
CN108875276B true CN108875276B (zh) 2019-09-13

Family

ID=64303307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810797357.5A Active CN108875276B (zh) 2018-07-19 2018-07-19 一种数据驱动的闭环系统稳定性监测方法

Country Status (1)

Country Link
CN (1) CN108875276B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111674266B (zh) * 2020-06-10 2021-08-24 中国人民解放军国防科技大学 一种悬浮控制系统的状态监测方法、系统及相关装置
CN113341721B (zh) * 2021-06-17 2021-12-03 哈尔滨工业大学 面对含有未知扰动的工业系统的数据驱动鲁棒故障诊断方法
CN116068903B (zh) * 2023-04-06 2023-06-20 中国人民解放军国防科技大学 一种闭环系统鲁棒性能的实时优化方法、装置及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161054A (zh) * 2010-12-24 2011-08-24 燕山大学 基于影响矩阵自学习的板形闭环控制方法
CN104460318A (zh) * 2013-09-25 2015-03-25 北京化工大学 一种基于闭环过程信息约束的前向通道模型多目标优化辨识整定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7587253B2 (en) * 2006-08-01 2009-09-08 Warf (Wisconsin Alumni Research Foundation) Partial enumeration model predictive controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161054A (zh) * 2010-12-24 2011-08-24 燕山大学 基于影响矩阵自学习的板形闭环控制方法
CN104460318A (zh) * 2013-09-25 2015-03-25 北京化工大学 一种基于闭环过程信息约束的前向通道模型多目标优化辨识整定方法

Also Published As

Publication number Publication date
CN108875276A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN108875276B (zh) 一种数据驱动的闭环系统稳定性监测方法
CN108520080B (zh) 船舶柴油发电机故障预测与健康状态在线评估系统及方法
CN112202736A (zh) 基于统计学习和深度学习的工业控制系统通信网络异常分类方法
CN108803465B (zh) 一种基于闭环数据驱动的分布式即插即用故障监测方法
CN103116961B (zh) 一种基于电子鼻技术的密闭空间火灾探测报警系统及方法
US20170024649A1 (en) Anomaly detection system and method for industrial asset
Huang et al. Cloud-edge collaborative method for industrial process monitoring based on error-triggered dictionary learning
Fu et al. A re-optimized deep auto-encoder for gas turbine unsupervised anomaly detection
CN108535572B (zh) 基于基波零序特征的计量系统二次回路监测方法及装置
Xu et al. A novel method for the diagnosis of the incipient faults in analog circuits based on LDA and HMM
CN112947392B (zh) 一种基于鲁棒观测器的飞行控制系统执行器和传感器复合微小故障估计方法
CN108646573B (zh) 一种数据驱动的闭环系统稳定裕度确定方法
Zhang et al. A novel fault diagnosis method based on stacked LSTM
CN115510950A (zh) 基于时间卷积网络的飞行器遥测数据异常检测方法及系统
Stanton et al. Predictive maintenance analytics and implementation for aircraft: Challenges and opportunities
Yu et al. Low-rank singular value thresholding for recovering missing air quality data
Huo et al. Real-time implementation of plug-and-play process monitoring and control on an experimental three-tank system
Fang et al. Self-supervised intermittent fault detection for analog circuits guided by prior knowledge
Zhang et al. An Intelligent Fault Detection Framework for FW‐UAV Based on Hybrid Deep Domain Adaptation Networks and the Hampel Filter
CN115641549B (zh) 一种主推进柴油机组健康监测方法和系统
Kim et al. Terminal airspace anomaly detection using temporal logic learning
Gao et al. A dynamic fault tree based CBTC onboard ATP system safety analysis method
Rana et al. Residual saturation based Kalman filter for smart grid state estimation under cyber attacks
CN112464848A (zh) 一种基于密度空间聚类的信息流异常数据监测方法及装置
Sun et al. A data-driven fault detection toolbox based on MATLAB GUIDE

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant