CN108844459A - A kind of scaling method and device of leaf digital template detection system - Google Patents

A kind of scaling method and device of leaf digital template detection system Download PDF

Info

Publication number
CN108844459A
CN108844459A CN201810418349.5A CN201810418349A CN108844459A CN 108844459 A CN108844459 A CN 108844459A CN 201810418349 A CN201810418349 A CN 201810418349A CN 108844459 A CN108844459 A CN 108844459A
Authority
CN
China
Prior art keywords
calibration
coordinate system
visual sensor
measurement
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810418349.5A
Other languages
Chinese (zh)
Other versions
CN108844459B (en
Inventor
张旭
郑泽龙
蔡永凯
浦栋麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jihui Huake Intelligent Equipment Technology Co ltd
Original Assignee
HUST Wuxi Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUST Wuxi Research Institute filed Critical HUST Wuxi Research Institute
Priority to CN201810418349.5A priority Critical patent/CN108844459B/en
Publication of CN108844459A publication Critical patent/CN108844459A/en
Application granted granted Critical
Publication of CN108844459B publication Critical patent/CN108844459B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及视觉测量技术领域,具体公开了一种叶片数字化样板检测系统的标定方法,其中,包括:对第一视觉传感器和第二视觉传感器分别进行摄像机标定;对两个视觉传感器分别进行激光光刀平面标定;根据相机参数以及测量参数对两个视觉传感器分别进行运动方向标定;分别将第两个视觉传感器的相机参数转换到测量坐标系;对两个视觉传感器进行位置关系标定;将第二视觉传感器的测量坐标系下的测量参数转换到第一视觉传感器的测量坐标系;进行系统坐标系标定;将第一视觉传感器下的测量坐标系转换到系统坐标系下。本发明还公开了一种叶片数字化样板检测系统的标定装置。本发明提供的叶片数字化样板检测系统的标定方法提供了一种完整的标定方法。

The invention relates to the technical field of visual measurement, and specifically discloses a calibration method for a blade digital template detection system, which includes: respectively performing camera calibration on the first visual sensor and the second visual sensor; performing laser light knife on the two visual sensors respectively. Plane calibration; Calibrate the movement direction of the two visual sensors according to the camera parameters and measurement parameters; Convert the camera parameters of the second visual sensor to the measurement coordinate system; Calibrate the positional relationship of the two visual sensors; The measurement parameters in the measurement coordinate system of the sensor are converted to the measurement coordinate system of the first visual sensor; the system coordinate system is calibrated; the measurement coordinate system in the first vision sensor is converted into the system coordinate system. The invention also discloses a calibration device of a blade digitized template detection system. The calibration method of the blade digital template detection system provided by the invention provides a complete calibration method.

Description

一种叶片数字化样板检测系统的标定方法及装置Calibration method and device for a blade digital template detection system

技术领域technical field

本发明涉及视觉测量技术领域,尤其涉及一种叶片数字化样板检测系统的标定方法及叶片数字化样板检测系统的标定装置。The invention relates to the technical field of visual measurement, in particular to a calibration method for a blade digital sample detection system and a calibration device for a blade digital sample detection system.

背景技术Background technique

燃气轮机被广泛应用于航空、航天、能源等领域,作为燃气轮机中的核心零件,透平叶片具有结构复杂、制造工艺要求高、测量参数多等特点,其形状误差影响整个燃气轮机的能量转换效率,因此对不规则型面测量的精准性、有效性提出要求。不同叶片测量方法的标定方式直接决定了整个测量的精度,反应了测量方法的适用性、经济性、高效性。为适用于一种能够快速扫描叶片型面、获取叶片完整点云、自动分析测量参数、输出检测报告的叶片数字化样板检测装置的叶片测量特点,需为其制定一种准确、便捷、快速、简易的系统标定方法。Gas turbines are widely used in aviation, aerospace, energy and other fields. As the core parts of gas turbines, turbine blades have the characteristics of complex structure, high manufacturing process requirements, and many measurement parameters. Their shape errors affect the energy conversion efficiency of the entire gas turbine. Therefore, It puts forward requirements for the accuracy and effectiveness of irregular surface measurement. The calibration methods of different blade measurement methods directly determine the accuracy of the entire measurement, reflecting the applicability, economy, and efficiency of the measurement method. In order to be applicable to the blade measurement characteristics of a blade digital template inspection device that can quickly scan the blade surface, obtain the complete point cloud of the blade, automatically analyze the measurement parameters, and output the inspection report, it is necessary to formulate an accurate, convenient, fast and simple method. system calibration method.

非接触式测量方法主要使用光学视觉检测的方法。利用激光三角测量原理需要对激光平面进行标定。陶立等用由2个完全垂直的平面组成的立体标靶同时标定测量系统的摄像机参数和光平面参数,但需要制作特殊标定标靶。另外双目视觉系统拍摄激光图片,用立体视觉的方法对双相机图像进行立体矫正,获取激光条纹中心,匹配条纹中心与相机的对应性,也可标定出激光平面参数,但需要两个相机不适用于叶片数字化样板检测装置中。单目激光视觉传感器与运动机构的安装必然存在误差,测量坐标系与实际运动方向之间的关系需要进行标定。利用制作特殊形状的标定物,通过扫描重建特殊标定物,提取特征点在三维空间中的信息来获取视觉传感器运动方向信息,其标定过程较为繁琐,且标定物的制作精度高、成本高。对于带有转台的叶片检测机构中,转台的回转中心标定结果影响叶片型面测量点的坐标转换结果。转台回转中心标定方法有三点法。测量设备要求为光学测头与接触式测头的复合式测头。三点法把标定球置于转台某一位置,保证测头z轴固定,在xy平面内测量标准球上三点,三点呈等腰三角形排布,利用三点求出此位置球的截面圆心坐标,然后旋转转台,并保持标准球与转台不发生相对相对运动,依次共求取三个位置的截面圆心来求解转台回转中心。该方法需要知道标准球上三个点在xy平面的坐标,只旋转了2次求取标准球3个位置的截面圆心,标定精度不高。The non-contact measurement method mainly uses the method of optical vision inspection. Using the principle of laser triangulation requires calibration of the laser plane. Tao et al. used a three-dimensional target composed of two completely vertical planes to simultaneously calibrate the camera parameters and light plane parameters of the measurement system, but a special calibration target needs to be made. In addition, the binocular vision system takes laser pictures, uses the method of stereo vision to perform stereo correction on the dual-camera images, obtains the center of the laser stripes, matches the correspondence between the center of the stripes and the camera, and can also calibrate the laser plane parameters, but requires two cameras. The utility model is applicable to a blade digital template detection device. There must be errors in the installation of the monocular laser vision sensor and the motion mechanism, and the relationship between the measurement coordinate system and the actual motion direction needs to be calibrated. Using special-shaped calibration objects, scanning and reconstruction of special calibration objects, and extracting information of feature points in three-dimensional space to obtain motion direction information of visual sensors, the calibration process is relatively cumbersome, and the calibration objects have high precision and high cost. For the blade detection mechanism with a turntable, the calibration result of the center of rotation of the turntable affects the coordinate conversion result of the measurement point of the blade profile. There are three-point methods for the calibration of the rotary center of the turntable. The measuring equipment is required to be a composite probe of an optical probe and a contact probe. The three-point method places the calibration ball at a certain position on the turntable to ensure that the z-axis of the probe is fixed, and measures three points on the standard ball in the xy plane. The coordinates of the center of the circle, and then rotate the turntable, and keep the standard ball and the turntable without relative motion, and obtain the center of the section of the three positions in turn to solve the center of rotation of the turntable. This method needs to know the coordinates of three points on the standard sphere in the xy plane, and only rotates twice to find the center of the cross-section of the three positions of the standard sphere, and the calibration accuracy is not high.

综上对激光平面、运动方向、回转中心的标定方法,现有的标定方法缺陷有:(1)标定效率低(2)标定精度低(3)标定过程繁杂(4)需要制作特定形状的标定块(5)对于采用非接触叶片测量的装置,没有系统完整的标定方法。In summary, the calibration methods for laser plane, motion direction, and center of rotation have the following defects: (1) low calibration efficiency (2) low calibration accuracy (3) complicated calibration process (4) need to make a specific shape of the calibration Block (5) There is no systematic and complete calibration method for devices using non-contact blade measurements.

因此,如何提供一种完整的标定方法成为本领域技术人员亟待解决的技术问题。Therefore, how to provide a complete calibration method has become an urgent technical problem to be solved by those skilled in the art.

发明内容Contents of the invention

本发明旨在至少解决现有技术中存在的技术问题之一,提供一种叶片数字化样板检测系统的标定方法及叶片数字化样板检测系统的标定装置,以解决现有技术中的问题。The present invention aims to solve at least one of the technical problems in the prior art, and provides a calibration method for a blade digital template inspection system and a calibration device for a blade digital template inspection system to solve the problems in the prior art.

作为本发明的第一个方面,提供一种叶片数字化样板检测系统的标定方法,其中,所述叶片数字化样板检测系统包括第一视觉传感器和第二视觉传感器,所述第一视觉传感器和所述第二视觉传感器对称相对设置,所述叶片数字化样板检测系统的标定方法包括:As the first aspect of the present invention, there is provided a calibration method for a blade digital template detection system, wherein the blade digital template detection system includes a first visual sensor and a second visual sensor, and the first visual sensor and the The second visual sensor is symmetrically arranged relative to each other, and the calibration method of the blade digital template detection system includes:

对所述第一视觉传感器和所述第二视觉传感器分别进行摄像机标定得到相机坐标系下的相机参数;performing camera calibration on the first visual sensor and the second visual sensor respectively to obtain camera parameters in the camera coordinate system;

对所述第一视觉传感器和所述第二视觉传感器分别进行激光光刀平面标定得到测量坐标系下的测量参数;Perform laser light knife plane calibration on the first visual sensor and the second visual sensor respectively to obtain measurement parameters in the measurement coordinate system;

根据所述相机参数以及所述测量参数对所述第一视觉传感器和所述第二视觉传感器分别进行运动方向标定,分别得到所述第一视觉传感器和所述第二视觉传感器的测量坐标系的Y轴与实际运动方向的偏移量;According to the camera parameters and the measurement parameters, the movement directions of the first visual sensor and the second visual sensor are respectively calibrated, and the measurement coordinate systems of the first visual sensor and the second visual sensor are respectively obtained. The offset between the Y axis and the actual direction of motion;

分别将所述第一视觉传感器和所述第二视觉传感器的所述相机参数由所述相机坐标系转换到所述测量坐标系,成为所述测量坐标系中的测量参数;respectively transforming the camera parameters of the first visual sensor and the second visual sensor from the camera coordinate system to the measurement coordinate system to become measurement parameters in the measurement coordinate system;

对所述第一视觉传感器和所述第二视觉传感器进行位置关系标定;Calibrating the positional relationship between the first visual sensor and the second visual sensor;

将所述第二视觉传感器的测量坐标系下的测量参数转换到所述第一视觉传感器的测量坐标系下;converting the measurement parameters in the measurement coordinate system of the second vision sensor to the measurement coordinate system of the first vision sensor;

对叶片数字化样板检测系统进行系统坐标系标定;Calibrate the system coordinate system of the blade digital template inspection system;

将所述第一视觉传感器下的测量坐标系转换到叶片数字化样板检测系统的系统坐标系下,得到所述叶片数字化样板检测系统的系统坐标系下的完整参数。The measurement coordinate system under the first vision sensor is transformed into the system coordinate system of the blade digital template inspection system, and the complete parameters under the system coordinate system of the blade digital template inspection system are obtained.

优选地,所述对所述第一视觉传感器和所述第二视觉传感器分别进行激光光刀平面标定得到测量坐标系下的测量参数包括:Preferably, the laser light knife plane calibration of the first visual sensor and the second visual sensor to obtain the measurement parameters in the measurement coordinate system includes:

通过进行摄像机标定后的摄像机分别拍摄多组无激光条纹和有激光条纹的标定板图像;After the camera is calibrated, multiple groups of calibration plate images without laser stripes and laser stripes are taken respectively;

获取标定板在所述相机坐标系下的位姿;Obtain the pose of the calibration board in the camera coordinate system;

对有激光条纹的图像进行光条中心提取;Extract the center of the light stripe from the image with laser stripes;

计算所述光条中心的物理坐标值;calculating the physical coordinate value of the center of the light bar;

通过拟合得到所述光条中心的物理坐标值所在的激光光刀平面,得到测量坐标系;Obtain the laser light knife plane where the physical coordinate value of the center of the light strip is located by fitting, and obtain the measurement coordinate system;

输出所述测量坐标系以及所述测量坐标系与所述相机坐标系的变换关系。Outputting the measurement coordinate system and the transformation relationship between the measurement coordinate system and the camera coordinate system.

优选地,所述获取标定板在所述相机坐标系下的位姿包括:Preferably, the obtaining the pose of the calibration board in the camera coordinate system includes:

根据n个控制点的空间位置信息以该n个控制点的像点信息计算n各控制点在相机坐标系下的位置位姿。According to the spatial position information of the n control points and the image point information of the n control points, the positions and poses of the n control points in the camera coordinate system are calculated.

优选地,所述通过拟合得到所述光条中心的物理坐标值所在的激光光刀平面包括:Preferably, the laser light knife plane where the physical coordinate value of the center of the light bar is obtained by fitting includes:

通过最小二乘优化方法拟合所述光条中心的物理坐标值所在的激光光刀平面。The laser light knife plane where the physical coordinate value of the center of the light bar is located is fitted by a least squares optimization method.

优选地,所述根据所述相机参数以及所述测量参数对所述第一视觉传感器和所述第二视觉传感器分别进行运动方向标定,分别得到所述第一视觉传感器和所述第二视觉传感器的测量坐标系的Y轴与实际运动方向的偏移量包括:Preferably, the movement directions of the first visual sensor and the second visual sensor are respectively calibrated according to the camera parameters and the measurement parameters to obtain the first visual sensor and the second visual sensor respectively. The offset between the Y axis of the measurement coordinate system and the actual direction of motion includes:

将所述第一视觉传感器和所述第二视觉传感器分别在移动模组上移动多个位置,且在移动的每个位置上进行标定板的拍摄;Moving the first visual sensor and the second visual sensor to multiple positions on the mobile module, and photographing the calibration plate at each position of the movement;

获取标定板的位姿;Obtain the pose of the calibration board;

分别计算所述第一视觉传感器的每个位置的相对姿态变换以及和所述第二视觉传感器的每个位置的相对姿态变换;Calculating the relative pose transformation of each position of the first visual sensor and the relative pose transformation of each position of the second visual sensor respectively;

求解运动方向在相机坐标系下的方向向量;Solve the direction vector of the motion direction in the camera coordinate system;

输出所述方向向量。Output the direction vector.

优选地,所述对所述第一视觉传感器和所述第二视觉传感器进行位置关系标定包括:Preferably, said calibrating the positional relationship between said first visual sensor and said second visual sensor comprises:

所述第一视觉传感器和所述第二视觉传感器同时扫描测量空间中标定球的若干位置;The first vision sensor and the second vision sensor simultaneously scan several positions of the calibration ball in the measurement space;

分别三维重建拟合出标定球在不同位置的球心坐标;Three-dimensional reconstruction and fitting of the coordinates of the center of the calibration ball at different positions;

利用刚体变化求出所述第一视觉传感器和所述第二视觉传感器之间的位置关系。The positional relationship between the first visual sensor and the second visual sensor is obtained by using a rigid body change.

优选地,对叶片数字化样板检测系统进行系统坐标系标定包括:Preferably, calibrating the system coordinate system of the blade digital template detection system includes:

将标定球放置在转台边缘;Place the calibration ball on the edge of the turntable;

通过所述第一视觉传感器扫描重建拟合出所述标定球的球心坐标;Fitting the center coordinates of the calibration sphere by scanning and reconstructing the first visual sensor;

保持标定球与转台相对静止,旋转转台,并重复扫描重建拟合的步骤得到所述标定球在多个位置的球心坐标;Keeping the calibration ball and the turntable relatively stationary, rotating the turntable, and repeating the steps of scanning, reconstruction and fitting to obtain the coordinates of the center of the calibration ball at multiple positions;

拟合出转台旋转轴和旋转中心,得到系统坐标系,并得到测量坐标系与系统坐标系的转换关系。Fit the rotation axis and rotation center of the turntable to obtain the system coordinate system, and obtain the conversion relationship between the measurement coordinate system and the system coordinate system.

优选地,所述第一视觉传感器的相机坐标系包括Pc1(Xc1,Yc1,Zc1),所述第一视觉传感器的测量坐标系包括Pl1(Xl1,Yl1,Zl1),所述第二视觉传感器的相机坐标系包括Pc2(Xc2,Yc2,Zc2),所述第二视觉传感器的测量坐标系包括Pl2(Xl2,Yl2,Zl2)。Preferably, the camera coordinate system of the first visual sensor includes P c1 (X c1 , Y c1 , Z c1 ), and the measurement coordinate system of the first visual sensor includes P l1 (X l1 , Y l1 , Z l1 ) , the camera coordinate system of the second visual sensor includes P c2 (X c2 , Y c2 , Z c2 ), and the measurement coordinate system of the second visual sensor includes P l2 (X l2 , Y l2 , Z l2 ).

优选地,所述叶片数字化样板检测系统的系统坐标系包括Ps(Xs,Ys,Zs)。Preferably, the system coordinate system of the blade digital template inspection system includes P s (X s , Y s , Z s ).

作为本发明的第二个方面,提供一种叶片数字化样板检测系统的标定装置,其中,所述叶片数字化样板检测系统的标定装置包括:As a second aspect of the present invention, a calibration device for a blade digital template detection system is provided, wherein the calibration device for the blade digital template detection system includes:

摄像机标定模块,所述摄像机标定模块用于对所述第一视觉传感器和所述第二视觉传感器分别进行摄像机标定得到相机坐标系下的相机参数;A camera calibration module, the camera calibration module is used to perform camera calibration on the first visual sensor and the second visual sensor respectively to obtain camera parameters in the camera coordinate system;

激光光刀平面标定模块,所述激光光刀平面标定模块用于对所述第一视觉传感器和所述第二视觉传感器分别进行激光光刀平面标定得到测量坐标系下的测量参数;A laser light knife plane calibration module, the laser light knife plane calibration module is used to perform laser light knife plane calibration on the first visual sensor and the second visual sensor respectively to obtain measurement parameters in the measurement coordinate system;

运动方向标定模块,所述运动方向标定模块用于根据所述相机参数以及所述测量参数对所述第一视觉传感器和所述第二视觉传感器分别进行运动方向标定,分别得到所述第一视觉传感器和所述第二视觉传感器的测量坐标系的Y轴与实际运动方向的偏移量;A movement direction calibration module, the movement direction calibration module is used to calibrate the movement direction of the first vision sensor and the second vision sensor according to the camera parameters and the measurement parameters, respectively to obtain the first vision The offset between the Y axis of the measurement coordinate system of the sensor and the second visual sensor and the actual direction of motion;

第一转换模块,所述第一转换模块用于分别将所述第一视觉传感器和所述第二视觉传感器的所述相机参数由所述相机坐标系转换到所述测量坐标系,成为所述测量坐标系中的测量参数;A first conversion module, the first conversion module is used to respectively convert the camera parameters of the first visual sensor and the second visual sensor from the camera coordinate system to the measurement coordinate system, becoming the Measurement parameters in the measurement coordinate system;

位置关系标定模块,所述位置关系标定模块用于对所述第一视觉传感器和所述第二视觉传感器进行位置关系标定;A positional relationship calibration module, the positional relationship calibration module is used to calibrate the positional relationship between the first visual sensor and the second visual sensor;

第二转换模块,所述第二转换模块用于将所述第二视觉传感器的测量坐标系下的测量参数转换到所述第一视觉传感器的测量坐标系下;A second conversion module, the second conversion module is used to convert the measurement parameters in the measurement coordinate system of the second vision sensor to the measurement coordinate system of the first vision sensor;

系统坐标系标定模块,所述系统坐标系标定模块用于对叶片数字化样板检测系统进行系统坐标系标定;A system coordinate system calibration module, the system coordinate system calibration module is used to perform system coordinate system calibration on the blade digital template detection system;

第三转换模块,所述第三转换模块用于将所述第一视觉传感器下的测量坐标系转换到叶片数字化样板检测系统的系统坐标系下,得到所述叶片数字化样板检测系统的系统坐标系下的完整参数。The third conversion module, the third conversion module is used to convert the measurement coordinate system under the first visual sensor into the system coordinate system of the blade digital template detection system, and obtain the system coordinate system of the blade digital template detection system Full parameters below.

本发明提供的叶片数字化样板检测系统的标定方法,用于对能够快速扫描叶片型面、获取叶片完整点云、自动分析测量参数、输出检测报告的叶片数字化样板检测装置进行系统标定。通过通用标定标靶对所述装置快速完成摄像机标定、激光光刀平面标定、测量运动方向标定、设备位置关系标定、系统坐标系标定,使得准确获取各坐标系之间的相互转化关系,降低标定成本,实现了完整标定,且能够提高整个系统的标定效率,简化系统标定的流程,实现了叶片数字化样板测量装置的适用性。The calibration method of the blade digital sample detection system provided by the present invention is used for system calibration of the blade digital sample detection device that can quickly scan the blade profile, obtain the complete point cloud of the blade, automatically analyze the measurement parameters, and output the detection report. Quickly complete the camera calibration, laser light knife plane calibration, measurement movement direction calibration, equipment position relationship calibration, and system coordinate system calibration for the device through the general calibration target, so that the mutual transformation relationship between each coordinate system can be accurately obtained and the calibration cost can be reduced. , realize complete calibration, and can improve the calibration efficiency of the whole system, simplify the process of system calibration, and realize the applicability of the blade digital template measurement device.

附图说明Description of drawings

附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the description, together with the following specific embodiments, are used to explain the present invention, but do not constitute a limitation to the present invention. In the attached picture:

图1为本发明提供的叶片数字化样板检测系统的标定方法的流程图。Fig. 1 is a flow chart of the calibration method of the blade digital template detection system provided by the present invention.

图2为本发明提供的叶片数字化样板检测系统的各坐标系示意图。Fig. 2 is a schematic diagram of each coordinate system of the blade digital template inspection system provided by the present invention.

图3为本发明提供的叶片数字化样板检测系统的标定方法的具体标定流程图。Fig. 3 is a specific calibration flowchart of the calibration method of the blade digital template detection system provided by the present invention.

图4为本发明提供的激光光刀平面标定流程图。Fig. 4 is a flow chart of laser light knife plane calibration provided by the present invention.

图5为本发明提供的运动方向标定流程图。Fig. 5 is a flow chart of the calibration of the motion direction provided by the present invention.

图6为本发明提供的两个视觉传感器之间位置关系标定流程图。FIG. 6 is a flow chart of calibration of the positional relationship between two visual sensors provided by the present invention.

图7为本发明提供的系统坐标系标定流程图。Fig. 7 is a flow chart of system coordinate system calibration provided by the present invention.

图8为本发明提供的叶片数字化样板检测系统的标定装置的结构示意图。Fig. 8 is a schematic structural diagram of the calibration device of the blade digital template inspection system provided by the present invention.

具体实施方式Detailed ways

以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。Specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. It should be understood that the specific embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.

作为本发明的第一个方面,提供一种叶片数字化样板检测系统的标定方法,其中,所述叶片数字化样板检测系统包括第一视觉传感器和第二视觉传感器,所述第一视觉传感器和所述第二视觉传感器对称相对设置,如图1所示,所述叶片数字化样板检测系统的标定方法包括:As the first aspect of the present invention, there is provided a calibration method for a blade digital template detection system, wherein the blade digital template detection system includes a first visual sensor and a second visual sensor, and the first visual sensor and the The second visual sensor is symmetrically arranged relative to each other, as shown in Figure 1, the calibration method of the blade digital template detection system includes:

S110、对所述第一视觉传感器和所述第二视觉传感器分别进行摄像机标定得到相机坐标系下的相机参数;S110. Perform camera calibration on the first visual sensor and the second visual sensor respectively to obtain camera parameters in the camera coordinate system;

S120、对所述第一视觉传感器和所述第二视觉传感器分别进行激光光刀平面标定得到测量坐标系下的测量参数;S120. Perform laser light knife plane calibration on the first visual sensor and the second visual sensor respectively to obtain measurement parameters in the measurement coordinate system;

S130、根据所述相机参数以及所述测量参数对所述第一视觉传感器和所述第二视觉传感器分别进行运动方向标定,分别得到所述第一视觉传感器和所述第二视觉传感器的测量坐标系的Y轴与实际运动方向的偏移量;S130. Calibrate the movement directions of the first visual sensor and the second visual sensor according to the camera parameters and the measurement parameters, and respectively obtain the measurement coordinates of the first visual sensor and the second visual sensor The offset between the Y axis of the system and the actual direction of motion;

S140、分别将所述第一视觉传感器和所述第二视觉传感器的所述相机参数由所述相机坐标系转换到所述测量坐标系,成为所述测量坐标系中的测量参数;S140. Convert the camera parameters of the first visual sensor and the second visual sensor from the camera coordinate system to the measurement coordinate system, respectively, to become measurement parameters in the measurement coordinate system;

S150、对所述第一视觉传感器和所述第二视觉传感器进行位置关系标定;S150. Calibrate the positional relationship between the first visual sensor and the second visual sensor;

S160、将所述第二视觉传感器的测量坐标系下的测量参数转换到所述第一视觉传感器的测量坐标系下;S160. Convert the measurement parameters in the measurement coordinate system of the second vision sensor to the measurement coordinate system of the first vision sensor;

S170、对叶片数字化样板检测系统进行系统坐标系标定;S170. Calibrate the system coordinate system of the blade digital template detection system;

S180、将所述第一视觉传感器下的测量坐标系转换到叶片数字化样板检测系统的系统坐标系下,得到所述叶片数字化样板检测系统的系统坐标系下的完整参数。S180. Transform the measurement coordinate system under the first vision sensor into the system coordinate system of the blade digital template inspection system, and obtain complete parameters under the system coordinate system of the blade digital template inspection system.

本发明提供的叶片数字化样板检测系统的标定方法,用于对能够快速扫描叶片型面、获取叶片完整点云、自动分析测量参数、输出检测报告的叶片数字化样板检测装置进行系统标定。通过通用标定标靶对所述装置快速完成摄像机标定、激光光刀平面标定、测量运动方向标定、设备位置关系标定、系统坐标系标定,使得准确获取各坐标系之间的相互转化关系,降低标定成本,实现了完整标定,且能够提高整个系统的标定效率,简化系统标定的流程,实现了叶片数字化样板测量装置的适用性。The calibration method of the blade digital sample detection system provided by the present invention is used for system calibration of the blade digital sample detection device that can quickly scan the blade profile, obtain the complete point cloud of the blade, automatically analyze the measurement parameters, and output the detection report. Quickly complete the camera calibration, laser light knife plane calibration, measurement movement direction calibration, equipment position relationship calibration, and system coordinate system calibration for the device through the general calibration target, so that the mutual transformation relationship between each coordinate system can be accurately obtained and the calibration cost can be reduced. , realize complete calibration, and can improve the calibration efficiency of the whole system, simplify the process of system calibration, and realize the applicability of the blade digital template measurement device.

下面结合图2和图3所示,对本发明提供的叶片数字化样板检测系统的标定方法的工作过程进行详细描述。The working process of the calibration method of the blade digital template detection system provided by the present invention will be described in detail below with reference to FIG. 2 and FIG. 3 .

如图2所示叶片数字化样板检测装置中各坐标系的位置及转换示意图,Pc1(Xc1,Yc1,Zc1)、Pl1(Xl1,Yl1,Zl1)为第一视觉传感器的相机坐标系与测量坐标系,Pc2(Xc2,Yc2,Zc2)、Pl2(Xl2,Yl2,Zl2)为第二视觉传感器的相机坐标系与测量坐标系,Ps(Xs,Ys,Zs)为系统坐标系,[R,T]relative为所述第一视觉传感器和所述第二视觉传感器之间位置关系标定的变换矩阵,[R,T]svstem为设备测量坐标系与系统坐标系的变换矩阵。相机拍摄的激光条纹图片经过光条中心提取,经过运动方向的标定得到的测量坐标系Y轴与实际运动方向的偏移量,将光条中心从相机坐标系下转换到测量坐标系下,通过[R,T]relative将第二视觉传感器测量坐标系下的光条点云变换到第一视觉传感器的测量坐标系下,再由[R,T]svstem将每次转台旋转后测量的点云数据从第一视觉传感器的测量坐标系变换到系统坐标系下。系统标定流程如图3所示,摄像机标定、激光光刀平面标定、测量运动方向标定只需要一个通用视觉标定板,设备位置关系标定、系统坐标系标定只需要一个通用标定球。标定过程涵盖于标定软件中,标定软件集成完整标定过程、标定图片显示、三维点云显示、用户交互操作、点云拟合等功能。标定完成后,不同的视觉传感器在对不同视角被测物扫描重建后,可直接得到统一在系统坐标系下的完整点云。As shown in Figure 2, the schematic diagram of the position and transformation of each coordinate system in the blade digital template detection device, P c1 (X c1 , Y c1 , Z c1 ), P l1 (X l1 , Y l1 , Z l1 ) are the first visual sensors The camera coordinate system and measurement coordinate system of , P c2 (X c2 , Y c2 , Z c2 ), P l2 (X l2 , Y l2 , Z l2 ) are the camera coordinate system and measurement coordinate system of the second visual sensor, P s (X s , Y s , Z s ) is the system coordinate system, [R, T] relative is the transformation matrix that calibrates the positional relationship between the first visual sensor and the second visual sensor, [R, T] svstem It is the transformation matrix between the equipment measurement coordinate system and the system coordinate system. The laser stripe picture taken by the camera is extracted by the center of the light strip, and the offset between the Y-axis of the measurement coordinate system and the actual movement direction is obtained through the calibration of the movement direction, and the center of the light strip is converted from the camera coordinate system to the measurement coordinate system. [R, T] relative transforms the light strip point cloud in the measurement coordinate system of the second visual sensor to the measurement coordinate system of the first visual sensor, and then [R, T] svstem converts the point cloud measured after each turntable rotation The data is transformed from the measurement coordinate system of the first vision sensor to the system coordinate system. The system calibration process is shown in Figure 3. Camera calibration, laser light knife plane calibration, and measurement movement direction calibration only need a general vision calibration board, and equipment position relationship calibration and system coordinate system calibration only need a general calibration ball. The calibration process is covered in the calibration software, which integrates the complete calibration process, calibration picture display, 3D point cloud display, user interaction, point cloud fitting and other functions. After the calibration is completed, different visual sensors can directly obtain a complete point cloud unified in the system coordinate system after scanning and reconstructing the measured objects with different viewing angles.

具体地,所述对所述第一视觉传感器和所述第二视觉传感器分别进行激光光刀平面标定得到测量坐标系下的测量参数包括:Specifically, the laser light knife plane calibration of the first visual sensor and the second visual sensor to obtain the measurement parameters in the measurement coordinate system includes:

通过进行摄像机标定后的摄像机分别拍摄多组无激光条纹和有激光条纹的标定板图像;After the camera is calibrated, multiple groups of calibration plate images without laser stripes and laser stripes are taken respectively;

获取标定板在所述相机坐标系下的位姿;Obtain the pose of the calibration board in the camera coordinate system;

对有激光条纹的图像进行光条中心提取;Extract the center of the light stripe from the image with laser stripes;

计算所述光条中心的物理坐标值;calculating the physical coordinate value of the center of the light bar;

通过拟合得到所述光条中心的物理坐标值所在的激光光刀平面,得到测量坐标系;Obtain the laser light knife plane where the physical coordinate value of the center of the light strip is located by fitting, and obtain the measurement coordinate system;

输出所述测量坐标系以及所述测量坐标系与所述相机坐标系的变换关系。Outputting the measurement coordinate system and the transformation relationship between the measurement coordinate system and the camera coordinate system.

所述获取标定板在所述相机坐标系下的位姿包括:The obtaining the pose of the calibration board under the camera coordinate system includes:

根据n个控制点的空间位置信息以该n个控制点的像点信息计算n各控制点在相机坐标系下的位置位姿。According to the spatial position information of the n control points and the image point information of the n control points, the positions and poses of the n control points in the camera coordinate system are calculated.

进一步具体地,所述通过拟合得到所述光条中心的物理坐标值所在的激光光刀平面包括:Further specifically, the laser light knife plane where the physical coordinate value of the center of the light bar is obtained by fitting includes:

通过最小二乘优化方法拟合所述光条中心的物理坐标值所在的激光光刀平面。The laser light knife plane where the physical coordinate value of the center of the light bar is located is fitted by a least squares optimization method.

下面结合图4对激光光刀平面标定进行详细说明。The laser light knife plane calibration will be described in detail below in conjunction with FIG. 4 .

用标定好的摄像机分别在测量空间中拍摄多组无激光与有激光的标定板图像,用PnP方法获取标定板在相机坐标系下的位姿,对有激光条纹的图片进行光条中心提取。PnP方法是通过已知n个控制点的空间位置信息以及他们的像点信息来计算这n个点在相机坐标系下的位置姿态。根据标定板提供的平面约束可解算光条中心的物理坐标值,用最小二乘优化方法拟合出光条中心的物理坐标所在的光刀平面Ax+By+Cz+D=0。视觉传感器的测量坐标建立在激光光刀平面上,摄像机光心到激光光刀平面的垂足为测量坐标系原点,平行于激光平面的方向为z轴,平行于摄像机与激光平面的基线方向为y轴,两者叉乘为x轴,获得光刀平面坐标系。结合相机的内参矩阵和光刀平面坐标系可构建从激光条纹的图像像素坐标到实际物理坐标值的物理尺寸的转化矩阵。Use the calibrated camera to take multiple sets of images of the calibration plate without laser and with laser in the measurement space, and use the PnP method to obtain the pose of the calibration plate in the camera coordinate system, and extract the center of the light strip from the pictures with laser stripes. The PnP method is to calculate the position and attitude of n points in the camera coordinate system by knowing the spatial position information of n control points and their image point information. According to the plane constraint provided by the calibration board, the physical coordinate value of the light bar center can be solved, and the light knife plane Ax+By+Cz+D=0 where the physical coordinates of the light bar center are fitted is fitted by the least squares optimization method. The measurement coordinates of the visual sensor are established on the plane of the laser light knife. The vertical foot from the optical center of the camera to the plane of the laser light knife is the origin of the measurement coordinate system, the direction parallel to the laser plane is the z-axis, and the direction parallel to the baseline between the camera and the laser plane is the y-axis , the cross product of the two is the x-axis, and the light knife plane coordinate system is obtained. Combining the internal reference matrix of the camera and the coordinate system of the light knife plane, the transformation matrix of the physical size from the image pixel coordinates of the laser stripes to the actual physical coordinate values can be constructed.

具体地,所述根据所述相机参数以及所述测量参数对所述第一视觉传感器和所述第二视觉传感器分别进行运动方向标定,分别得到所述第一视觉传感器和所述第二视觉传感器的测量坐标系的Y轴与实际运动方向的偏移量包括:Specifically, the movement directions of the first visual sensor and the second visual sensor are respectively calibrated according to the camera parameters and the measurement parameters to obtain the first visual sensor and the second visual sensor respectively. The offset between the Y axis of the measurement coordinate system and the actual direction of motion includes:

将所述第一视觉传感器和所述第二视觉传感器分别在移动模组上移动多个位置,且在移动的每个位置上进行标定板的拍摄;Moving the first visual sensor and the second visual sensor to multiple positions on the mobile module, and photographing the calibration plate at each position of the movement;

获取标定板的位姿;Obtain the pose of the calibration board;

分别计算所述第一视觉传感器的每个位置的相对姿态变换以及和所述第二视觉传感器的每个位置的相对姿态变换;Calculating the relative pose transformation of each position of the first visual sensor and the relative pose transformation of each position of the second visual sensor respectively;

求解运动方向在相机坐标系下的方向向量;Solve the direction vector of the motion direction in the camera coordinate system;

输出所述方向向量。Output the direction vector.

下面结合图5所示对运动方向标定进行详细说明。The calibration of the motion direction will be described in detail below in conjunction with FIG. 5 .

由于叶片数字化样板检测装置的视觉传感器与线性模组在安装过程中必然存在误差,无法保证测量坐标系的y轴与实际运动方向一致,所以需要标定出运动方向。线性模组搭载视觉传感器移动多个位置拍摄标定板,根据对应性信息用PnP估计标定板的位姿,计算视觉传感器的相对姿态变换,求解运动方向在摄像机测量坐标系下的方向向量。如果视觉传感器按照测量要求倾斜安装,依旧利用上述方法标定出实际运动方向。Since the vision sensor and the linear module of the blade digital template inspection device must have errors during the installation process, it is impossible to ensure that the y-axis of the measurement coordinate system is consistent with the actual direction of motion, so it is necessary to calibrate the direction of motion. The linear module is equipped with a visual sensor to move multiple positions to shoot the calibration plate, estimate the pose of the calibration plate with PnP according to the correspondence information, calculate the relative attitude transformation of the visual sensor, and solve the direction vector of the motion direction in the camera measurement coordinate system. If the vision sensor is installed obliquely according to the measurement requirements, still use the above method to calibrate the actual direction of motion.

具体地,所述对所述第一视觉传感器和所述第二视觉传感器进行位置关系标定包括:Specifically, the calibration of the positional relationship between the first visual sensor and the second visual sensor includes:

所述第一视觉传感器和所述第二视觉传感器同时扫描测量空间中标定球的若干位置;The first vision sensor and the second vision sensor simultaneously scan several positions of the calibration ball in the measurement space;

分别三维重建拟合出标定球在不同位置的球心坐标;Three-dimensional reconstruction and fitting of the coordinates of the center of the calibration ball at different positions;

利用刚体变化求出所述第一视觉传感器和所述第二视觉传感器之间的位置关系。The positional relationship between the first visual sensor and the second visual sensor is obtained by using a rigid body change.

下面结合图6对两个视觉传感器之间的位置关系标定进行详细说明。The calibration of the positional relationship between the two visual sensors will be described in detail below in conjunction with FIG. 6 .

两个视觉传感器同时扫描测量空间中标定球的若干位置,三维重建拟合出标定球在不同位置的球心坐标,利用刚体变换的方法求出设备之间的位置关系。Two vision sensors scan several positions of the calibration ball in the measurement space at the same time, and the three-dimensional reconstruction fits the coordinates of the center of the calibration ball at different positions, and uses the method of rigid body transformation to obtain the positional relationship between the devices.

具体地,对叶片数字化样板检测系统进行系统坐标系标定包括:Specifically, the calibration of the system coordinate system for the blade digital template detection system includes:

将标定球放置在转台边缘;Place the calibration ball on the edge of the turntable;

通过所述第一视觉传感器扫描重建拟合出所述标定球的球心坐标;Fitting the center coordinates of the calibration sphere by scanning and reconstructing the first visual sensor;

保持标定球与转台相对静止,旋转转台,并重复扫描重建拟合的步骤得到所述标定球在多个位置的球心坐标;Keeping the calibration ball and the turntable relatively stationary, rotating the turntable, and repeating the steps of scanning, reconstruction and fitting to obtain the coordinates of the center of the calibration ball at multiple positions;

拟合出转台旋转轴和旋转中心,得到系统坐标系,并得到测量坐标系与系统坐标系的转换关系。Fit the rotation axis and rotation center of the turntable to obtain the system coordinate system, and obtain the conversion relationship between the measurement coordinate system and the system coordinate system.

下面结合图7对系统坐标系标定进行详细说明。The calibration of the system coordinate system will be described in detail below in conjunction with FIG. 7 .

将标定球放置在转台边缘,用一台视觉传感器扫描重建拟合出球心坐标,旋转转台,重复以上动作得到多个位置的球心坐标,拟合出转台旋转轴与旋转中心,可求出转台坐标系即系统坐标系的z轴与原点,摄像机光轴方向与z轴叉乘方向为x轴,z轴与x轴叉乘方向为y轴。标定得出测量坐标系与系统坐标系的转换关系。Place the calibration ball on the edge of the turntable, use a visual sensor to scan and reconstruct the coordinates of the center of the sphere, rotate the turntable, repeat the above actions to obtain the coordinates of the center of the sphere at multiple positions, and fit the rotation axis and center of rotation of the turntable to obtain The turntable coordinate system is the z-axis and the origin of the system coordinate system, the direction of the cross product of the camera optical axis and the z-axis is the x-axis, and the direction of the cross-product of the z-axis and the x-axis is the y-axis. Calibration obtains the conversion relationship between the measurement coordinate system and the system coordinate system.

优选地,所述第一视觉传感器的相机坐标系包括Pc1(Xc1,Yc1,Zc1),所述第一视觉传感器的测量坐标系包括Pl1(Xl1,Yl1,Zl1),所述第二视觉传感器的相机坐标系包括Pc2(Xc2,Yc2,Zc2),所述第二视觉传感器的测量坐标系包括Pl2(Xl2,Yl2,Zl2)。Preferably, the camera coordinate system of the first visual sensor includes P c1 (X c1 , Y c1 , Z c1 ), and the measurement coordinate system of the first visual sensor includes P l1 (X l1 , Y l1 , Z l1 ) , the camera coordinate system of the second visual sensor includes P c2 (X c2 , Y c2 , Z c2 ), and the measurement coordinate system of the second visual sensor includes P l2 (X l2 , Y l2 , Z l2 ).

优选地,所述叶片数字化样板检测系统的系统坐标系包括Ps(Xs,Ys,Zs)。Preferably, the system coordinate system of the blade digital template inspection system includes P s (X s , Y s , Z s ).

下面对本发明提供的叶片数字化样板检测系统的标定方法的具体实施过程进行说明。The specific implementation process of the calibration method of the blade digital template detection system provided by the present invention will be described below.

如图3所示,叶片数字化样板检测系统的标定方法的标定顺序依次为迭代摄像机标定、激光光刀平面标定、测量运动方向标定、传感器相对位置关系标定、系统坐标系标定。标定板采用圆环图案特征的陶瓷标定板,圆环行列分布为11×14,间隔15mm。标定球为理论直径50mm,实际经三坐标测量为49.978mm的哑光陶瓷标定球。As shown in Figure 3, the calibration sequence of the calibration method of the blade digital template detection system is iterative camera calibration, laser light knife plane calibration, measurement movement direction calibration, sensor relative positional relationship calibration, and system coordinate system calibration. The calibration plate adopts a ceramic calibration plate with a ring pattern, and the rows and columns of the rings are 11×14, with an interval of 15mm. The calibration ball is a matte ceramic calibration ball with a theoretical diameter of 50mm and an actual measurement of 49.978mm by three coordinates.

上述迭代摄像机标定的具体内容为拍摄不同位姿下的标定板图片,利用OpenCV函数获取摄像机标定用数据,再根据张正友摄像机标定方法获得相机内外参,将原始图像转换到标定板与图像平面平行的视图上,进行手动选择ROI区域对圆环中心点检测,将得到的圆环中心点转换到原始图像点,利用对应数据再次进行相机标定。重复上述过程直到标定精度不再提高,得到相机的内外参数。The specific content of the above iterative camera calibration is to take pictures of the calibration board in different poses, use the OpenCV function to obtain the data for camera calibration, and then obtain the internal and external parameters of the camera according to Zhang Zhengyou's camera calibration method, and convert the original image to the calibration board parallel to the image plane. On the view, manually select the ROI area to detect the center point of the ring, convert the obtained center point of the ring to the original image point, and use the corresponding data to perform camera calibration again. Repeat the above process until the calibration accuracy is no longer improved, and the internal and external parameters of the camera are obtained.

激光光刀平面标定具体流程如图4所示,在测量空间中拍摄多组无激光与有激光的标定板图像,每组照片先拍摄无激光标定板图像,保持标定板与相机位置不动,调小曝光后,拍摄相同位姿下带有激光光条的标定板图像。用PnP方法获取标定板在相机坐标系下的位姿,对有激光条纹的图片进行光条中心提取。根据标定板提供的平面约束可解算光条中心的物理坐标值,用最小二乘优化方法拟合出光条中心的物理坐标所在的光刀平面方法Ax+By+Cz+D=0。建立测量坐标系在相机坐标系下的表示,[R,T]LaserInCam=[Xaxis Yaxis Zaxis],[Ox Oy Oz]T],其中[Ox Oy Oz]T是摄像机光心到激光光刀平面垂足在相机坐标系下的表示,垂足通过直线[At Bt Ct]T,其中t为自由标量,带入激光平面方程为测量坐标系的Y轴为激光平面的方向指向相机坐标系原点,表示为Yaxis=sign(norm(A,B,C)),X轴为Y轴与[0 0 1]的叉乘,表示为Xaxis=cross(Yaxis,[001]),Z轴为X轴与Y轴的叉乘,表示为Zaxis=cross(Xaxis,Yaxis)。最后求逆可得到相机坐标系与测量坐标系的变换lRTc=[lRclTc]=invers([R,T]LaserInCam)。The specific process of laser light knife plane calibration is shown in Figure 4. Multiple groups of calibration plate images without laser and with laser are taken in the measurement space. For each group of photos, the image of the calibration plate without laser is first taken, and the positions of the calibration plate and the camera are kept still. After a small exposure, take an image of the calibration plate with the laser light bar in the same pose. Use the PnP method to obtain the pose of the calibration board in the camera coordinate system, and extract the center of the light stripes from the pictures with laser stripes. According to the plane constraint provided by the calibration board, the physical coordinate value of the light bar center can be solved, and the light knife plane method Ax+By+Cz+D=0 where the physical coordinates of the light bar center are fitted by the least squares optimization method. Establish the representation of the measurement coordinate system in the camera coordinate system, [R, T] LaserInCam = [X axis Y axis Z axis ], [O x O y O z ] T ], where [O x O y O z ] T is The representation of the vertical foot of the camera optical center to the laser light knife plane in the camera coordinate system, the vertical foot passes through the straight line [At Bt Ct] T , where t is a free scalar, and the equation of the laser plane is The Y axis of the measurement coordinate system is the direction of the laser plane pointing to the origin of the camera coordinate system, which is expressed as Y axis = sign(norm(A, B, C)), and the X axis is the cross product of the Y axis and [0 0 1], which means X axis =cross(Y axis , [001]), and the Z axis is the cross product of the X axis and the Y axis, expressed as Z axis =cross(X axis , Y axis ). Finally, the inversion can be obtained to obtain the transformation between the camera coordinate system and the measurement coordinate system l RT c =[ l R c , l T c ]=invers([R, T] LaserInCam ).

测量运动方向标定流程如图5所示,目的是为了标定测量坐标系Y轴与实际运动方向的偏差,其实质还是在确立视觉传感器测量坐标系。保持标定板静止在视场中,使叶片数字化样板测量装置的线性模组搭载视觉传感器每移动一小段距离就拍摄图片,使用PnP方法获得视觉传感器移动到不同位置的标定板位姿,得到运动方向在相机坐标系下的方向向量cYm,其在测量坐标系下的表示为lYmlRc cYm,其中为相机坐标系在激光测量坐标系下的旋量lRc。当线性模组移动L时,测量坐标系相对于实际扫描坐标系的变换关系为及理论测量坐标系转化到在运动方向标定后真实扫描坐标系下为PsclYm *M+P1The calibration process of the measurement motion direction is shown in Figure 5. The purpose is to calibrate the deviation between the Y axis of the measurement coordinate system and the actual motion direction. The essence is to establish the measurement coordinate system of the visual sensor. Keep the calibration board still in the field of view, make the linear module of the blade digital sample measurement device equipped with a visual sensor take pictures every time it moves a short distance, and use the PnP method to obtain the calibration board poses when the visual sensor moves to different positions, and get the direction of motion The direction vector c Y m in the camera coordinate system is expressed as l Y m = l R c c Y m in the measurement coordinate system, where is the screw l R c of the camera coordinate system in the laser measurement coordinate system. When the linear module moves L, the transformation relationship between the measurement coordinate system and the actual scanning coordinate system is And the transformation from the theoretical measurement coordinate system to the real scanning coordinate system after the movement direction is calibrated is P sc = l Y m * M + P 1 .

两个视觉传感器之间的相对位置关系标定流程如图6所示,将标定球放置在叶片数字化样板检测装置的视场中任意位置,同时用两个视觉传感器扫描重建标定球的点云,各自重建多个位置后,用最小二乘法拟合球心,通过两个视觉传感器实际扫描坐标系下的三维坐标建立刚体变换关系。The relative positional relationship calibration process between the two visual sensors is shown in Figure 6. The calibration ball is placed anywhere in the field of view of the blade digital template detection device, and the point cloud of the calibration ball is scanned and reconstructed by two visual sensors at the same time. After reconstructing multiple positions, the least square method is used to fit the center of the sphere, and the rigid body transformation relationship is established by actually scanning the three-dimensional coordinates in the coordinate system with two visual sensors.

系统坐标系标定流程如图7所示,在转台靠近边缘的位置放置标定球,利用第一视觉传感器扫描重建标定球点云,保持标定球相对转台位置不动,旋转转台一个角度后重复以上操作,用多个角度的球心坐标最小拟合转台圆平面,以转台平面法向向上作为系统坐标系的Z轴,以相机光轴方向和Z轴叉乘方向作为X轴,Y轴为Z轴与X轴叉乘。同时得到转台中心坐标S=[Xs Ys Zs]和系统坐标系在相机坐标系下的变换矩阵cRTs。当导轨移动Hc时相机坐标系相对扫描坐标系的变换为可得到扫描坐标系在系统坐标系下的变换矩阵sRTsc=(scRTc *cRTc)-1The calibration process of the system coordinate system is shown in Figure 7. Place the calibration ball near the edge of the turntable, use the first visual sensor to scan and reconstruct the point cloud of the calibration ball, keep the calibration ball fixed relative to the turntable, and repeat the above operations after rotating the turntable at an angle , use the coordinates of the center of the sphere from multiple angles to fit the circular plane of the turntable at least, take the normal upward direction of the turntable plane as the Z axis of the system coordinate system, take the direction of the camera optical axis and the cross product direction of the Z axis as the X axis, and the Y axis as the Z axis Cross-multiply with the X-axis. At the same time, the coordinates of the center of the turntable S=[X s Y s Z s ] and the transformation matrix c RT s of the system coordinate system in the camera coordinate system are obtained. When the guide rail moves Hc , the transformation of the camera coordinate system relative to the scanning coordinate system is A transformation matrix s RT sc =( sc RT c *c RT c ) −1 of the scanning coordinate system in the system coordinate system can be obtained.

通过标定软件拟合球心交互界面可以显示出,所有标定功能都集成于一体,拍摄的图片于扫描重建的点云会自动保存于相应标定文件夹内。三维显示点云后,可实时对点云进行保存、拟合球心、重新选择点云、选取点并显示坐标等交互,拟合后的信息显示在信息栏中。It can be shown through the interactive interface of the calibration software to fit the center of the sphere that all calibration functions are integrated, and the captured pictures and scanned and reconstructed point clouds will be automatically saved in the corresponding calibration folder. After the point cloud is displayed in 3D, you can save the point cloud in real time, fit the center of the sphere, reselect the point cloud, select points and display coordinates, etc., and the fitted information is displayed in the information bar.

叶片数字化样板检测装置的测量范围为(1000×400×250)mm,测量深度为200mm至400mm,CCD相机应具有较高的拍摄帧率与较高的分辨率,选用规格为149fps与1280×1024,基线距离为240mm,成像角38.7°,重量为3.5kg,镜头选用焦距为8.0mm,分辨率为120.001p/mm,畸变率为0.60%,线激光器功率为100mw,发散角60°。系统标定完成后,对系统作视觉传感器重复性误差评价和系统测量误差评价。传感器重复性误差评价是将视觉传感器的激光固定打在标准球的某个位置,在该位置拍摄提取激光光条中心200次,计算每个激光条纹点200次的Y轴上下跳动的最大误差、均值、标准差,并且统计标准球在转盘不同位置的光条提取重复性。采用测试的标准球材质为普通陶瓷球与哑光陶瓷球,在相同位置对两种标准球作效果对比,哑光陶瓷球的抗反光能力比普通陶瓷球好,激光提取效果更佳。光条检测y坐标重复性普通陶瓷球为0.054像素,哑光陶瓷球为0.019像素。系统测量误差评价是扫描重建理论直径为50mm、球心距为500mm的标准球棒多组,每组15次,经三坐标测量球棒中球径为49.978mm、49.974mm,球心距为500.303mm,拟合球直径与两个标准球的球心距。拟合的球径均值为50.028mm,标准差为0.0558mm,拟合的球心距均值为500.254mm,标准差为0.071mm。综上述,经过完整系统标定后,叶片数字化样板检测装置的系统测量精度<0.08mm。The measurement range of the blade digital sample inspection device is (1000×400×250)mm, and the measurement depth is 200mm to 400mm. The CCD camera should have a higher shooting frame rate and higher resolution. The selected specifications are 149fps and 1280×1024 , the baseline distance is 240mm, the imaging angle is 38.7°, the weight is 3.5kg, the focal length of the lens is 8.0mm, the resolution is 120.001p/mm, the distortion rate is 0.60%, the line laser power is 100mw, and the divergence angle is 60°. After the system calibration is completed, the repeatability error evaluation of the visual sensor and the system measurement error evaluation are performed on the system. The evaluation of sensor repeatability error is to fix the laser of the visual sensor at a certain position of the standard ball, shoot and extract the center of the laser light bar 200 times at this position, and calculate the maximum error of the Y-axis jumping up and down for each laser stripe point 200 times, Mean, standard deviation, and statistical standard sphere extraction repeatability of the light bar at different positions on the turntable. The materials of the standard balls used in the test are ordinary ceramic balls and matte ceramic balls. The effects of the two standard balls are compared at the same position. The anti-reflection ability of the matte ceramic balls is better than that of ordinary ceramic balls, and the laser extraction effect is better. The y-coordinate repeatability of light strip detection is 0.054 pixels for ordinary ceramic balls, and 0.019 pixels for matte ceramic balls. System measurement error evaluation is to scan and reconstruct multiple groups of standard bats with a theoretical diameter of 50mm and center distance of 500mm, 15 times for each group. The ball diameters of the bats measured by three coordinates are 49.978mm and 49.974mm, and the center distance is 500.303 mm, the diameter of the fitted sphere and the distance between the centers of two standard spheres. The mean value of the fitted ball diameter is 50.028mm, with a standard deviation of 0.0558mm, and the mean value of the fitted ball center distance is 500.254mm, with a standard deviation of 0.071mm. To sum up, after the complete system calibration, the system measurement accuracy of the blade digital sample detection device is less than 0.08mm.

因此,本发明提供的叶片数字化样板检测系统的标定方法,操作简单,操作人员只需要准备一个通用标定板和标定球,无需制作特定标定块,降低标定成本,利用标定板拍摄摄像机标定、激光平面标定、测量运动方向标定的图片,利用标定球扫描重建设备之间位置关系标定、系统坐标系标定的点云数据文件,按照标定软件提示操作,即可得到每个标定项目的输出结果。Therefore, the calibration method of the blade digital template detection system provided by the present invention is simple to operate, and the operator only needs to prepare a general calibration board and a calibration ball without making a specific calibration block, which reduces the cost of calibration, and uses the calibration board to shoot camera calibration, laser plane Calibrate, measure the picture of the movement direction calibration, use the calibration ball to scan and reconstruct the positional relationship calibration between the equipment, the point cloud data file of the system coordinate system calibration, and follow the calibration software prompts to get the output results of each calibration item.

另外,本发明提供的叶片数字化样板检测系统的标定方法具有标定效率高,测量运动方向标定直接利用线性模组的运动,无需额外高精度运动机构。设备之间位置关系标定、系统坐标系标定中点云显示、拟合球心、交互操作集成于标定软件中,无需利用第三方软件进行点云球心拟合。所有标定好的结果自动加入叶片数字化样板检测装置的测量软件中,标定完即可进行测量工作。In addition, the calibration method of the blade digital template detection system provided by the present invention has high calibration efficiency, and the calibration of the measurement motion direction directly uses the motion of the linear module without the need for an additional high-precision motion mechanism. Calibration of the positional relationship between devices, point cloud display in the calibration of the system coordinate system, fitting of the center of the sphere, and interactive operations are integrated in the calibration software, and there is no need to use third-party software to fit the center of the point cloud. All the calibrated results are automatically added to the measurement software of the blade digital sample inspection device, and the measurement can be carried out after calibration.

作为本发明的第二个方面,提供一种叶片数字化样板检测系统的标定装置,其中,如图8所示,所述叶片数字化样板检测系统的标定装置10包括:As a second aspect of the present invention, a calibration device for a blade digital template detection system is provided, wherein, as shown in FIG. 8 , the calibration device 10 of the blade digital template detection system includes:

摄像机标定模块110,所述摄像机标定模块110用于对所述第一视觉传感器和所述第二视觉传感器分别进行摄像机标定得到相机坐标系下的相机参数;A camera calibration module 110, the camera calibration module 110 is used to perform camera calibration on the first visual sensor and the second visual sensor respectively to obtain camera parameters in the camera coordinate system;

激光光刀平面标定模块120,所述激光光刀平面标定模块120用于对所述第一视觉传感器和所述第二视觉传感器分别进行激光光刀平面标定得到测量坐标系下的测量参数;Laser light knife plane calibration module 120, the laser light knife plane calibration module 120 is used to perform laser light knife plane calibration on the first visual sensor and the second visual sensor respectively to obtain measurement parameters in the measurement coordinate system;

运动方向标定模块130,所述运动方向标定模块130用于根据所述相机参数以及所述测量参数对所述第一视觉传感器和所述第二视觉传感器分别进行运动方向标定,分别得到所述第一视觉传感器和所述第二视觉传感器的测量坐标系的Y轴与实际运动方向的偏移量;A movement direction calibration module 130, the movement direction calibration module 130 is used to calibrate the movement direction of the first visual sensor and the second visual sensor respectively according to the camera parameters and the measurement parameters, and obtain the first visual sensor and the second visual sensor respectively. The offset between the Y-axis of the measurement coordinate system of a visual sensor and the second visual sensor and the actual direction of motion;

第一转换模块140,所述第一转换模块140用于分别将所述第一视觉传感器和所述第二视觉传感器的所述相机参数由所述相机坐标系转换到所述测量坐标系,成为所述测量坐标系中的测量参数;The first conversion module 140, the first conversion module 140 is used to respectively convert the camera parameters of the first visual sensor and the second visual sensor from the camera coordinate system to the measurement coordinate system, to become measurement parameters in the measurement coordinate system;

位置关系标定模块150,所述位置关系标定模块150用于对所述第一视觉传感器和所述第二视觉传感器进行位置关系标定;A positional relationship calibration module 150, the positional relationship calibration module 150 is used to perform positional relationship calibration on the first visual sensor and the second visual sensor;

第二转换模块160,所述第二转换模块160用于将所述第二视觉传感器的测量坐标系下的测量参数转换到所述第一视觉传感器的测量坐标系下;The second conversion module 160, the second conversion module 160 is used to convert the measurement parameters in the measurement coordinate system of the second visual sensor to the measurement coordinate system of the first visual sensor;

系统坐标系标定模块170,所述系统坐标系标定模块170用于对叶片数字化样板检测系统进行系统坐标系标定;A system coordinate system calibration module 170, the system coordinate system calibration module 170 is used to perform system coordinate system calibration on the blade digital template detection system;

第三转换模块180,所述第三转换模块180用于将所述第一视觉传感器下的测量坐标系转换到叶片数字化样板检测系统的系统坐标系下,得到所述叶片数字化样板检测系统的系统坐标系下的完整参数。The third conversion module 180, the third conversion module 180 is used to convert the measurement coordinate system under the first visual sensor to the system coordinate system of the blade digital template detection system, and obtain the system of the blade digital template detection system Complete parameters in coordinate system.

本发明提供的叶片数字化样板检测系统的标定装置,用于对能够快速扫描叶片型面、获取叶片完整点云、自动分析测量参数、输出检测报告的叶片数字化样板检测装置进行系统标定。通过通用标定标靶对所述装置快速完成摄像机标定、激光光刀平面标定、测量运动方向标定、设备位置关系标定、系统坐标系标定,使得准确获取各坐标系之间的相互转化关系,降低标定成本,实现了完整标定,且能够提高整个系统的标定效率,简化系统标定的流程,实现了叶片数字化样板测量装置的适用性。The calibration device of the blade digital sample detection system provided by the present invention is used for system calibration of the blade digital sample detection device that can quickly scan the blade profile, obtain the complete point cloud of the blade, automatically analyze the measurement parameters, and output the detection report. Quickly complete the camera calibration, laser light knife plane calibration, measurement movement direction calibration, equipment position relationship calibration, and system coordinate system calibration for the device through the general calibration target, so that the mutual transformation relationship between each coordinate system can be accurately obtained and the calibration cost can be reduced. , realize complete calibration, and can improve the calibration efficiency of the whole system, simplify the process of system calibration, and realize the applicability of the blade digital template measurement device.

关于本发明提供的叶片数字化样板检测系统的标定装置的工作原理可以参照前文的描述,此处不再赘述。For the working principle of the calibration device of the blade digital template detection system provided by the present invention, reference can be made to the foregoing description, and details will not be repeated here.

可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。It can be understood that, the above embodiments are only exemplary embodiments adopted for illustrating the principle of the present invention, but the present invention is not limited thereto. For those skilled in the art, various modifications and improvements can be made without departing from the spirit and essence of the present invention, and these modifications and improvements are also regarded as the protection scope of the present invention.

Claims (10)

1.一种叶片数字化样板检测系统的标定方法,其特征在于,所述叶片数字化样板检测系统包括第一视觉传感器和第二视觉传感器,所述第一视觉传感器和所述第二视觉传感器对称相对设置,所述叶片数字化样板检测系统的标定方法包括:1. A calibration method for a blade digital template detection system, characterized in that the blade digital template detection system includes a first visual sensor and a second visual sensor, and the first visual sensor and the second visual sensor are symmetrically opposite to each other Setting, the calibration method of the digital template detection system of the blade comprises: 对所述第一视觉传感器和所述第二视觉传感器分别进行摄像机标定得到相机坐标系下的相机参数;performing camera calibration on the first visual sensor and the second visual sensor respectively to obtain camera parameters in the camera coordinate system; 对所述第一视觉传感器和所述第二视觉传感器分别进行激光光刀平面标定得到测量坐标系下的测量参数;Perform laser light knife plane calibration on the first visual sensor and the second visual sensor respectively to obtain measurement parameters in the measurement coordinate system; 根据所述相机参数以及所述测量参数对所述第一视觉传感器和所述第二视觉传感器分别进行运动方向标定,分别得到所述第一视觉传感器和所述第二视觉传感器的测量坐标系的Y轴与实际运动方向的偏移量;According to the camera parameters and the measurement parameters, the movement directions of the first visual sensor and the second visual sensor are respectively calibrated, and the measurement coordinate systems of the first visual sensor and the second visual sensor are respectively obtained. The offset between the Y axis and the actual direction of motion; 分别将所述第一视觉传感器和所述第二视觉传感器的所述相机参数由所述相机坐标系转换到所述测量坐标系,成为所述测量坐标系中的测量参数;respectively transforming the camera parameters of the first visual sensor and the second visual sensor from the camera coordinate system to the measurement coordinate system to become measurement parameters in the measurement coordinate system; 对所述第一视觉传感器和所述第二视觉传感器进行位置关系标定;Calibrating the positional relationship between the first visual sensor and the second visual sensor; 将所述第二视觉传感器的测量坐标系下的测量参数转换到所述第一视觉传感器的测量坐标系下;converting the measurement parameters in the measurement coordinate system of the second vision sensor to the measurement coordinate system of the first vision sensor; 对叶片数字化样板检测系统进行系统坐标系标定;Calibrate the system coordinate system of the blade digital template inspection system; 将所述第一视觉传感器下的测量坐标系转换到叶片数字化样板检测系统的系统坐标系下,得到所述叶片数字化样板检测系统的系统坐标系下的完整参数。The measurement coordinate system under the first vision sensor is transformed into the system coordinate system of the blade digital template inspection system, and the complete parameters under the system coordinate system of the blade digital template inspection system are obtained. 2.根据权利要求1所述的叶片数字化样板检测系统的标定方法,其特征在于,所述对所述第一视觉传感器和所述第二视觉传感器分别进行激光光刀平面标定得到测量坐标系下的测量参数包括:2. The method for calibrating the digital template detection system of a blade according to claim 1, wherein the laser light knife plane calibration is performed on the first visual sensor and the second visual sensor respectively to obtain the Measurement parameters include: 通过进行摄像机标定后的摄像机分别拍摄多组无激光条纹和有激光条纹的标定板图像;After the camera is calibrated, multiple groups of calibration plate images without laser stripes and laser stripes are taken respectively; 获取标定板在所述相机坐标系下的位姿;Obtain the pose of the calibration board in the camera coordinate system; 对有激光条纹的图像进行光条中心提取;Extract the center of the light stripe from the image with laser stripes; 计算所述光条中心的物理坐标值;calculating the physical coordinate value of the center of the light bar; 通过拟合得到所述光条中心的物理坐标值所在的激光光刀平面,得到测量坐标系;Obtain the laser light knife plane where the physical coordinate value of the center of the light strip is located by fitting, and obtain the measurement coordinate system; 输出所述测量坐标系以及所述测量坐标系与所述相机坐标系的变换关系。Outputting the measurement coordinate system and the transformation relationship between the measurement coordinate system and the camera coordinate system. 3.根据权利要求2所述的叶片数字化样板检测系统的标定方法,其特征在于,所述获取标定板在所述相机坐标系下的位姿包括:3. The calibration method of the blade digital template detection system according to claim 2, wherein said obtaining the pose of the calibration board under the camera coordinate system comprises: 根据n个控制点的空间位置信息以该n个控制点的像点信息计算n各控制点在相机坐标系下的位置位姿。According to the spatial position information of the n control points and the image point information of the n control points, the positions and poses of the n control points in the camera coordinate system are calculated. 4.根据权利要求2所述的叶片数字化样板检测系统的标定方法,其特征在于,所述通过拟合得到所述光条中心的物理坐标值所在的激光光刀平面包括:4. The calibration method of the blade digital template detection system according to claim 2, wherein the laser light knife plane where the physical coordinate value of the center of the light bar is obtained by fitting comprises: 通过最小二乘优化方法拟合所述光条中心的物理坐标值所在的激光光刀平向。The laser light knife flat direction where the physical coordinate value of the center of the light bar is located is fitted by a least squares optimization method. 5.根据权利要求1所述的叶片数字化样板检测系统的标定方法,其特征在于,所述根据所述相机参数以及所述测量参数对所述第一视觉传感器和所述第二视觉传感器分别进行运动方向标定,分别得到所述第一视觉传感器和所述第二视觉传感器的测量坐标系的Y轴与实际运动方向的偏移量包括:5. The calibration method of the blade digital template detection system according to claim 1, wherein the first visual sensor and the second visual sensor are respectively performed according to the camera parameters and the measurement parameters. Calibrating the direction of motion, obtaining the offsets between the Y-axis and the actual direction of motion of the measurement coordinate system of the first visual sensor and the second visual sensor respectively include: 将所述第一视觉传感器和所述第二视觉传感器分别在移动模组上移动多个位置,且在移动的每个位置上进行标定板的拍摄;Moving the first visual sensor and the second visual sensor to multiple positions on the mobile module, and photographing the calibration plate at each position of the movement; 获取标定板的位姿;Obtain the pose of the calibration board; 分别计算所述第一视觉传感器的每个位置的相对姿态变换以及所述第二视觉传感器的每个位置的相对姿态变换;calculating a relative pose transformation for each position of the first visual sensor and a relative pose transformation for each position of the second visual sensor, respectively; 求解运动方向在相机坐标系下的方向向量;Solve the direction vector of the motion direction in the camera coordinate system; 输出所述方向向量。Output the direction vector. 6.根据权利要求1所述的叶片数字化样板检测系统的标定方法,其特征在于,所述对所述第一视觉传感器和所述第二视觉传感器进行位置关系标定包括:6. The calibration method of the blade digital template detection system according to claim 1, wherein the calibration of the positional relationship between the first visual sensor and the second visual sensor comprises: 所述第一视觉传感器和所述第二视觉传感器同时扫描测量空间中标定球的若干位置;The first vision sensor and the second vision sensor simultaneously scan several positions of the calibration ball in the measurement space; 分别三维重建拟合出标定球在不同位置的球心坐标;Three-dimensional reconstruction and fitting of the coordinates of the center of the calibration ball at different positions; 利用刚体变化求出所述第一视觉传感器和所述第二视觉传感器之间的位置关系。The positional relationship between the first visual sensor and the second visual sensor is obtained by using a rigid body change. 7.根据权利要求6所述的叶片数字化样板检测系统的标定方法,其特征在于,对叶片数字化样板检测系统进行系统坐标系标定包括:7. The method for calibrating the blade digital template detection system according to claim 6, wherein the calibration of the system coordinate system of the blade digital template detection system comprises: 将标定球放置在转台边缘;Place the calibration ball on the edge of the turntable; 通过所述第一视觉传感器扫描重建拟合出所述标定球的球心坐标;Fitting the center coordinates of the calibration sphere by scanning and reconstructing the first visual sensor; 保持标定球与转台相对静止,旋转转台,并重复扫描重建拟合的步骤得到所述标定球在多个位置的球心坐标;Keeping the calibration ball and the turntable relatively stationary, rotating the turntable, and repeating the steps of scanning, reconstruction and fitting to obtain the coordinates of the center of the calibration ball at multiple positions; 拟合出转台旋转轴和旋转中心,得到系统坐标系,并得到测量坐标系与系统坐标系的转换关系。Fit the rotation axis and rotation center of the turntable to obtain the system coordinate system, and obtain the conversion relationship between the measurement coordinate system and the system coordinate system. 8.根据权利要求1至7中任意一项所述的叶片数字化样板检测系统的标定方法,其特征在于,所述第一视觉传感器的相机坐标系包括Pc1(Xc1,Yc1,Zc1),所述第一视觉传感器的测量坐标系包括Pl1(Xl1,Yl1,Zl1),所述第二视觉传感器的相机坐标系包括Pc2(Xc2,Yc2,Zc2),所述第二视觉传感器的测量坐标系包括P12(X12,Y12,Z12)。8. The calibration method of the blade digital template detection system according to any one of claims 1 to 7, wherein the camera coordinate system of the first visual sensor includes P c1 (X c1 , Y c1 , Z c1 ), the measurement coordinate system of the first visual sensor includes P l1 (X l1 , Y l1 , Z l1 ), the camera coordinate system of the second visual sensor includes P c2 (X c2 , Y c2 , Z c2 ), The measurement coordinate system of the second vision sensor includes P 12 (X 12 , Y 12 , Z 12 ). 9.根据权利要求8所述的叶片数字化样板检测系统的标定方法,其特征在于,所述叶片数字化样板检测系统的系统坐标系包括Ps(Xs,Ys,Zs)。9. The calibration method of the blade digital template inspection system according to claim 8, wherein the system coordinate system of the blade digital template inspection system includes P s (X s , Y s , Z s ). 10.一种叶片数字化样板检测系统的标定装置,其特征在于,所述叶片数字化样板检测系统的标定装置包括:10. A calibration device for a blade digital template detection system, characterized in that the calibration device for the blade digital template detection system includes: 摄像机标定模块,所述摄像机标定模块用于对所述第一视觉传感器和所述第二视觉传感器分别进行摄像机标定得到相机坐标系下的相机参数;A camera calibration module, the camera calibration module is used to perform camera calibration on the first visual sensor and the second visual sensor respectively to obtain camera parameters in the camera coordinate system; 激光光刀平面标定模块,所述激光光刀平面标定模块用于对所述第一视觉传感器和所述第二视觉传感器分别进行激光光刀平面标定得到测量坐标系下的测量参数;A laser light knife plane calibration module, the laser light knife plane calibration module is used to perform laser light knife plane calibration on the first visual sensor and the second visual sensor respectively to obtain measurement parameters in the measurement coordinate system; 运动方向标定模块,所述运动方向标定模块用于根据所述相机参数以及所述测量参数对所述第一视觉传感器和所述第二视觉传感器分别进行运动方向标定,分别得到所述第一视觉传感器和所述第二视觉传感器的测量坐标系的Y轴与实际运动方向的偏移量;A movement direction calibration module, the movement direction calibration module is used to calibrate the movement direction of the first vision sensor and the second vision sensor according to the camera parameters and the measurement parameters, respectively to obtain the first vision The offset between the Y axis of the measurement coordinate system of the sensor and the second visual sensor and the actual direction of motion; 第一转换模块,所述第一转换模块用于分别将所述第一视觉传感器和所述第二视觉传感器的所述相机参数由所述相机坐标系转换到所述测量坐标系,成为所述测量坐标系中的测量参数;A first conversion module, the first conversion module is used to respectively convert the camera parameters of the first visual sensor and the second visual sensor from the camera coordinate system to the measurement coordinate system, becoming the Measurement parameters in the measurement coordinate system; 位置关系标定模块,所述位置关系标定模块用于对所述第一视觉传感器和所述第二视觉传感器进行位置关系标定;A positional relationship calibration module, the positional relationship calibration module is used to calibrate the positional relationship between the first visual sensor and the second visual sensor; 第二转换模块,所述第二转换模块用于将所述第二视觉传感器的测量坐标系下的测量参数转换到所述第一视觉传感器的测量坐标系下;A second conversion module, the second conversion module is used to convert the measurement parameters in the measurement coordinate system of the second vision sensor to the measurement coordinate system of the first vision sensor; 系统坐标系标定模块,所述系统坐标系标定模块用于对叶片数字化样板检测系统进行系统坐标系标定;A system coordinate system calibration module, the system coordinate system calibration module is used to perform system coordinate system calibration on the blade digital template detection system; 第三转换模块,所述第三转换模块用于将所述第一视觉传感器下的测量坐标系转换到叶片数字化样板检测系统的系统坐标系下,得到所述叶片数字化样板检测系统的系统坐标系下的完整参数。The third conversion module, the third conversion module is used to convert the measurement coordinate system under the first visual sensor into the system coordinate system of the blade digital template detection system, and obtain the system coordinate system of the blade digital template detection system Full parameters below.
CN201810418349.5A 2018-05-03 2018-05-03 Calibration method and device of blade digital sample plate detection system Active CN108844459B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810418349.5A CN108844459B (en) 2018-05-03 2018-05-03 Calibration method and device of blade digital sample plate detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810418349.5A CN108844459B (en) 2018-05-03 2018-05-03 Calibration method and device of blade digital sample plate detection system

Publications (2)

Publication Number Publication Date
CN108844459A true CN108844459A (en) 2018-11-20
CN108844459B CN108844459B (en) 2020-07-03

Family

ID=64212544

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810418349.5A Active CN108844459B (en) 2018-05-03 2018-05-03 Calibration method and device of blade digital sample plate detection system

Country Status (1)

Country Link
CN (1) CN108844459B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243285A (en) * 2019-06-26 2019-09-17 华中科技大学 A Calibration Device for Vision Measuring System
CN111080705A (en) * 2019-05-07 2020-04-28 像工场(深圳)科技有限公司 Calibration method and device for automatic focusing binocular camera
CN111080698A (en) * 2019-11-27 2020-04-28 上海新时达机器人有限公司 Long plate position calibration method and system and storage device
CN111504223A (en) * 2020-04-22 2020-08-07 荆亮 Blade profile measuring method, device and system based on line laser sensor
CN111504184A (en) * 2020-04-22 2020-08-07 荆亮 Calibration method and calibration system for double-line laser measurement
CN111721252A (en) * 2020-06-24 2020-09-29 上海交通大学 A blade angle calibration device for an adjustable stator blade system
CN112578327A (en) * 2020-12-01 2021-03-30 深圳市通用测试系统有限公司 Calibration method, equipment and storage medium of spherical scanning test system
CN112700501A (en) * 2020-12-12 2021-04-23 西北工业大学 Underwater monocular sub-pixel relative pose estimation method
CN112711246A (en) * 2020-12-23 2021-04-27 贵州航天计量测试技术研究所 Follow-up system motion characteristic calibration system and method based on multi-view vision system
CN112710662A (en) * 2020-12-25 2021-04-27 深圳中科飞测科技股份有限公司 Generation method and device, generation system and storage medium
CN113091628A (en) * 2021-04-07 2021-07-09 中国工程物理研究院机械制造工艺研究所 Visual measurement calibration device and method for small-size shaft hole gap
CN113295092A (en) * 2021-05-28 2021-08-24 华中科技大学 Line laser three-dimensional measurement system and method for thin-wall part
CN113554710A (en) * 2020-04-24 2021-10-26 西门子(深圳)磁共振有限公司 Calibration method, system and storage medium for 3D camera in medical imaging system
CN113607066A (en) * 2021-08-16 2021-11-05 上海发那科机器人有限公司 Calibration method for optical axis coordinate system of laser displacement sensor
CN113884104A (en) * 2021-09-27 2022-01-04 苏州挚途科技有限公司 Multi-sensor combined calibration method and device and electronic equipment
CN114087984A (en) * 2021-11-12 2022-02-25 北京新联铁集团股份有限公司 Method for positioning hanging disc and method for hanging disc
CN114440957A (en) * 2020-11-05 2022-05-06 浙江舜宇智能光学技术有限公司 Sensor fusion calibration equipment and method thereof
WO2022134939A1 (en) * 2020-12-24 2022-06-30 上海智能制造功能平台有限公司 Data splicing and system calibration method for human body digital measurement device
CN115507769A (en) * 2022-05-24 2022-12-23 北京工业大学 Gear rapid measurement method integrating vision and optical principles
WO2025016460A1 (en) * 2023-07-17 2025-01-23 上海威瞳视觉技术有限公司 Method and system for detecting positioning error of linear movement mechanism

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829701A1 (en) * 1993-05-24 1998-03-18 Metronor As Method and system for geometry measurement
CN1240270A (en) * 1999-07-02 2000-01-05 清华大学 Target space position and attitude laser tracking-measuring system and method
CN1605829A (en) * 2004-11-11 2005-04-13 天津大学 Device and method for field calibration of vision measurement system
US20070050089A1 (en) * 2005-09-01 2007-03-01 Yunquan Sun Method for detecting the position and orientation of holes using robotic vision system
CN101566461A (en) * 2009-05-18 2009-10-28 西安交通大学 Method for quickly measuring blade of large-sized water turbine
CN102364299A (en) * 2011-08-30 2012-02-29 刘桂华 A Calibration Technology for Multiple Structured Light Projection 3D Surface Measuring Heads
CN102768026A (en) * 2012-07-23 2012-11-07 黑龙江科技学院 Full-size quick blade detection method and equipment
WO2013091016A1 (en) * 2011-12-23 2013-06-27 Canon Kabushiki Kaisha Structured light system for robust geometry acquisition
CN103630085A (en) * 2013-10-15 2014-03-12 广东工业大学 Multi-angle blade measuring device and method
EP2743635A1 (en) * 2012-12-14 2014-06-18 Siemens Aktiengesellschaft Determining the position of components
CN104457574A (en) * 2014-12-11 2015-03-25 天津大学 Device for measuring volume of irregular object in non-contact measurement mode and method
CN104515478A (en) * 2014-12-11 2015-04-15 华中科技大学 Automatic three-dimensional measuring method and automatic three-dimensional measuring system for high-precision blade of aviation engine
CN104567728A (en) * 2014-12-24 2015-04-29 天津大学 Laser vision profile measurement system, measurement method and three-dimensional target
CN104567679A (en) * 2015-01-08 2015-04-29 华中科技大学 Turbine blade visual inspection system
CN105698699A (en) * 2016-01-26 2016-06-22 大连理工大学 A binocular visual sense measurement method based on time rotating shaft constraint
CN105737762A (en) * 2016-05-09 2016-07-06 中国民用航空飞行学院 Aviation engine blade profile measuring method
US20170226860A1 (en) * 2016-02-05 2017-08-10 MTU Aero Engines AG Repair method for turbine blades
CN107246849A (en) * 2017-05-25 2017-10-13 西安知象光电科技有限公司 A kind of blade optics method for fast measuring based on the axle measuring system of double testing head four

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829701A1 (en) * 1993-05-24 1998-03-18 Metronor As Method and system for geometry measurement
CN1240270A (en) * 1999-07-02 2000-01-05 清华大学 Target space position and attitude laser tracking-measuring system and method
CN1605829A (en) * 2004-11-11 2005-04-13 天津大学 Device and method for field calibration of vision measurement system
US20070050089A1 (en) * 2005-09-01 2007-03-01 Yunquan Sun Method for detecting the position and orientation of holes using robotic vision system
CN101566461A (en) * 2009-05-18 2009-10-28 西安交通大学 Method for quickly measuring blade of large-sized water turbine
CN102364299A (en) * 2011-08-30 2012-02-29 刘桂华 A Calibration Technology for Multiple Structured Light Projection 3D Surface Measuring Heads
WO2013091016A1 (en) * 2011-12-23 2013-06-27 Canon Kabushiki Kaisha Structured light system for robust geometry acquisition
CN102768026A (en) * 2012-07-23 2012-11-07 黑龙江科技学院 Full-size quick blade detection method and equipment
EP2743635A1 (en) * 2012-12-14 2014-06-18 Siemens Aktiengesellschaft Determining the position of components
CN103630085A (en) * 2013-10-15 2014-03-12 广东工业大学 Multi-angle blade measuring device and method
CN104457574A (en) * 2014-12-11 2015-03-25 天津大学 Device for measuring volume of irregular object in non-contact measurement mode and method
CN104515478A (en) * 2014-12-11 2015-04-15 华中科技大学 Automatic three-dimensional measuring method and automatic three-dimensional measuring system for high-precision blade of aviation engine
CN104567728A (en) * 2014-12-24 2015-04-29 天津大学 Laser vision profile measurement system, measurement method and three-dimensional target
CN104567679A (en) * 2015-01-08 2015-04-29 华中科技大学 Turbine blade visual inspection system
CN105698699A (en) * 2016-01-26 2016-06-22 大连理工大学 A binocular visual sense measurement method based on time rotating shaft constraint
US20170226860A1 (en) * 2016-02-05 2017-08-10 MTU Aero Engines AG Repair method for turbine blades
CN105737762A (en) * 2016-05-09 2016-07-06 中国民用航空飞行学院 Aviation engine blade profile measuring method
CN107246849A (en) * 2017-05-25 2017-10-13 西安知象光电科技有限公司 A kind of blade optics method for fast measuring based on the axle measuring system of double testing head four

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TIANSHU LIU等: "《Photogrammetric techniques for aerospace applications》", 《PROGRESS IN AEROSPACE SCIENCES》 *
白瑞林等: "《结构光视觉引导的轨迹跟踪系统的标定技术》", 《计算机工程与应用》 *
马龙等: "《基于投影条纹级次识别的发动机叶片三维测量方法》", 《激光与光电子学进展》 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111080705A (en) * 2019-05-07 2020-04-28 像工场(深圳)科技有限公司 Calibration method and device for automatic focusing binocular camera
CN111080705B (en) * 2019-05-07 2021-06-04 像工场(深圳)科技有限公司 Calibration method and device for automatic focusing binocular camera
CN110243285A (en) * 2019-06-26 2019-09-17 华中科技大学 A Calibration Device for Vision Measuring System
CN111080698A (en) * 2019-11-27 2020-04-28 上海新时达机器人有限公司 Long plate position calibration method and system and storage device
CN111080698B (en) * 2019-11-27 2023-06-06 上海新时达机器人有限公司 Method, system and storage device for calibrating position of long plate
CN111504223A (en) * 2020-04-22 2020-08-07 荆亮 Blade profile measuring method, device and system based on line laser sensor
CN111504223B (en) * 2020-04-22 2022-05-31 荆亮 Blade profile measuring method, device and system based on line laser sensor
CN111504184A (en) * 2020-04-22 2020-08-07 荆亮 Calibration method and calibration system for double-line laser measurement
CN113554710A (en) * 2020-04-24 2021-10-26 西门子(深圳)磁共振有限公司 Calibration method, system and storage medium for 3D camera in medical imaging system
CN111721252A (en) * 2020-06-24 2020-09-29 上海交通大学 A blade angle calibration device for an adjustable stator blade system
CN114440957A (en) * 2020-11-05 2022-05-06 浙江舜宇智能光学技术有限公司 Sensor fusion calibration equipment and method thereof
CN114440957B (en) * 2020-11-05 2024-06-07 浙江舜宇智能光学技术有限公司 Sensor fusion calibration equipment and method thereof
CN112578327A (en) * 2020-12-01 2021-03-30 深圳市通用测试系统有限公司 Calibration method, equipment and storage medium of spherical scanning test system
CN112578327B (en) * 2020-12-01 2023-09-12 深圳市通用测试系统有限公司 Calibration method, device and storage medium of spherical scanning test system
CN112700501B (en) * 2020-12-12 2024-03-05 西北工业大学 Underwater monocular subpixel relative pose estimation method
CN112700501A (en) * 2020-12-12 2021-04-23 西北工业大学 Underwater monocular sub-pixel relative pose estimation method
CN112711246A (en) * 2020-12-23 2021-04-27 贵州航天计量测试技术研究所 Follow-up system motion characteristic calibration system and method based on multi-view vision system
WO2022134939A1 (en) * 2020-12-24 2022-06-30 上海智能制造功能平台有限公司 Data splicing and system calibration method for human body digital measurement device
CN112710662A (en) * 2020-12-25 2021-04-27 深圳中科飞测科技股份有限公司 Generation method and device, generation system and storage medium
CN113091628B (en) * 2021-04-07 2023-03-10 中国工程物理研究院机械制造工艺研究所 Visual measurement calibration device and method for small-size shaft hole gap
CN113091628A (en) * 2021-04-07 2021-07-09 中国工程物理研究院机械制造工艺研究所 Visual measurement calibration device and method for small-size shaft hole gap
CN113295092A (en) * 2021-05-28 2021-08-24 华中科技大学 Line laser three-dimensional measurement system and method for thin-wall part
CN113607066B (en) * 2021-08-16 2023-09-12 上海发那科机器人有限公司 Calibration method of optical axis coordinate system of laser displacement sensor
CN113607066A (en) * 2021-08-16 2021-11-05 上海发那科机器人有限公司 Calibration method for optical axis coordinate system of laser displacement sensor
CN113884104A (en) * 2021-09-27 2022-01-04 苏州挚途科技有限公司 Multi-sensor combined calibration method and device and electronic equipment
CN113884104B (en) * 2021-09-27 2024-02-02 苏州挚途科技有限公司 Multi-sensor joint calibration method and device and electronic equipment
CN114087984A (en) * 2021-11-12 2022-02-25 北京新联铁集团股份有限公司 Method for positioning hanging disc and method for hanging disc
CN114087984B (en) * 2021-11-12 2024-05-03 北京新联铁集团股份有限公司 Hanging plate positioning method and hanging plate hanging method
CN115507769A (en) * 2022-05-24 2022-12-23 北京工业大学 Gear rapid measurement method integrating vision and optical principles
CN115507769B (en) * 2022-05-24 2023-09-22 北京工业大学 A rapid measurement method for gears that combines vision and optical principles
WO2025016460A1 (en) * 2023-07-17 2025-01-23 上海威瞳视觉技术有限公司 Method and system for detecting positioning error of linear movement mechanism

Also Published As

Publication number Publication date
CN108844459B (en) 2020-07-03

Similar Documents

Publication Publication Date Title
CN108844459B (en) Calibration method and device of blade digital sample plate detection system
CN102364299B (en) Calibration technology for multiple structured light projected three-dimensional profile measuring heads
CN109215108B (en) Panoramic three-dimensional reconstruction system and method based on laser scanning
CN105716542B (en) A kind of three-dimensional data joining method based on flexible characteristic point
CN101373135B (en) Method and apparatus for measuring three-dimensional curved surface based on instantaneous accidental light irradiation
CN109253706B (en) A method for measuring three-dimensional topography of tunnels based on digital images
CN107421465A (en) A kind of binocular vision joining method based on laser tracker
CN108458659A (en) A kind of blade contactless detection device and method
CN109272555B (en) A method of obtaining and calibrating external parameters of RGB-D camera
CN114283203B (en) Calibration method and system of multi-camera system
CN103559708B (en) Industrial fixed-focus camera parameter calibration device based on side's target model
CN105115560B (en) A kind of non-contact measurement method of cabin volume of compartment
CN113962853B (en) An automatic and precise calculation method for rotating line scan image pose
CN112229323B (en) Six-degree-of-freedom measurement method of checkerboard cooperative target based on monocular vision of mobile phone and application of six-degree-of-freedom measurement method
Percoco et al. Preliminary study on the 3D digitization of millimeter scale products by means of photogrammetry
CN105374067A (en) Three-dimensional reconstruction method based on PAL cameras and reconstruction system thereof
Yuan et al. A precise calibration method for line scan cameras
Cai et al. Calibration method for the rotating axis in panoramic 3D shape measurement based on a turntable
CN107687821B (en) Calibration method of multi-camera light knife system for shape measurement of deep hole rotating parts
Chen et al. Field-of-view-enlarged single-camera 3-D shape reconstruction
CN112907647A (en) Three-dimensional space size measurement method based on fixed monocular camera
CN110044266B (en) Photogrammetry system based on speckle projection
CN204314239U (en) X ray CT device
CN104502378B (en) X-ray CT (Computed Tomography) device
CN115345924A (en) A Bend Pipe Measurement Method Based on Multi-camera Line Laser Scanning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181120

Assignee: Jiangsu Jihui Huake Intelligent Equipment Technology Co., Ltd.

Assignor: Wuxi research institute of the Central China University of Science and Technology

Contract record no.: X2019980000288

Denomination of invention: Calibration method and device of blade digitalized templet detection system

License type: Common License

Record date: 20191023

EE01 Entry into force of recordation of patent licensing contract
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210106

Address after: 214174 A216, No.2 Qingyan Road, Huishan Economic Development Zone, Wuxi City, Jiangsu Province

Patentee after: Jiangsu Jihui Huake Intelligent Equipment Technology Co.,Ltd.

Address before: 214100 no.329 Yanxin Road, Huishan District, Wuxi City, Jiangsu Province

Patentee before: HUST-WUXI Research Institute

TR01 Transfer of patent right