CN108873254A - Optical imaging system - Google Patents

Optical imaging system Download PDF

Info

Publication number
CN108873254A
CN108873254A CN201810730916.0A CN201810730916A CN108873254A CN 108873254 A CN108873254 A CN 108873254A CN 201810730916 A CN201810730916 A CN 201810730916A CN 108873254 A CN108873254 A CN 108873254A
Authority
CN
China
Prior art keywords
lens
imaging system
optical imaging
object side
image side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810730916.0A
Other languages
Chinese (zh)
Other versions
CN108873254B (en
Inventor
高雪
李明
贺凌波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sunny Optics Co Ltd
Original Assignee
Zhejiang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sunny Optics Co Ltd filed Critical Zhejiang Sunny Optics Co Ltd
Priority to CN201810730916.0A priority Critical patent/CN108873254B/en
Publication of CN108873254A publication Critical patent/CN108873254A/en
Priority to PCT/CN2019/078954 priority patent/WO2020007068A1/en
Application granted granted Critical
Publication of CN108873254B publication Critical patent/CN108873254B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Abstract

This application discloses a kind of optical imaging system, which sequentially includes by object side to image side along optical axis:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens and the 7th lens.Wherein, the first lens and the 7th lens all have negative power;Second lens, the 4th lens, the 5th lens all have positive light coke or negative power;The third lens and the 6th lens all have positive light coke;The object side of first lens is concave surface;And the 5th lens image side surface radius of curvature R 10 and the 6th lens image side surface radius of curvature R 12 meet 4 < R10/R12 < 6.5.

Description

Optical imaging system
Technical field
This application involves a kind of optical imaging systems, more specifically, this application involves a kind of optics including seven lens Imaging system.
Background technique
With the improvement of material living standards, photography/video recording demand is gradually increased in people.Due to slr camera and Micro- one camera holds at high price, such as camera function attached by the portable electronic products such as smart phone becomes people's One of main selection.But the image quality of mobile phone auxiliary lens is unsatisfactory at present, especially wide-angle auxiliary lens, side The resolution ratio of edge visual field can not show a candle to the resolution ratio of central vision, and there is also the aberrations such as distortion, color difference, influence the imaging of camera lens Quality, so that camera lens is unable to satisfy the shooting demand of user.
Therefore, how to reduce the aberrations such as distortion, the color difference of mobile phone wide-angle auxiliary lens and improve image quality, be this field Technical staff's technical problem urgently to be resolved.
Summary of the invention
This application provides be applicable to portable electronic product, can at least solve or part solve it is in the prior art The optical imaging system of at least one above-mentioned disadvantage, for example, wide-angle lens.
On the one hand, this application provides such a optical imaging system, the system along optical axis by object side to image side according to Sequence includes:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens and the 7th lens.Wherein, First lens can have negative power, and object side can be concave surface;Second lens have positive light coke or negative power;Third is saturating Mirror can have positive light coke;4th lens have positive light coke or negative power;5th lens have positive light coke or negative light focus Degree;6th lens can have positive light coke;7th lens can have negative power.Wherein, the curvature of the image side surface of the 5th lens The radius of curvature R 12 of the image side surface of radius R10 and the 6th lens can meet 4 < R10/R12 < 6.5.
In one embodiment, the image side surface of the third lens can be convex surface;The effective focal length f3 and third of the third lens The radius of curvature R 6 of the image side surface of lens can meet -2 < f3/R6 < -1.
In one embodiment, the maximum angle of half field-of view HFOV of optical imaging system can meet 45 ° of 55 ° of < HFOV <.
In one embodiment, the curvature of the image side surface of the radius of curvature R 7 and the 4th lens of the object side of the 4th lens Radius R8 can meet 1 < R7/R8 < 2.
In one embodiment, total effective focal length f of the effective focal length f1 of the first lens and optical imaging system can expire - 7.5 < f1/f < -3.5 of foot.
In one embodiment, the song of the image side surface of the radius of curvature R 13 and the 7th lens of the object side of the 7th lens Rate radius R14 can meet 2 < R13/R14 < 3.
In one embodiment, the effective focal length f6 of the 6th lens and the effective focal length f7 of the 7th lens can meet -1.5 < f6/f7 < -0.5.
In one embodiment, the first lens on optical axis center thickness CT1 and the second lens on optical axis Heart thickness CT2 can meet 1 < CT1/CT2 < 2.
In one embodiment, spacing distance T23 on optical axis of the second lens and the third lens and the third lens in Center thickness CT3 on optical axis can meet 1 < T23/CT3 < 2.5.
In one embodiment, the object side of maximum the effective radius DT11 and the 7th lens of the object side of the first lens Maximum effective radius DT71 can meet 1 < DT11/DT71 < 1.5.
In one embodiment, the maximum effective radius DT12 of the image side surface of the first lens and optical imaging system at The half ImgH of effective pixel area diagonal line length in image planes can meet 0.6 < DT12/ImgH < 1.
In one embodiment, spacing distance T45, the 5th lens and of the 4th lens and the 5th lens on optical axis Spacing distance T56 and sixth lens and seventh lens spacing distance T67 on optical axis of six lens on optical axis can meet 0.3 < T45/ (T56+T67) < 1.8.
In one embodiment, the effective focal length f2 of the total effective focal length f and the second lens of optical imaging system can expire Foot | f/f2 | < 0.1.
On the other hand, present invention also provides such a optical imaging systems, and the system is along optical axis by object side to picture Side sequentially includes:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens and the 7th lens.Its In, the first lens can have negative power, and object side can be concave surface;Second lens have positive light coke or negative power;The Three lens can have positive light coke, and image side surface can be convex surface;4th lens have positive light coke or negative power;5th lens With positive light coke or negative power;6th lens can have positive light coke;7th lens can have negative power.Wherein, The spacing distance T23 and the third lens of two lens and the third lens on optical axis can expire in the center thickness CT3 on the optical axis 1 < T23/CT3 < 2.5 of foot.
Another aspect, present invention also provides such a optical imaging systems, and the system is along optical axis by object side to picture Side sequentially includes:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens and the 7th lens.Its In, the first lens can have negative power, and object side can be concave surface;Second lens have positive light coke or negative power;The Three lens can have positive light coke;4th lens have positive light coke or negative power;5th lens have positive light coke or negative Focal power;6th lens can have positive light coke;7th lens can have negative power.Wherein, the maximum of optical imaging system Angle of half field-of view HFOV can meet 45 ° of 55 ° of < HFOV <.
Another aspect, present invention also provides such a optical imaging systems, and the system is along optical axis by object side to picture Side sequentially includes:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens and the 7th lens.Its In, the first lens can have negative power, and object side can be concave surface;Second lens have positive light coke or negative power;The Three lens can have positive light coke;4th lens have positive light coke or negative power;5th lens have positive light coke or negative Focal power;6th lens can have positive light coke;7th lens can have negative power.Wherein, the object side of the 4th lens The radius of curvature R 8 of the image side surface of radius of curvature R 7 and the 4th lens can meet 1 < R7/R8 < 2.
Another aspect, present invention also provides such a optical imaging systems, and the system is along optical axis by object side to picture Side sequentially includes:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens and the 7th lens.Its In, the first lens can have negative power, and object side can be concave surface;Second lens have positive light coke or negative power;The Three lens can have positive light coke;4th lens have positive light coke or negative power;5th lens have positive light coke or negative Focal power;6th lens can have positive light coke;7th lens can have negative power.Wherein, the effective focal length of the first lens Total effective focal length f of f1 and optical imaging system can meet -7.5 < f1/f < -3.5.
Another aspect, present invention also provides such a optical imaging systems, and the system is along optical axis by object side to picture Side sequentially includes:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens and the 7th lens.Its In, the first lens can have negative power, and object side can be concave surface;Second lens have positive light coke or negative power;The Three lens can have positive light coke;4th lens have positive light coke or negative power;5th lens have positive light coke or negative Focal power;6th lens can have positive light coke;7th lens can have negative power.Wherein, the object side of the 7th lens The radius of curvature R 14 of the image side surface of radius of curvature R 13 and the 7th lens can meet 2 < R13/R14 < 3.
Another aspect, present invention also provides such a optical imaging systems, and the system is along optical axis by object side to picture Side sequentially includes:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens and the 7th lens.Its In, the first lens can have negative power, and object side can be concave surface;Second lens have positive light coke or negative power;The Three lens can have positive light coke;4th lens have positive light coke or negative power;5th lens have positive light coke or negative Focal power;6th lens can have positive light coke;7th lens can have negative power.Wherein, the effective focal length of the third lens The radius of curvature R 6 of f3 and the image side surface of the third lens can meet -2 < f3/R6 < -1.
Another aspect, present invention also provides such a optical imaging systems, and the system is along optical axis by object side to picture Side sequentially includes:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens and the 7th lens.Its In, the first lens can have negative power, and object side can be concave surface;Second lens have positive light coke or negative power;The Three lens can have positive light coke;4th lens have positive light coke or negative power;5th lens have positive light coke or negative Focal power;6th lens can have positive light coke;7th lens can have negative power.Wherein, the object side of the first lens The maximum effective radius DT71 of the object side of maximum effective radius DT11 and the 7th lens can meet 1 < DT11/DT71 < 1.5.
Another aspect, present invention also provides such a optical imaging systems, and the system is along optical axis by object side to picture Side sequentially includes:First lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens and the 7th lens.Its In, the first lens can have negative power, and object side can be concave surface;Second lens have positive light coke or negative power;The Three lens can have positive light coke;4th lens have positive light coke or negative power;5th lens have positive light coke or negative Focal power;6th lens can have positive light coke;7th lens can have negative power.Wherein, the image side surface of the first lens The half ImgH of effective pixel area diagonal line length on the imaging surface of maximum effective radius DT12 and optical imaging system can expire 0.6 < DT12/ImgH < 1 of foot.
The application uses multi-disc (for example, seven) lens, by each power of lens of reasonable distribution, face type, each Spacing etc. on axis between the center thickness of mirror and each lens, so that the optical imaging system has wide-angle, superior image product At least one beneficial effect such as matter, hyposensitivity, miniaturization.
Detailed description of the invention
In conjunction with attached drawing, by the detailed description of following non-limiting embodiment, other features, purpose and excellent Point will be apparent.In the accompanying drawings:
Fig. 1 shows the structural schematic diagram of the optical imaging system according to the embodiment of the present application 1;
Fig. 2A to Fig. 2 D respectively illustrates chromatic curve on the axis of the optical imaging system of embodiment 1, astigmatism curve, distortion Curve and ratio chromatism, curve;
Fig. 3 shows the structural schematic diagram of the optical imaging system according to the embodiment of the present application 2;
Fig. 4 A to Fig. 4 D respectively illustrates chromatic curve on the axis of the optical imaging system of embodiment 2, astigmatism curve, distortion Curve and ratio chromatism, curve;
Fig. 5 shows the structural schematic diagram of the optical imaging system according to the embodiment of the present application 3;
Fig. 6 A to Fig. 6 D respectively illustrates chromatic curve on the axis of the optical imaging system of embodiment 3, astigmatism curve, distortion Curve and ratio chromatism, curve;
Fig. 7 shows the structural schematic diagram of the optical imaging system according to the embodiment of the present application 4;
Fig. 8 A to Fig. 8 D respectively illustrates chromatic curve on the axis of the optical imaging system of embodiment 4, astigmatism curve, distortion Curve and ratio chromatism, curve;
Fig. 9 shows the structural schematic diagram of the optical imaging system according to the embodiment of the present application 5;
Figure 10 A to Figure 10 D respectively illustrates chromatic curve on the axis of the optical imaging system of embodiment 5, astigmatism curve, abnormal Varied curve and ratio chromatism, curve;
Figure 11 shows the structural schematic diagram of the optical imaging system according to the embodiment of the present application 6;
Figure 12 A to Figure 12 D respectively illustrates chromatic curve on the axis of the optical imaging system of embodiment 6, astigmatism curve, abnormal Varied curve and ratio chromatism, curve;
Figure 13 shows the structural schematic diagram of the optical imaging system according to the embodiment of the present application 7;
Figure 14 A to Figure 14 D respectively illustrates chromatic curve on the axis of the optical imaging system of embodiment 7, astigmatism curve, abnormal Varied curve and ratio chromatism, curve;
Figure 15 shows the structural schematic diagram of the optical imaging system according to the embodiment of the present application 8;
Figure 16 A to Figure 16 D respectively illustrates chromatic curve on the axis of the optical imaging system of embodiment 8, astigmatism curve, abnormal Varied curve and ratio chromatism, curve;
Figure 17 shows the structural schematic diagrams according to the optical imaging system of the embodiment of the present application 9;
Figure 18 A to Figure 18 D respectively illustrates chromatic curve on the axis of the optical imaging system of embodiment 9, astigmatism curve, abnormal Varied curve and ratio chromatism, curve.
Specific embodiment
Various aspects of the reference attached drawing to the application are made more detailed description by the application in order to better understand.It answers Understand, the only description to the illustrative embodiments of the application is described in detail in these, rather than limits the application in any way Range.In the specification, the identical element of identical reference numbers.Stating "and/or" includes associated institute Any and all combinations of one or more of list of items.
It should be noted that in the present specification, first, second, third, etc. statement is only used for a feature and another spy Sign distinguishes, without indicating any restrictions to feature.Therefore, without departing substantially from teachings of the present application, hereinafter The first lens discussed are also known as the second lens or the third lens.
In the accompanying drawings, for ease of description, thickness, the size and shape of lens are slightly exaggerated.Specifically, attached drawing Shown in spherical surface or aspherical shape be illustrated by way of example.That is, spherical surface or aspherical shape are not limited to attached drawing Shown in spherical surface or aspherical shape.Attached drawing is merely illustrative and and non-critical drawn to scale.
Herein, near axis area refers to the region near optical axis.If lens surface is convex surface and does not define convex surface position When setting, then it represents that the lens surface is convex surface near axis area is less than;If lens surface is concave surface and does not define the concave surface position When, then it represents that the lens surface is concave surface near axis area is less than.Each lens are known as the object of the lens close to the surface of object side Side, each lens are known as the image side surface of the lens close to the surface of image side.
It will also be appreciated that term " comprising ", " including ", " having ", "comprising" and/or " including ", when in this theory It indicates there is stated feature, element and/or component when using in bright book, but does not preclude the presence or addition of one or more Other feature, component, assembly unit and/or their combination.In addition, ought the statement of such as at least one of " ... " appear in institute When after the list of column feature, entire listed feature is modified, rather than modifies the individual component in list.In addition, when describing this When the embodiment of application, " one or more embodiments of the application " are indicated using "available".Also, term " illustrative " It is intended to refer to example or illustration.
Unless otherwise defined, otherwise all terms (including technical terms and scientific words) used herein all have with The application one skilled in the art's is generally understood identical meaning.It will also be appreciated that term (such as in everyday words Term defined in allusion quotation) it should be interpreted as having and their consistent meanings of meaning in the context of the relevant technologies, and It will not be explained with idealization or excessively formal sense, unless clear herein so limit.
It should be noted that in the absence of conflict, the features in the embodiments and the embodiments of the present application can phase Mutually combination.The application is described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
The feature of the application, principle and other aspects are described in detail below.
Optical imaging system according to the application illustrative embodiments may include such as seven lens with focal power, That is, the first lens, the second lens, the third lens, the 4th lens, the 5th lens, the 6th lens and the 7th lens.This seven lens Along optical axis by object side to image side sequential, can have airspace between each adjacent lens.
In the exemplary embodiment, the first lens can have negative power, and object side can be concave surface;Second lens tool There are positive light coke or negative power;The third lens can have positive light coke;4th lens have positive light coke or negative power;The Five lens have positive light coke or negative power;6th lens can have positive light coke;7th lens can have negative power.
In the exemplary embodiment, the image side surface of the third lens can be convex surface.
In the exemplary embodiment, the object side of the 4th lens can be convex surface, and image side surface can be concave surface.
In the exemplary embodiment, the image side surface of the 5th lens can be convex surface.
In the exemplary embodiment, the image side surface of the 6th lens can be convex surface.
In the exemplary embodiment, the object side of the 7th lens can be convex surface, and image side surface can be concave surface.
In the exemplary embodiment, the optical imaging system of the application can meet -7.5 < -3.5 < f1/f of conditional, Wherein, f1 is the effective focal length of the first lens, and f is total effective focal length of optical imaging system.More specifically, f and f1 are further <-3.5-5.5≤f1/f can be met, for example,-5.07≤f1/f≤- 3.85.The rationally effective focal length of the first lens of setting, makes It meets negative power, can have the function of adjustment ray position, while can reduce the sensibility of optical system.
In the exemplary embodiment, the optical imaging system of the application can meet -2 < -1 < f3/R6 of conditional, In, f3 is the effective focal length of the third lens, and R6 is the radius of curvature of the image side surface of the third lens.More specifically, f3 and R6 is into one Step can meet -1.83≤f3/R6≤- 1.37.The rationally picture of the effective focal length of control optical system the third lens and the third lens The radius of curvature of side can relatively easily balance aberration, optical-modulation transfer function (MTF) performance of lifting system.
In the exemplary embodiment, the optical imaging system of the application can meet 45 ° of 55 ° of < HFOV < of conditional, In, HFOV is the maximum angle of half field-of view of optical imaging system.More specifically, HFOV can further meet 45.1 °≤HFOV≤ 47.5°.The rationally maximum field of view angle of control optical imaging system, can effectively ensure that the wide-angle performance of optical system.
In the exemplary embodiment, the optical imaging system of the application can meet 1 < R7/R8 < 2 of conditional, wherein R7 is the radius of curvature of the object side of the 4th lens, and R8 is the radius of curvature of the image side surface of the 4th lens.More specifically, R7 and R8 1.04≤R7/R8≤1.79 can further be met.The rationally radius of curvature and the of the 4th lens object side of control optical system The ratio of the radius of curvature of four lens image side surfaces can be effectively improved color difference and the distortion of optical system.
In the exemplary embodiment, the optical imaging system of the application can meet 4 < R10/R12 < 6.5 of conditional, In, R10 is the radius of curvature of the image side surface of the 5th lens, and R12 is the radius of curvature of the image side surface of the 6th lens.More specifically, R10 and R12 can further meet 4.28≤R10/R12≤6.24.The rationally radius of curvature and the of the 5th lens image side surface of setting The radius of curvature of six lens image side surfaces, can make optical system possess bigger aperture, improve the overall brightness of imaging.
In the exemplary embodiment, the optical imaging system of the application can meet 2 < R13/R14 < 3 of conditional, In, R13 is the radius of curvature of the object side of the 7th lens, and R14 is the radius of curvature of the image side surface of the 7th lens.More specifically, R13 and R14 can further meet 2.35≤R13/R14≤2.73.The 7th lens object side of reasonable distribution and the 7th lens image side The radius of curvature in face can control the light tendency of outer visual field, enable the chief ray angle of optical system preferably matching chip.
In the exemplary embodiment, the optical imaging system of the application can meet -1.5 < -0.5 < f6/f7 of conditional, Wherein, f6 is the effective focal length of the 6th lens, and f7 is the effective focal length of the 7th lens.More specifically, f6 and f7 can further expire Foot -1.2≤f6/f7≤- 0.8, for example, -1.05≤f6/f7≤- 0.98.The rationally effective focal length and the 7th of the 6th lens of setting The ratio of the effective focal length of lens has so that the 7th lens have negative power when the 6th lens are with positive light coke Conducive to the incident ray of adjustment lens and the angle of emergent ray, and it can effectively correct the color difference of optical system.
In the exemplary embodiment, the optical imaging system of the application can meet 1 < CT1/CT2 < 2 of conditional, In, CT1 is the first lens in the center thickness on optical axis, and CT2 is the second lens in the center thickness on optical axis.More specifically, CT1 and CT2 can further meet 1.3≤CT1/CT2≤1.9, such as 1.48≤CT1/CT2≤1.86.Rationally control first is thoroughly Mirror on optical axis center thickness and the second lens in the ratio of the center thickness on optical axis, can effectively correct the axis of optical system Upper color difference and the image quality for effectively improving optical system.
In the exemplary embodiment, the optical imaging system of the application can meet 1 < T23/CT3 < 2.5 of conditional, In, T23 is the spacing distance of the second lens and the third lens on optical axis, and CT3 is the third lens in the center thickness on optical axis. More specifically, T23 and CT3 can further meet 1 < T23/CT3 < 2.2, for example, 1.10≤T23/CT3≤2.00.Rationally control The spacing distance and the third lens of the second lens and the third lens on optical axis are made in the ratio of the center thickness on optical axis, can be had Effect shortens the front end size of optical system and guarantees there is good processing gap between optical lens.
In the exemplary embodiment, the optical imaging system of the application can meet 1 < DT11/DT71 < 1.5 of conditional, Wherein, DT11 is the maximum effective radius of the object side of the first lens, and DT71 is the maximum effectively half of the object side of the 7th lens Diameter.More specifically, DT11 and DT71 can further meet 1.25≤DT11/DT71≤1.39.Rationally the first lens object side of control The ratio of the maximum effective radius in face and the maximum effective radius of the 7th lens object side, can effectively reduce the incidence of rim ray Angle, and guarantee the good tolerance characteristic of optical system.
In the exemplary embodiment, the optical imaging system of the application can meet 0.6 < DT12/ImgH < 1 of conditional, Wherein, DT12 is the maximum effective radius of the image side surface of the first lens, and ImgH is effective pixel area diagonal line length on imaging surface Half.More specifically, DT12 and ImgH can further meet 0.66≤DT12/ImgH≤0.76.Rationally the first lens of control The ratio of the half of effective pixel area diagonal line length, can effectively ensure that optics on the maximum effective radius and imaging surface of image side surface The front end of system minimizes, and optical system is made to meet the architectural characteristic of small size.
In the exemplary embodiment, the optical imaging system of the application can meet 0.3 < T45/ (T56+T67) of conditional < 1.8, wherein T45 is the spacing distance of the 4th lens and the 5th lens on optical axis, and T56 is the 5th lens and the 6th lens Spacing distance on optical axis, T67 are the spacing distance of the 6th lens and the 7th lens on optical axis.More specifically, T45, T56 Can further it meet with T67 0.31≤T45/ (T56+T67)≤1.78.Meet conditional 0.3 < T45/ (T56+T67) < 1.8, It can effectively ensure that camera lens minimizes.By the center thickness of each lens of reasonable layout, deflection of light can be made to tend to mitigate, reduced quick Perception, while astigmatism, distortion and the color difference of system can be reduced.
In the exemplary embodiment, the optical imaging system of the application can meet conditional | f/f2 | < 0.1, wherein f For total effective focal length of optical imaging system, f2 is the effective focal length of the second lens.More specifically, f and f2 can further meet 0.001≤|f/f2|≤0.077.The rationally ratio between total effective focal length of setting optical system and the effective focal length of the second lens Value, can active balance optical system color difference and further increase the image quality of optical system.
In the exemplary embodiment, above-mentioned optical imaging system may also include at least one diaphragm, with improving optical at As the image quality of system.Optionally, diaphragm may be provided between the second lens and the third lens.
Optionally, above-mentioned optical imaging system may also include optical filter for correcting color error ratio and/or for protecting The protection glass of photosensitive element on imaging surface.
Multi-disc eyeglass, such as described above seven can be used according to the optical imaging system of the above embodiment of the application Piece.By each power of lens of reasonable distribution, face type, each lens center thickness and each lens between axis on spacing Deng the volume that can effectively reduce camera lens, the machinability for reducing the susceptibility of camera lens and improving camera lens, so that optical imagery system System, which is more advantageous to, to be produced and processed and is applicable to portable electronic product.Optical imaging system through the above configuration can also have There are the beneficial effects such as wide-angle, superior image quality and hyposensitivity.
In presently filed embodiment, at least one of mirror surface of each lens is aspherical mirror.Non-spherical lens The characteristics of be:From lens centre to lens perimeter, curvature is consecutive variations.It is constant with having from lens centre to lens perimeter The spherical lens of curvature is different, and non-spherical lens has more preferably radius of curvature characteristic, and there is improvement to distort aberration and improve picture The advantages of dissipating aberration.After non-spherical lens, the aberration occurred when imaging can be eliminated as much as possible, so as to improve Image quality.
However, it will be understood by those of skill in the art that without departing from this application claims technical solution the case where Under, the lens numbers for constituting optical imaging system can be changed, to obtain each result and advantage described in this specification.Example Such as, although being described by taking seven lens as an example in embodiments, which is not limited to include seven Lens.If desired, the optical imaging system may also include the lens of other quantity.
The specific embodiment for being applicable to the optical imaging system of above embodiment is further described with reference to the accompanying drawings.
Embodiment 1
Referring to Fig. 1 to Fig. 2 D description according to the optical imaging system of the embodiment of the present application 1.Fig. 1 is shown according to this Apply for the structural schematic diagram of the optical imaging system of embodiment 1.
As shown in Figure 1, according to the optical imaging system of the application illustrative embodiments along optical axis by object side to image side according to Sequence includes:First lens E1, the second lens E2, diaphragm STO, the third lens E3, the 4th lens E4, the 5th lens E5, the 6th are thoroughly Mirror E6, the 7th lens E7, optical filter E8 and imaging surface S17.
First lens E1 has negative power, and object side S1 is concave surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, object side S3 are convex surface, and image side surface S4 is concave surface.The third lens E3 has positive light coke, and object side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has negative power, and object side S7 is convex surface, and image side surface S8 is concave surface.The Five lens E5 have positive light coke, and object side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has positive light coke, Its object side S11 is concave surface, and image side surface S12 is convex surface.7th lens E7 has negative power, and object side S13 is convex surface, as Side S14 is concave surface.Optical filter E8 has object side S15 and image side surface S16.Light from object sequentially passes through each surface S1 extremely S16 is simultaneously ultimately imaged on imaging surface S17.
Table 1 show the surface types of each lens of the optical imaging system of embodiment 1, radius of curvature, thickness, material and Circular cone coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 1
As shown in Table 1, the object side of any one lens of the first lens E1 into the 7th lens E7 and image side surface are It is aspherical.In the present embodiment, the face type x of each non-spherical lens is available but is not limited to following aspherical formula and is defined:
Wherein, x be it is aspherical along optical axis direction when being highly the position of h, away from aspheric vertex of surface apart from rise;C is Aspherical paraxial curvature, c=1/R (that is, inverse that paraxial curvature c is upper 1 mean curvature radius R of table);K be circular cone coefficient ( It has been provided in table 1);Ai is the correction factor of aspherical i-th-th rank.The following table 2 give can be used for it is each aspherical in embodiment 1 The high-order coefficient A of mirror surface S1-S144、A6、A8、A10、A12、A14、A16、A18And A20
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.2960E-01 -1.7947E-01 1.1360E-01 -2.3070E-02 -5.2950E-02 7.0194E-02 -3.9840E-02 1.0978E-02 -1.1800E-03
S2 3.3026E-02 -9.7390E-02 1.5272E-01 -2.6380E-01 4.1970E-01 -4.1660E-01 2.3284E-01 -6.8210E-02 8.2480E-03
S3 -4.8710E-02 -3.7190E-02 1.0111E+00 -3.3983E+00 6.1236E+00 -6.6966E+00 4.3802E+00 -1.5684E+00 2.3632E-01
S4 2.7048E-01 6.6653E-02 -6.5651E-01 6.1642E+00 -2.6123E+01 6.0398E+01 -8.0573E+01 5.7478E+01 -1.6853E+01
S5 3.1061E-02 5.2372E-01 -1.9795E+01 2.5649E+02 -2.1656E+03 1.1599E+04 -3.8243E+04 7.0578E+04 -5.5866E+04
S6 -8.4604E-01 9.5382E+00 -8.6952E+01 5.7234E+02 -2.5863E+03 7.7032E+03 -1.4408E+04 1.5341E+04 -7.1044E+03
S7 -7.8681E-01 5.4220E+00 -4.3860E+01 2.4485E+02 -9.0759E+02 2.1784E+03 -3.2309E+03 2.6980E+03 -9.7936E+02
S8 -3.0595E-01 -4.6137E-01 4.2092E+00 -2.0181E+01 6.8262E+01 -1.5475E+02 2.1977E+02 -1.7294E+02 5.6549E+01
S9 2.0432E-01 -1.1039E-01 -1.1108E+00 5.7354E+00 -1.4081E+01 1.9874E+01 -1.6458E+01 7.4709E+00 -1.4395E+00
S10 3.5420E-03 3.9306E-02 -2.6497E-01 3.2706E-01 8.6074E-01 -2.8954E+00 3.3950E+00 -1.8715E+00 4.0985E-01
S11 1.5254E-01 -1.0186E+00 3.5464E+00 -7.5498E+00 9.9668E+00 -8.1444E+00 3.9988E+00 -1.0455E+00 9.1429E-02
S12 3.7501E-01 -7.0468E-01 1.3978E+00 -3.2172E-01 -3.9175E+00 7.7154E+00 -6.6893E+00 2.8653E+00 -4.9495E-01
S13 -1.0398E+00 1.0416E+00 -8.6910E-02 -1.6958E+00 2.1577E+00 -8.7772E-01 -2.4977E-01 3.2850E-01 -7.9380E-02
S14 -6.1958E-01 1.1644E+00 -1.5708E+00 1.4537E+00 -9.2386E-01 3.9586E-01 -1.0910E-01 1.7417E-02 -1.2200E-03
Table 2
Table 3 provides total effective focal length f, the optics of the effective focal length f1 to f7 of each lens in embodiment 1, optical imaging system Total length TTL (that is, distance from the object side S1 of the first lens E1 to imaging surface S17 on optical axis) and maximum angle of half field-of view HFOV。
f1(mm) -8.06 f6(mm) 2.00
f2(mm) -30.92 f7(mm) -1.92
f3(mm) 2.19 f(mm) 1.90
f4(mm) -9.05 TTL(mm) 4.94
f5(mm) 12.90 HFOV(°) 47.5
Table 3
Optical imaging system in embodiment 1 meets:
F1/f=-4.24, wherein f1 is the effective focal length of the first lens E1, and f is total effective coke of optical imaging system Away from;
F3/R6=-1.42, wherein f3 is the effective focal length of the third lens E3, and R6 is the image side surface S6's of the third lens E3 Radius of curvature;
HFOV=47.5 °, wherein HFOV is the maximum angle of half field-of view of optical imaging system;
R7/R8=1.58, wherein R7 is the radius of curvature of the object side S7 of the 4th lens E4, and R8 is the 4th lens E4's The radius of curvature of image side surface S8;
R10/R12=5.08, wherein R10 is the radius of curvature of the image side surface S10 of the 5th lens E5, and R12 is the 6th lens The radius of curvature of the image side surface S12 of E6;
R13/R14=2.35, wherein R13 is the radius of curvature of the object side S13 of the 7th lens E7, and R14 is the 7th lens The radius of curvature of the image side surface S14 of E7;
F6/f7=-1.04, wherein f6 is the effective focal length of the 6th lens E6, and f7 is the effective focal length of the 7th lens E7;
CT1/CT2=1.48, wherein CT1 is the first lens E1 in the center thickness on optical axis, and CT2 is the second lens E2 In the center thickness on optical axis;
T23/CT3=1.36, wherein T23 is spacing distance of the second lens E2 and the third lens E3 on optical axis, CT3 It is the third lens E3 in the center thickness on optical axis;
DT11/DT71=1.25, wherein DT11 is the maximum effective radius of the object side S1 of the first lens E1, and DT71 is The maximum effective radius of the object side S13 of 7th lens E7;
DT12/ImgH=0.66, wherein DT12 is the maximum effective radius of the image side surface S2 of the first lens E1, and ImgH is The half of effective pixel area diagonal line length on imaging surface;
T45/ (T56+T67)=1.04, wherein T45 is interval distance of the 4th lens E4 and the 5th lens E5 on optical axis From T56 is spacing distance of the 5th lens E5 and the 6th lens E6 on optical axis, and T67 is the 6th lens E6 and the 7th lens E7 Spacing distance on optical axis;
| f/f2 |=0.061, wherein f is total effective focal length of optical imaging system, and f2 is effective coke of the second lens E2 Away from.
Fig. 2A shows chromatic curve on the axis of the optical imaging system of embodiment 1, indicates the light warp of different wave length Deviateed by the converging focal point after camera lens.Fig. 2 B shows the astigmatism curve of the optical imaging system of embodiment 1, indicates meridian picture Face bending and sagittal image surface bending.Fig. 2 C shows the distortion curve of the optical imaging system of embodiment 1, indicates different visual fields Distortion sizes values corresponding to angle.Fig. 2 D shows the ratio chromatism, curve of the optical imaging system of embodiment 1, indicates light Via the deviation of the different image heights after camera lens on imaging surface.A to Fig. 2 D is it is found that optics given by embodiment 1 according to fig. 2 Imaging system can be realized good image quality.
Embodiment 2
Referring to Fig. 3 to Fig. 4 D description according to the optical imaging system of the embodiment of the present application 2.In the present embodiment and following In embodiment, for brevity, by clipped description similar to Example 1.Fig. 3 is shown according to the embodiment of the present application 2 Optical imaging system structural schematic diagram.
As shown in figure 3, according to the optical imaging system of the application illustrative embodiments along optical axis by object side to image side according to Sequence includes:First lens E1, the second lens E2, diaphragm STO, the third lens E3, the 4th lens E4, the 5th lens E5, the 6th are thoroughly Mirror E6, the 7th lens E7, optical filter E8 and imaging surface S17.
First lens E1 has negative power, and object side S1 is concave surface, and image side surface S2 is convex surface.Second lens E2 has Negative power, object side S3 are convex surface, and image side surface S4 is concave surface.The third lens E3 has positive light coke, and object side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has negative power, and object side S7 is convex surface, and image side surface S8 is concave surface.The Five lens E5 have positive light coke, and object side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has positive light coke, Its object side S11 is concave surface, and image side surface S12 is convex surface.7th lens E7 has negative power, and object side S13 is convex surface, as Side S14 is concave surface.Optical filter E8 has object side S15 and image side surface S16.Light from object sequentially passes through each surface S1 extremely S16 is simultaneously ultimately imaged on imaging surface S17.
Table 4 show the surface types of each lens of the optical imaging system of embodiment 2, radius of curvature, thickness, material and Circular cone coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 4
As shown in Table 4, in example 2, the object side of any one lens of the first lens E1 into the 7th lens E7 It is aspherical with image side surface.Table 5 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 2, wherein each non- Spherical surface type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.3044E-01 -1.8421E-01 1.2383E-01 -3.9620E-02 -3.2120E-02 5.1227E-02 -2.9070E-02 7.7160E-03 -7.8000E-04
S2 3.2244E-02 -9.2290E-02 1.3806E-01 -2.2914E-01 3.5812E-01 -3.4950E-01 1.9140E-01 -5.4820E-02 6.4720E-03
S3 -5.5920E-02 -5.4050E-02 1.2765E+00 -4.3855E+00 8.0893E+00 -8.9984E+00 5.9566E+00 -2.1538E+00 3.2763E-01
S4 2.6857E-01 -6.2020E-02 5.5948E-01 7.5271E-01 -1.2143E+01 3.8994E+01 -6.1361E+01 4.7910E+01 -1.4728E+01
S5 -3.5400E-03 2.2410E+00 -6.1005E+01 8.3316E+02 -7.1055E+03 3.7914E+04 -1.2330E+05 2.2326E+05 -1.7259E+05
S6 -9.1336E-01 1.0497E+01 -8.9787E+01 5.3815E+02 -2.1823E+03 5.7158E+03 -9.0832E+03 7.7531E+03 -2.5972E+03
S7 -8.8952E-01 7.1529E+00 -5.9505E+01 3.3977E+02 -1.3008E+03 3.2574E+03 -5.0893E+03 4.5097E+03 -1.7398E+03
S8 -3.3858E-01 -2.5312E-01 3.8643E+00 -2.2263E+01 8.2396E+01 -1.9467E+02 2.8170E+02 -2.2379E+02 7.3703E+01
S9 1.8386E-01 -1.6820E-02 -1.5798E+00 7.6330E+00 -1.9097E+01 2.7855E+01 -2.3782E+01 1.1033E+01 -2.1490E+00
S10 3.5420E-03 3.9306E-02 -2.6497E-01 3.2706E-01 8.6074E-01 -2.8954E+00 3.3950E+00 -1.8715E+00 4.0985E-01
S11 1.5872E-01 -1.0491E+00 3.8757E+00 -9.0092E+00 1.3408E+01 -1.3099E+01 8.4428E+00 -3.3379E+00 6.0953E-01
S12 3.9772E-01 -8.1546E-01 1.8907E+00 -1.7710E+00 -1.3152E+00 4.7866E+00 -4.6595E+00 2.0767E+00 -3.6437E-01
S13 -1.0355E+00 1.0128E+00 5.9390E-02 -2.1654E+00 3.0167E+00 -1.8127E+00 3.5806E-01 1.1068E-01 -4.6420E-02
S14 -6.2488E-01 1.1819E+00 -1.6109E+00 1.5080E+00 -9.6949E-01 4.1985E-01 -1.1678E-01 1.8780E-02 -1.3200E-03
Table 5
Table 6 provides total effective focal length f, the optics of the effective focal length f1 to f7 of each lens in embodiment 2, optical imaging system Total length TTL and maximum angle of half field-of view HFOV.
f1(mm) -8.15 f6(mm) 1.96
f2(mm) -33.01 f7(mm) -1.90
f3(mm) 2.18 f(mm) 1.89
f4(mm) -9.08 TTL(mm) 4.95
f5(mm) 13.09 HFOV(°) 47.5
Table 6
Fig. 4 A shows chromatic curve on the axis of the optical imaging system of embodiment 2, indicates the light warp of different wave length Deviateed by the converging focal point after camera lens.Fig. 4 B shows the astigmatism curve of the optical imaging system of embodiment 2, indicates meridian picture Face bending and sagittal image surface bending.Fig. 4 C shows the distortion curve of the optical imaging system of embodiment 2, indicates different visual fields The corresponding distortion sizes values in angle.Fig. 4 D shows the ratio chromatism, curve of the optical imaging system of embodiment 2, indicates light warp By the deviation of the different image heights after camera lens on imaging surface.According to Fig. 4 A to Fig. 4 D it is found that optics given by embodiment 2 at As system can be realized good image quality.
Embodiment 3
The optical imaging system according to the embodiment of the present application 3 is described referring to Fig. 5 to Fig. 6 D.Fig. 5 shows basis The structural schematic diagram of the optical imaging system of the embodiment of the present application 3.
As shown in figure 5, according to the optical imaging system of the application illustrative embodiments along optical axis by object side to image side according to Sequence includes:First lens E1, the second lens E2, diaphragm STO, the third lens E3, the 4th lens E4, the 5th lens E5, the 6th are thoroughly Mirror E6, the 7th lens E7, optical filter E8 and imaging surface S17.
First lens E1 has negative power, and object side S1 is concave surface, and image side surface S2 is convex surface.Second lens E2 has Negative power, object side S3 are concave surface, and image side surface S4 is concave surface.The third lens E3 has positive light coke, and object side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has negative power, and object side S7 is convex surface, and image side surface S8 is concave surface.The Five lens E5 have positive light coke, and object side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has positive light coke, Its object side S11 is concave surface, and image side surface S12 is convex surface.7th lens E7 has negative power, and object side S13 is convex surface, as Side S14 is concave surface.Optical filter E8 has object side S15 and image side surface S16.Light from object sequentially passes through each surface S1 extremely S16 is simultaneously ultimately imaged on imaging surface S17.
Table 7 show the surface types of each lens of the optical imaging system of embodiment 3, radius of curvature, thickness, material and Circular cone coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 7
As shown in Table 7, in embodiment 3, the object side of any one lens of the first lens E1 into the 7th lens E7 It is aspherical with image side surface.Table 8 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 3, wherein each non- Spherical surface type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.4027E-01 -2.3297E-01 2.2663E-01 -1.8042E-01 1.0359E-01 -4.0810E-02 1.1223E-02 -2.1100E-03 2.0600E-04
S2 4.7045E-02 -1.4604E-01 2.3363E-01 -2.7878E-01 2.5909E-01 -1.6761E-01 6.7871E-02 -1.5400E-02 1.5080E-03
S3 -1.2232E-01 3.2414E-01 1.4441E-01 -1.9673E+00 4.2673E+00 -4.8183E+00 3.0821E+00 -1.0571E+00 1.5182E-01
S4 1.9746E-01 3.6071E-01 -7.8605E-01 3.7499E+00 -1.7256E+01 4.5033E+01 -6.4728E+01 4.7353E+01 -1.3692E+01
S5 5.8200E-03 2.1597E+00 -6.1452E+01 8.6704E+02 -7.6382E+03 4.2020E+04 -1.4051E+05 2.6082E+05 -2.0605E+05
S6 -9.3382E-01 1.1594E+01 -1.0557E+02 6.6277E+02 -2.7613E+03 7.2325E+03 -1.0945E+04 7.9251E+03 -1.4127E+03
S7 -9.2838E-01 8.0349E+00 -7.1293E+01 4.3459E+02 -1.7740E+03 4.7186E+03 -7.7626E+03 7.1281E+03 -2.7769E+03
S8 -3.7942E-01 -4.6970E-02 3.2427E+00 -2.2226E+01 9.2972E+01 -2.4970E+02 4.2204E+02 -4.0379E+02 1.6575E+02
S9 1.6074E-01 7.0818E-02 -2.1857E+00 1.1336E+01 -3.2418E+01 5.5104E+01 -5.6295E+01 3.2779E+01 -8.6010E+00
S10 3.5420E-03 3.9306E-02 -2.6497E-01 3.2706E-01 8.6074E-01 -2.8954E+00 3.3950E+00 -1.8715E+00 4.0985E-01
S11 1.7349E-01 -1.1272E+00 4.9609E+00 -1.4910E+01 3.0464E+01 -4.3148E+01 4.0912E+01 -2.2933E+01 5.6149E+00
S12 4.5212E-01 -1.2122E+00 4.5136E+00 -1.1894E+01 2.2023E+01 -2.8445E+01 2.3908E+01 -1.1444E+01 2.3300E+00
S13 -1.0291E+00 8.9310E-01 8.5221E-01 -5.1287E+00 9.2390E+00 -9.4188E+00 5.7253E+00 -1.9114E+00 2.6798E-01
S14 -6.3449E-01 1.2146E+00 -1.7185E+00 1.6941E+00 -1.1528E+00 5.2733E-01 -1.5421E-01 2.5963E-02 -1.9100E-03
Table 8
Table 9 provides total effective focal length f, the optics of the effective focal length f1 to f7 of each lens in embodiment 3, optical imaging system Total length TTL and maximum angle of half field-of view HFOV.
Table 9
Fig. 6 A shows chromatic curve on the axis of the optical imaging system of embodiment 3, indicates the light warp of different wave length Deviateed by the converging focal point after camera lens.Fig. 6 B shows the astigmatism curve of the optical imaging system of embodiment 3, indicates meridian picture Face bending and sagittal image surface bending.Fig. 6 C shows the distortion curve of the optical imaging system of embodiment 3, indicates different visual fields Distortion sizes values corresponding to angle.Fig. 6 D shows the ratio chromatism, curve of the optical imaging system of embodiment 3, indicates light Via the deviation of the different image heights after camera lens on imaging surface.According to Fig. 6 A to Fig. 6 D it is found that optics given by embodiment 3 Imaging system can be realized good image quality.
Embodiment 4
The optical imaging system according to the embodiment of the present application 4 is described referring to Fig. 7 to Fig. 8 D.Fig. 7 shows basis The structural schematic diagram of the optical imaging system of the embodiment of the present application 4.
As shown in fig. 7, according to the optical imaging system of the application illustrative embodiments along optical axis by object side to image side according to Sequence includes:First lens E1, the second lens E2, diaphragm STO, the third lens E3, the 4th lens E4, the 5th lens E5, the 6th are thoroughly Mirror E6, the 7th lens E7, optical filter E8 and imaging surface S17.
First lens E1 has negative power, and object side S1 is concave surface, and image side surface S2 is convex surface.Second lens E2 has Negative power, object side S3 are concave surface, and image side surface S4 is convex surface.The third lens E3 has positive light coke, and object side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has negative power, and object side S7 is convex surface, and image side surface S8 is concave surface.The Five lens E5 have positive light coke, and object side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has positive light coke, Its object side S11 is concave surface, and image side surface S12 is convex surface.7th lens E7 has negative power, and object side S13 is convex surface, as Side S14 is concave surface.Optical filter E8 has object side S15 and image side surface S16.Light from object sequentially passes through each surface S1 extremely S16 is simultaneously ultimately imaged on imaging surface S17.
Table 10 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging system of embodiment 4 And circular cone coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 10
As shown in Table 10, in example 4, the object side of any one lens of the first lens E1 into the 7th lens E7 It is aspherical with image side surface.Table 11 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 4, wherein each Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Table 11
Table 12 provides total effective focal length f, the light of the effective focal length f1 to f7 of each lens in embodiment 4, optical imaging system Learn total length TTL and maximum angle of half field-of view HFOV.
f1(mm) -8.39 f6(mm) 1.91
f2(mm) -65.93 f7(mm) -1.87
f3(mm) 2.16 f(mm) 1.89
f4(mm) -8.68 TTL(mm) 4.95
f5(mm) 13.46 HFOV(°) 47.0
Table 12
Fig. 8 A shows chromatic curve on the axis of the optical imaging system of embodiment 4, indicates the light warp of different wave length Deviateed by the converging focal point after camera lens.Fig. 8 B shows the astigmatism curve of the optical imaging system of embodiment 4, indicates meridian picture Face bending and sagittal image surface bending.Fig. 8 C shows the distortion curve of the optical imaging system of embodiment 4, indicates different visual fields Distortion sizes values corresponding to angle.Fig. 8 D shows the ratio chromatism, curve of the optical imaging system of embodiment 4, indicates light Via the deviation of the different image heights after camera lens on imaging surface.According to Fig. 8 A to Fig. 8 D it is found that optics given by embodiment 4 Imaging system can be realized good image quality.
Embodiment 5
The optical imaging system according to the embodiment of the present application 5 is described referring to Fig. 9 to Figure 10 D.Fig. 9 shows basis The structural schematic diagram of the optical imaging system of the embodiment of the present application 5.
As shown in figure 9, according to the optical imaging system of the application illustrative embodiments along optical axis by object side to image side according to Sequence includes:First lens E1, the second lens E2, diaphragm STO, the third lens E3, the 4th lens E4, the 5th lens E5, the 6th are thoroughly Mirror E6, the 7th lens E7, optical filter E8 and imaging surface S17.
First lens E1 has negative power, and object side S1 is concave surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, object side S3 are convex surface, and image side surface S4 is concave surface.The third lens E3 has positive light coke, and object side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has negative power, and object side S7 is convex surface, and image side surface S8 is concave surface.The Five lens E5 have positive light coke, and object side S9 is convex surface, and image side surface S10 is convex surface.6th lens E6 has positive light coke, Its object side S11 is concave surface, and image side surface S12 is convex surface.7th lens E7 has negative power, and object side S13 is convex surface, as Side S14 is concave surface.Optical filter E8 has object side S15 and image side surface S16.Light from object sequentially passes through each surface S1 extremely S16 is simultaneously ultimately imaged on imaging surface S17.
Table 13 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging system of embodiment 5 And circular cone coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 13
As shown in Table 13, in embodiment 5, the object side of any one lens of the first lens E1 into the 7th lens E7 It is aspherical with image side surface.Table 14 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 5, wherein each Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.3188E-01 -1.9838E-01 1.6217E-01 -1.0504E-01 4.1231E-02 -2.7600E-03 -4.5800E-03 1.6830E-03 -1.8000E-04
S2 2.6869E-02 -6.7110E-02 8.7992E-02 -1.2784E-01 1.7909E-01 -1.5613E-01 7.5694E-02 -1.9050E-02 1.9640E-03
S3 -6.3370E-02 -1.0517E-01 1.5426E+00 -4.8129E+00 8.3615E+00 -8.9136E+00 5.7032E+00 -2.0069E+00 2.9968E-01
S4 2.1972E-01 -1.7502E-01 1.7735E+00 -4.6146E+00 4.2855E+00 5.5657E+00 -1.7769E+01 1.4813E+01 -3.7692E+00
S5 -9.2700E-03 3.3266E+00 -8.9566E+01 1.2731E+03 -1.1208E+04 6.1440E+04 -2.0451E+05 3.7799E+05 -2.9756E+05
S6 -9.6499E-01 1.4079E+01 -1.3176E+02 8.2599E+02 -3.4858E+03 9.5755E+03 -1.6158E+04 1.4846E+04 -5.4507E+03
S7 -1.0591E+00 1.1172E+01 -9.9249E+01 5.8966E+02 -2.3469E+03 6.1198E+03 -9.9547E+03 9.1417E+03 -3.6209E+03
S8 -5.2889E-01 1.1981E+00 -2.6882E+00 -3.8379E+00 5.3620E+01 -1.8552E+02 3.3017E+02 -3.0138E+02 1.1038E+02
S9 6.7489E-02 1.9231E-01 -1.4388E+00 5.4048E+00 -1.2732E+01 1.7878E+01 -1.4365E+01 6.0946E+00 -1.0591E+00
S10 3.5420E-03 3.9306E-02 -2.6497E-01 3.2706E-01 8.6074E-01 -2.8954E+00 3.3950E+00 -1.8715E+00 4.0985E-01
S11 2.4055E-01 -1.0797E+00 3.6250E+00 -8.8478E+00 1.4362E+01 -1.5778E+01 1.1455E+01 -4.7110E+00 7.3793E-01
S12 6.4694E-01 -1.8996E+00 5.7095E+00 -1.2257E+01 1.8319E+01 -1.9094E+01 1.3226E+01 -5.3331E+00 9.2450E-01
S13 -9.6433E-01 5.6077E-01 1.4284E+00 -5.2023E+00 7.7752E+00 -6.7541E+00 3.5494E+00 -1.0388E+00 1.2879E-01
S14 -6.2520E-01 1.1342E+00 -1.5098E+00 1.3865E+00 -8.7583E-01 3.7199E-01 -1.0106E-01 1.5779E-02 -1.0700E-03
Table 14
Table 15 provides total effective focal length f, the light of the effective focal length f1 to f7 of each lens in embodiment 5, optical imaging system Learn total length TTL and maximum angle of half field-of view HFOV.
f1(mm) -7.98 f6(mm) 1.85
f2(mm) -72.73 f7(mm) -1.79
f3(mm) 2.17 f(mm) 1.88
f4(mm) -7.24 TTL(mm) 4.92
f5(mm) 8.26 HFOV(°) 46.7
Table 15
Figure 10 A shows chromatic curve on the axis of the optical imaging system of embodiment 5, indicates the light warp of different wave length Deviateed by the converging focal point after camera lens.Figure 10 B shows the astigmatism curve of the optical imaging system of embodiment 5, indicates meridian Curvature of the image and sagittal image surface bending.Figure 10 C shows the distortion curve of the optical imaging system of embodiment 5, indicates different Distortion sizes values corresponding to field angle.Figure 10 D shows the ratio chromatism, curve of the optical imaging system of embodiment 5, table Show light via the deviation of the different image heights after camera lens on imaging surface.According to Figure 10 A to Figure 10 D it is found that embodiment 5 is given Optical imaging system out can be realized good image quality.
Embodiment 6
The optical imaging system according to the embodiment of the present application 6 is described referring to Figure 11 to Figure 12 D.Figure 11 shows root According to the structural schematic diagram of the optical imaging system of the embodiment of the present application 6.
As shown in figure 11, according to the optical imaging system of the application illustrative embodiments along optical axis by object side to image side according to Sequence includes:First lens E1, the second lens E2, diaphragm STO, the third lens E3, the 4th lens E4, the 5th lens E5, the 6th are thoroughly Mirror E6, the 7th lens E7, optical filter E8 and imaging surface S17.
First lens E1 has negative power, and object side S1 is concave surface, and image side surface S2 is concave surface.Second lens E2 has Positive light coke, object side S3 are convex surface, and image side surface S4 is concave surface.The third lens E3 has positive light coke, and object side S5 is Concave surface, image side surface S6 are convex surface.4th lens E4 has negative power, and object side S7 is convex surface, and image side surface S8 is concave surface.The Five lens E5 have positive light coke, and object side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has positive light coke, Its object side S11 is concave surface, and image side surface S12 is convex surface.7th lens E7 has negative power, and object side S13 is convex surface, as Side S14 is concave surface.Optical filter E8 has object side S15 and image side surface S16.Light from object sequentially passes through each surface S1 extremely S16 is simultaneously ultimately imaged on imaging surface S17.
Table 16 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging system of embodiment 6 And circular cone coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 16
As shown in Table 16, in embodiment 6, the object side of any one lens of the first lens E1 into the 7th lens E7 It is aspherical with image side surface.Table 17 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 6, wherein each Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.4782E-01 -2.4498E-01 2.3568E-01 -1.9045E-01 1.1696E-01 -5.0080E-02 1.4023E-02 -2.3100E-03 1.7200E-04
S2 3.2974E-02 1.8954E-02 -3.3568E-01 7.1738E-01 -7.6271E-01 4.7429E-01 -1.7574E-01 3.6097E-02 -3.1700E-03
S3 -1.8902E-01 5.3499E-01 9.7843E-02 -3.4400E+00 9.0017E+00 -1.1818E+01 8.6223E+00 -3.3349E+00 5.3585E-01
S4 1.1463E-01 4.6816E-01 -2.4350E-01 1.0724E+00 -1.3487E+01 4.9737E+01 -8.2473E+01 6.3391E+01 -1.8370E+01
S5 -3.6850E-02 -1.5802E+00 2.6950E+01 -4.0589E+02 3.5776E+03 -1.9288E+04 6.1774E+04 -1.0807E+05 7.9302E+04
S6 -7.7624E-01 9.3912E+00 -6.8412E+01 2.7392E+02 -1.8327E+02 -3.5469E+03 1.6737E+04 -3.1994E+04 2.3391E+04
S7 -1.0498E+00 7.9059E+00 -6.2713E+01 3.5504E+02 -1.3617E+03 3.4766E+03 -5.6673E+03 5.4029E+03 -2.3288E+03
S8 -4.1924E-01 2.2121E-01 7.3359E-01 -1.6286E+00 -8.9980E+00 6.9365E+01 -2.0106E+02 2.8817E+02 -1.6566E+02
S9 1.3514E-01 1.2093E-01 -3.0459E+00 1.9129E+01 -6.6891E+01 1.4278E+02 -1.8681E+02 1.3878E+02 -4.4932E+01
S10 3.5420E-03 3.9306E-02 -2.6497E-01 3.2706E-01 8.6074E-01 -2.8954E+00 3.3950E+00 -1.8715E+00 4.0985E-01
S11 2.0824E-01 -9.1058E-01 3.7597E+00 -1.1490E+01 2.3188E+01 -3.1844E+01 2.9008E+01 -1.5436E+01 3.5383E+00
S12 5.6949E-01 -1.2951E+00 3.6483E+00 -7.7230E+00 1.1323E+01 -1.1681E+01 8.0841E+00 -3.2001E+00 5.1925E-01
S13 -1.0815E+00 1.3086E+00 -1.0525E+00 -4.4908E-01 2.0723E+00 -2.3713E+00 1.4435E+00 -4.5705E-01 5.7207E-02
S14 -5.9881E-01 1.1455E+00 -1.7000E+00 1.7808E+00 -1.2916E+00 6.2950E-01 -1.9585E-01 3.5022E-02 -2.7300E-03
Table 17
Table 18 provides total effective focal length f, the light of the effective focal length f1 to f7 of each lens in embodiment 6, optical imaging system Learn total length TTL and maximum angle of half field-of view HFOV.
f1(mm) -7.46 f6(mm) 1.83
f2(mm) 91.30 f7(mm) -1.75
f3(mm) 2.22 f(mm) 1.87
f4(mm) -8.21 TTL(mm) 4.96
f5(mm) 9.07 HFOV(°) 45.9
Table 18
Figure 12 A shows chromatic curve on the axis of the optical imaging system of embodiment 6, indicates the light warp of different wave length Deviateed by the converging focal point after camera lens.Figure 12 B shows the astigmatism curve of the optical imaging system of embodiment 6, indicates meridian Curvature of the image and sagittal image surface bending.Figure 12 C shows the distortion curve of the optical imaging system of embodiment 6, indicates different Distortion sizes values corresponding to field angle.Figure 12 D shows the ratio chromatism, curve of the optical imaging system of embodiment 6, table Show light via the deviation of the different image heights after camera lens on imaging surface.According to Figure 12 A to Figure 12 D it is found that embodiment 6 is given Optical imaging system out can be realized good image quality.
Embodiment 7
The optical imaging system according to the embodiment of the present application 7 is described referring to Figure 13 to Figure 14 D.Figure 13 shows root According to the structural schematic diagram of the optical imaging system of the embodiment of the present application 7.
As shown in figure 13, according to the optical imaging system of the application illustrative embodiments along optical axis by object side to image side according to Sequence includes:First lens E1, the second lens E2, diaphragm STO, the third lens E3, the 4th lens E4, the 5th lens E5, the 6th are thoroughly Mirror E6, the 7th lens E7, optical filter E8 and imaging surface S17.
First lens E1 has negative power, and object side S1 is concave surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, object side S3 are convex surface, and image side surface S4 is concave surface.The third lens E3 has positive light coke, and object side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has negative power, and object side S7 is convex surface, and image side surface S8 is concave surface.The Five lens E5 have positive light coke, and object side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has positive light coke, Its object side S11 is convex surface, and image side surface S12 is convex surface.7th lens E7 has negative power, and object side S13 is convex surface, as Side S14 is concave surface.Optical filter E8 has object side S15 and image side surface S16.Light from object sequentially passes through each surface S1 extremely S16 is simultaneously ultimately imaged on imaging surface S17.
Table 19 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging system of embodiment 7 And circular cone coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 19
As shown in Table 19, in embodiment 7, the object side of any one lens of the first lens E1 into the 7th lens E7 It is aspherical with image side surface.Table 20 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 7, wherein each Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.3661E-01 -2.0345E-01 1.5226E-01 -7.9380E-02 1.4550E-02 1.3265E-02 -1.0410E-02 2.9050E-03 -3.0000E-04
S2 2.7502E-02 -5.8630E-02 4.8450E-02 -4.7600E-02 8.4706E-02 -8.4100E-02 4.0880E-02 -9.4700E-03 8.3000E-04
S3 -1.5638E-01 2.0605E-02 2.3702E+00 -8.6830E+00 1.6515E+01 -1.8820E+01 1.2726E+01 -4.6952E+00 7.2847E-01
S4 1.7553E-01 -7.8970E-02 2.5232E+00 -5.7835E+00 -5.4124E+00 5.2849E+01 -1.0628E+02 9.0943E+01 -2.8710E+01
S5 4.2866E-02 1.7011E+00 -4.7270E+01 6.3312E+02 -5.2917E+03 2.7597E+04 -8.7639E+04 1.5479E+05 -1.1670E+05
S6 -1.0896E+00 1.3431E+01 -9.0578E+01 2.5478E+02 7.8706E+02 -9.4930E+03 3.4501E+04 -5.9172E+04 4.0358E+04
S7 -1.1903E+00 1.1682E+01 -9.5403E+01 5.2139E+02 -1.8947E+03 4.5058E+03 -6.7066E+03 5.6766E+03 -2.0991E+03
S8 -5.8093E-01 9.4483E-01 1.6402E+00 -3.6042E+01 1.9799E+02 -5.7426E+02 9.4621E+02 -8.2981E+02 2.9882E+02
S9 1.2309E-01 3.8331E-01 -2.5147E+00 8.4399E+00 -1.8978E+01 2.7322E+01 -2.3873E+01 1.1495E+01 -2.3319E+00
S10 3.5420E-03 3.9306E-02 -2.6497E-01 3.2706E-01 8.6074E-01 -2.8954E+00 3.3950E+00 -1.8715E+00 4.0985E-01
S11 2.6030E-01 -1.0733E+00 2.9602E+00 -6.2361E+00 8.8013E+00 -7.6591E+00 3.9155E+00 -1.0807E+00 1.2460E-01
S12 5.9688E-01 -1.3727E+00 3.3750E+00 -5.3554E+00 4.3120E+00 -5.7979E-01 -1.5990E+00 1.0954E+00 -2.2596E-01
S13 -1.1016E+00 8.0734E-01 5.7058E-01 -2.4924E+00 2.4522E+00 -4.7275E-01 -7.6904E-01 5.6184E-01 -1.2015E-01
S14 -7.0291E-01 1.2685E+00 -1.6823E+00 1.5631E+00 -1.0136E+00 4.4774E-01 -1.2796E-01 2.1242E-02 -1.5500E-03
Table 20
Table 21 provides total effective focal length f, the light of the effective focal length f1 to f7 of each lens in embodiment 7, optical imaging system Learn total length TTL and maximum angle of half field-of view HFOV.
Table 21
Figure 14 A shows chromatic curve on the axis of the optical imaging system of embodiment 7, indicates the light warp of different wave length Deviateed by the converging focal point after camera lens.Figure 14 B shows the astigmatism curve of the optical imaging system of embodiment 7, indicates meridian Curvature of the image and sagittal image surface bending.Figure 14 C shows the distortion curve of the optical imaging system of embodiment 7, indicates different Distortion sizes values corresponding to field angle.Figure 14 D shows the ratio chromatism, curve of the optical imaging system of embodiment 7, table Show light via the deviation of the different image heights after camera lens on imaging surface.According to Figure 14 A to Figure 14 D it is found that embodiment 7 is given Optical imaging system out can be realized good image quality.
Embodiment 8
The optical imaging system according to the embodiment of the present application 8 is described referring to Figure 15 to Figure 16 D.Figure 15 shows root According to the structural schematic diagram of the optical imaging system of the embodiment of the present application 8.
As shown in figure 15, according to the optical imaging system of the application illustrative embodiments along optical axis by object side to image side according to Sequence includes:First lens E1, the second lens E2, diaphragm STO, the third lens E3, the 4th lens E4, the 5th lens E5, the 6th are thoroughly Mirror E6, the 7th lens E7, optical filter E8 and imaging surface S17.
First lens E1 has negative power, and object side S1 is concave surface, and image side surface S2 is concave surface.Second lens E2 has Positive light coke, object side S3 are convex surface, and image side surface S4 is concave surface.The third lens E3 has positive light coke, and object side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has negative power, and object side S7 is convex surface, and image side surface S8 is concave surface.The Five lens E5 have negative power, and object side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has positive light coke, Its object side S11 is concave surface, and image side surface S12 is convex surface.7th lens E7 has negative power, and object side S13 is convex surface, as Side S14 is concave surface.Optical filter E8 has object side S15 and image side surface S16.Light from object sequentially passes through each surface S1 extremely S16 is simultaneously ultimately imaged on imaging surface S17.
Table 22 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging system of embodiment 8 And circular cone coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 22
As shown in Table 22, in embodiment 8, the object side of any one lens of the first lens E1 into the 7th lens E7 It is aspherical with image side surface.Table 23 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 8, wherein each Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Table 23
Table 24 provides total effective focal length f, the light of the effective focal length f1 to f7 of each lens in embodiment 8, optical imaging system Learn total length TTL and maximum angle of half field-of view HFOV.
f1(mm) -7.71 f6(mm) 1.60
f2(mm) 1976.39 f7(mm) -1.64
f3(mm) 2.03 f(mm) 1.85
f4(mm) -10.21 TTL(mm) 4.95
f5(mm) -1132.83 HFOV(°) 45.2
Table 24
Figure 16 A shows chromatic curve on the axis of the optical imaging system of embodiment 8, indicates the light warp of different wave length Deviateed by the converging focal point after camera lens.Figure 16 B shows the astigmatism curve of the optical imaging system of embodiment 8, indicates meridian Curvature of the image and sagittal image surface bending.Figure 16 C shows the distortion curve of the optical imaging system of embodiment 8, indicates different Distortion sizes values corresponding to field angle.Figure 16 D shows the ratio chromatism, curve of the optical imaging system of embodiment 8, table Show light via the deviation of the different image heights after camera lens on imaging surface.According to Figure 16 A to Figure 16 D it is found that embodiment 8 is given Optical imaging system out can be realized good image quality.
Embodiment 9
The optical imaging system according to the embodiment of the present application 9 is described referring to Figure 17 to Figure 18 D.Figure 17 shows roots According to the structural schematic diagram of the optical imaging system of the embodiment of the present application 9.
As shown in figure 17, according to the optical imaging system of the application illustrative embodiments along optical axis by object side to image side according to Sequence includes:First lens E1, the second lens E2, diaphragm STO, the third lens E3, the 4th lens E4, the 5th lens E5, the 6th are thoroughly Mirror E6, the 7th lens E7, optical filter E8 and imaging surface S17.
First lens E1 has negative power, and object side S1 is concave surface, and image side surface S2 is concave surface.Second lens E2 has Negative power, object side S3 are convex surface, and image side surface S4 is concave surface.The third lens E3 has positive light coke, and object side S5 is Convex surface, image side surface S6 are convex surface.4th lens E4 has positive light coke, and object side S7 is convex surface, and image side surface S8 is concave surface.The Five lens E5 have positive light coke, and object side S9 is concave surface, and image side surface S10 is convex surface.6th lens E6 has positive light coke, Its object side S11 is concave surface, and image side surface S12 is convex surface.7th lens E7 has negative power, and object side S13 is convex surface, as Side S14 is concave surface.Optical filter E8 has object side S15 and image side surface S16.Light from object sequentially passes through each surface S1 extremely S16 is simultaneously ultimately imaged on imaging surface S17.
Table 25 shows surface type, radius of curvature, thickness, the material of each lens of the optical imaging system of embodiment 9 And circular cone coefficient, wherein radius of curvature and the unit of thickness are millimeter (mm).
Table 25
As shown in Table 25, in embodiment 9, the object side of any one lens of the first lens E1 into the 7th lens E7 It is aspherical with image side surface.Table 26 shows the high-order coefficient that can be used for each aspherical mirror in embodiment 9, wherein each Aspherical face type can be limited by the formula (1) provided in above-described embodiment 1.
Face number A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 2.5386E-01 -2.4898E-01 2.3901E-01 -1.9477E-01 1.1742E-01 -4.6030E-02 1.0921E-02 -1.4600E-03 9.4700E-05
S2 4.2131E-02 1.7001E-02 -4.3498E-01 9.3910E-01 -9.8117E-01 5.9547E-01 -2.1622E-01 4.3927E-02 -3.8400E-03
S3 -2.0007E-01 7.6422E-01 -8.9461E-01 -1.4214E+00 6.9282E+00 -1.1063E+01 9.0125E+00 -3.7537E+00 6.3664E-01
S4 1.4375E-01 8.0836E-01 -1.9876E+00 7.7417E+00 -3.6183E+01 1.1141E+02 -1.8858E+02 1.5764E+02 -5.0350E+01
S5 9.2889E-02 -2.2941E+00 5.7143E+01 -8.6923E+02 7.7283E+03 -4.1681E+04 1.3384E+05 -2.3565E+05 1.7514E+05
S6 -1.7741E+00 1.4967E+01 -8.6312E+01 3.6538E+02 -1.1254E+03 2.2923E+03 -2.6258E+03 1.1004E+03 2.7990E+02
S7 -7.7270E-01 4.8648E-01 2.2652E+01 -2.0350E+02 9.6929E+02 -2.9524E+03 5.6894E+03 -6.2445E+03 2.9511E+03
S8 2.5281E-01 -8.1773E+00 5.8238E+01 -2.6503E+02 8.5840E+02 -1.9679E+03 2.9775E+03 -2.6099E+03 9.9099E+02
S9 7.2617E-01 -3.7285E+00 1.2946E+01 -4.0496E+01 1.5932E+02 -5.1251E+02 9.7738E+02 -9.6752E+02 3.8654E+02
S10 3.5420E-03 3.9306E-02 -2.6497E-01 3.2706E-01 8.6074E-01 -2.8954E+00 3.3950E+00 -1.8715E+00 4.0985E-01
S11 1.3263E-01 -1.3467E+00 6.7875E+00 -1.9743E+01 3.8110E+01 -5.3915E+01 5.5018E+01 -3.4507E+01 9.4642E+00
S12 4.8813E-01 -1.4055E+00 5.0591E+00 -1.2846E+01 2.4489E+01 -3.4955E+01 3.3292E+01 -1.7906E+01 4.0259E+00
S13 -1.0968E+00 1.2363E+00 -7.3490E-02 -2.8816E+00 4.9842E+00 -4.3512E+00 2.2621E+00 -6.7034E-01 8.7263E-02
S14 -6.2057E-01 1.1810E+00 -1.6010E+00 1.4733E+00 -9.2489E-01 3.8916E-01 -1.0478E-01 1.6268E-02 -1.1000E-03
Table 26
Table 27 provides total effective focal length f, the light of the effective focal length f1 to f7 of each lens in embodiment 9, optical imaging system Learn total length TTL and maximum angle of half field-of view HFOV.
f1(mm) -7.46 f6(mm) 1.77
f2(mm) -93.94 f7(mm) -1.71
f3(mm) 2.41 f(mm) 1.85
f4(mm) 1008.45 TTL(mm) 4.95
f5(mm) 27.21 HFOV(°) 45.1
Table 27
Figure 18 A shows chromatic curve on the axis of the optical imaging system of embodiment 9, indicates the light warp of different wave length Deviateed by the converging focal point after camera lens.Figure 18 B shows the astigmatism curve of the optical imaging system of embodiment 9, indicates meridian Curvature of the image and sagittal image surface bending.Figure 18 C shows the distortion curve of the optical imaging system of embodiment 9, indicates different Distortion sizes values corresponding to field angle.Figure 18 D shows the ratio chromatism, curve of the optical imaging system of embodiment 9, table Show light via the deviation of the different image heights after camera lens on imaging surface.According to Figure 18 A to Figure 18 D it is found that embodiment 9 is given Optical imaging system out can be realized good image quality.
To sum up, embodiment 1 to embodiment 9 meets relationship shown in table 28 respectively.
Table 28
The application also provides a kind of imaging device, and electronics photosensitive element can be photosensitive coupling element (CCD) or complementation Property matal-oxide semiconductor element (CMOS).Imaging device can be the independent imaging equipment of such as digital camera, be also possible to The image-forming module being integrated on the mobile electronic devices such as mobile phone.The imaging device is equipped with optical imagery system described above System.
Above description is only the preferred embodiment of the application and the explanation to institute's application technology principle.Those skilled in the art Member is it should be appreciated that invention scope involved in the application, however it is not limited to technology made of the specific combination of above-mentioned technical characteristic Scheme, while should also cover in the case where not departing from the inventive concept, it is carried out by above-mentioned technical characteristic or its equivalent feature Any combination and the other technical solutions formed.Such as features described above has similar function with (but being not limited to) disclosed herein Can technical characteristic replaced mutually and the technical solution that is formed.

Claims (14)

1. optical imaging system sequentially includes by object side to image side along optical axis:First lens, the second lens, the third lens, Four lens, the 5th lens, the 6th lens and the 7th lens, which is characterized in that
First lens and the 7th lens all have negative power;
Second lens, the 4th lens, the 5th lens all have positive light coke or negative power;
The third lens and the 6th lens all have positive light coke;
The object side of first lens is concave surface;And
The radius of curvature R 12 of the image side surface of the radius of curvature R 10 and the 6th lens of the image side surface of 5th lens meets 4 < R10/R12 < 6.5.
2. optical imaging system according to claim 1, which is characterized in that the image side surface of the third lens is convex surface; The radius of curvature R 6 of the image side surface of the effective focal length f3 and the third lens of the third lens meets -2 < f3/R6 < -1.
3. optical imaging system according to claim 1, which is characterized in that the curvature of the object side of the 4th lens half The radius of curvature R 8 of the image side surface of diameter R7 and the 4th lens meets 1 < R7/R8 < 2.
4. optical imaging system according to claim 1, which is characterized in that the curvature of the object side of the 7th lens half The radius of curvature R 14 of the image side surface of diameter R13 and the 7th lens meets 2 < R13/R14 < 3.
5. optical imaging system according to claim 1, which is characterized in that total effective focal length of the optical imaging system The effective focal length f2 of f and second lens meets | f/f2 | < 0.1.
6. optical imaging system according to claim 1, which is characterized in that the effective focal length f1 of first lens and institute The total effective focal length f for stating optical imaging system meets -7.5 < f1/f < -3.5.
7. optical imaging system according to claim 1, which is characterized in that the effective focal length f6 of the 6th lens and institute The effective focal length f7 for stating the 7th lens meets -1.5 < f6/f7 < -0.5.
8. optical imaging system according to claim 1, which is characterized in that first lens are on the optical axis Heart thickness CT1 and second lens are in the 1 < CT1/CT2 < 2 of center thickness CT2 satisfaction on the optical axis.
9. optical imaging system according to claim 1, which is characterized in that second lens and the third lens exist Spacing distance T23 and the third lens on the optical axis meet 1 < T23/CT3 in the center thickness CT3 on the optical axis < 2.5.
10. optical imaging system according to claim 1, which is characterized in that the maximum of the object side of first lens The maximum effective radius DT71 of the object side of effective radius DT11 and the 7th lens meets 1 < DT11/DT71 < 1.5.
11. optical imaging system according to claim 9, which is characterized in that the 4th lens and the 5th lens The spacing distance T56 of spacing distance T45, the 5th lens and the 6th lens on the optical axis on the optical axis Meet 0.3 < T45/ (T56+T67) < with the spacing distance T67 of the 6th lens and the 7th lens on the optical axis 1.8。
12. optical imaging system according to any one of claim 1 to 11, which is characterized in that first lens The maximum effective radius DT12 of image side surface and the effective pixel area diagonal line length on the imaging surface of the optical imaging system Half ImgH meets 0.6 < DT12/ImgH < 1.
13. optical imaging system according to any one of claim 1 to 11, which is characterized in that the optical imagery system The maximum angle of half field-of view HFOV of system meets 45 ° of 55 ° of < HFOV <.
14. optical imaging system sequentially includes by object side to image side along optical axis:First lens, the second lens, the third lens, 4th lens, the 5th lens, the 6th lens and the 7th lens, which is characterized in that
First lens have negative power, and object side is concave surface;
The third lens have positive light coke, and image side surface is convex surface;
6th lens have positive light coke;
7th lens have negative power;
Second lens, the 4th lens and the 5th lens all have positive light coke or negative power;And
The spacing distance T23 of second lens and the third lens on the optical axis and the third lens are in the light Center thickness CT3 on axis meets 1 < T23/CT3 < 2.5.
CN201810730916.0A 2018-07-05 2018-07-05 Optical imaging system Active CN108873254B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810730916.0A CN108873254B (en) 2018-07-05 2018-07-05 Optical imaging system
PCT/CN2019/078954 WO2020007068A1 (en) 2018-07-05 2019-03-21 Optical imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810730916.0A CN108873254B (en) 2018-07-05 2018-07-05 Optical imaging system

Publications (2)

Publication Number Publication Date
CN108873254A true CN108873254A (en) 2018-11-23
CN108873254B CN108873254B (en) 2023-11-21

Family

ID=64299228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810730916.0A Active CN108873254B (en) 2018-07-05 2018-07-05 Optical imaging system

Country Status (2)

Country Link
CN (1) CN108873254B (en)
WO (1) WO2020007068A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505811A (en) * 2020-07-02 2020-08-07 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111665612A (en) * 2019-03-07 2020-09-15 康达智株式会社 Camera lens
CN112099186A (en) * 2019-06-18 2020-12-18 大立光电股份有限公司 Photographing lens system, image capturing device and electronic device
US10895718B2 (en) 2019-02-01 2021-01-19 Largan Precision Co., Ltd. Optical photographing lens assembly, image capturing unit and electronic device
CN112771431A (en) * 2020-03-30 2021-05-07 深圳市大疆创新科技有限公司 Optical system, imaging device, and movable platform
WO2022000647A1 (en) * 2020-07-02 2022-01-06 诚瑞光学(常州)股份有限公司 Camera optical lens
CN116880043A (en) * 2023-09-08 2023-10-13 江西联益光学有限公司 Optical lens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154488A (en) * 2014-10-16 2016-11-23 三星电机株式会社 Optical system
TW201701005A (en) * 2015-06-25 2017-01-01 佳能企業股份有限公司 Optical lens

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510804B (en) * 2014-08-01 2015-12-01 Largan Precision Co Ltd Photographing optical lens assembly, image capturing unit and electronic device
CN114063254B (en) * 2017-06-02 2023-12-05 浙江舜宇光学有限公司 Optical imaging system
CN107621682B (en) * 2017-10-25 2020-04-07 浙江舜宇光学有限公司 Optical imaging lens
CN108181701B (en) * 2018-02-28 2019-10-18 浙江舜宇光学有限公司 Optical imagery eyeglass group
CN108873253B (en) * 2018-07-02 2020-02-28 浙江舜宇光学有限公司 Camera lens
CN208521056U (en) * 2018-07-05 2019-02-19 浙江舜宇光学有限公司 Optical imaging system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154488A (en) * 2014-10-16 2016-11-23 三星电机株式会社 Optical system
TW201701005A (en) * 2015-06-25 2017-01-01 佳能企業股份有限公司 Optical lens

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10895718B2 (en) 2019-02-01 2021-01-19 Largan Precision Co., Ltd. Optical photographing lens assembly, image capturing unit and electronic device
CN111665612A (en) * 2019-03-07 2020-09-15 康达智株式会社 Camera lens
US11385442B2 (en) 2019-06-18 2022-07-12 Largan Precision Co., Ltd. Photographing lens system, imaging apparatus and electronic device including seven lenses of --+--+- or --+-++- refractive powers
US11828920B2 (en) 2019-06-18 2023-11-28 Largan Precision Co., Ltd. Photographing lens system, imaging apparatus and electronic device including seven lenses of −−+ −−+− or −−+−++− refractive powers
CN112099186A (en) * 2019-06-18 2020-12-18 大立光电股份有限公司 Photographing lens system, image capturing device and electronic device
WO2021195884A1 (en) * 2020-03-30 2021-10-07 深圳市大疆创新科技有限公司 Optical system, photography device, and movable platform
CN112771431B (en) * 2020-03-30 2022-04-22 深圳市大疆创新科技有限公司 Optical system, imaging device, and movable platform
CN112771431A (en) * 2020-03-30 2021-05-07 深圳市大疆创新科技有限公司 Optical system, imaging device, and movable platform
CN111505811A (en) * 2020-07-02 2020-08-07 瑞声通讯科技(常州)有限公司 Image pickup optical lens
WO2022000647A1 (en) * 2020-07-02 2022-01-06 诚瑞光学(常州)股份有限公司 Camera optical lens
WO2022000659A1 (en) * 2020-07-02 2022-01-06 诚瑞光学(常州)股份有限公司 Camera optical lens
CN111505811B (en) * 2020-07-02 2020-10-16 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN116880043A (en) * 2023-09-08 2023-10-13 江西联益光学有限公司 Optical lens
CN116880043B (en) * 2023-09-08 2024-01-05 江西联益光学有限公司 Optical lens

Also Published As

Publication number Publication date
WO2020007068A1 (en) 2020-01-09
CN108873254B (en) 2023-11-21

Similar Documents

Publication Publication Date Title
CN109085693A (en) Optical imaging lens
CN109031629A (en) imaging optical system
CN109343203A (en) Optical imaging lens group
CN108919464A (en) Optical imagery eyeglass group
CN108873255A (en) Optical imaging system
CN107843977A (en) Optical imaging lens
CN108873256A (en) Optical imaging system
CN110456481A (en) Optical imaging lens
CN109407284A (en) Optical imaging system
CN109782418A (en) Optical imaging lens
CN109239891A (en) optical imaging lens group
CN108873254A (en) Optical imaging system
CN209102995U (en) Optical imaging lens group
CN209044159U (en) Imaging optical system
CN209215716U (en) Optical imaging lens group
CN109683287A (en) Optical imaging lens
CN110426819A (en) Optical imaging lens
CN208110147U (en) Optical imaging lens
CN207516629U (en) Optical imaging lens
CN108490588A (en) Optical imaging lens
CN109765681A (en) Optical imagery eyeglass group
CN109765680A (en) Optical imaging lens
CN109239894A (en) Optical imaging system
CN209327664U (en) Optical imaging system
CN208521053U (en) Optical imaging system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant