CN108840993B - Polymeric membrane PEWT with D-A-D' asymmetric structure and preparation method and application thereof - Google Patents
Polymeric membrane PEWT with D-A-D' asymmetric structure and preparation method and application thereof Download PDFInfo
- Publication number
- CN108840993B CN108840993B CN201810491811.4A CN201810491811A CN108840993B CN 108840993 B CN108840993 B CN 108840993B CN 201810491811 A CN201810491811 A CN 201810491811A CN 108840993 B CN108840993 B CN 108840993B
- Authority
- CN
- China
- Prior art keywords
- pewt
- asymmetric structure
- electrode
- formula
- fluorenone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 239000000178 monomer Substances 0.000 claims abstract description 74
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 55
- 229920006254 polymer film Polymers 0.000 claims abstract description 46
- 238000002484 cyclic voltammetry Methods 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 24
- CWGRCRZFJOXQFV-UHFFFAOYSA-N 2,7-dibromofluoren-9-one Chemical compound C1=C(Br)C=C2C(=O)C3=CC(Br)=CC=C3C2=C1 CWGRCRZFJOXQFV-UHFFFAOYSA-N 0.000 claims abstract description 16
- 230000009471 action Effects 0.000 claims abstract description 5
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 138
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 93
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 51
- 239000007788 liquid Substances 0.000 claims description 38
- 239000011259 mixed solution Substances 0.000 claims description 37
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 34
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 34
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 33
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 28
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 28
- 239000008367 deionised water Substances 0.000 claims description 25
- 229910021641 deionized water Inorganic materials 0.000 claims description 25
- 239000003792 electrolyte Substances 0.000 claims description 22
- 239000011521 glass Substances 0.000 claims description 21
- 239000003960 organic solvent Substances 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 18
- 239000007864 aqueous solution Substances 0.000 claims description 18
- 230000003647 oxidation Effects 0.000 claims description 18
- 238000007254 oxidation reaction Methods 0.000 claims description 18
- KBLZDCFTQSIIOH-UHFFFAOYSA-M tetrabutylazanium;perchlorate Chemical group [O-]Cl(=O)(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC KBLZDCFTQSIIOH-UHFFFAOYSA-M 0.000 claims description 18
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 17
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 17
- 239000012074 organic phase Substances 0.000 claims description 15
- 238000010992 reflux Methods 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 15
- 239000012071 phase Substances 0.000 claims description 14
- 239000001103 potassium chloride Substances 0.000 claims description 14
- 235000011164 potassium chloride Nutrition 0.000 claims description 14
- 239000003115 supporting electrolyte Substances 0.000 claims description 14
- 238000001035 drying Methods 0.000 claims description 13
- 239000003153 chemical reaction reagent Substances 0.000 claims description 12
- SQRICDVGYLFTLO-UHFFFAOYSA-N tributyl(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)stannane Chemical compound O1CCOC2=C([Sn](CCCC)(CCCC)CCCC)SC=C21 SQRICDVGYLFTLO-UHFFFAOYSA-N 0.000 claims description 12
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 11
- 239000012046 mixed solvent Substances 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 11
- -1 1-butyl-3-methylimidazolium tetrafluoroborate Chemical compound 0.000 claims description 10
- OMOVVBIIQSXZSZ-UHFFFAOYSA-N [6-(4-acetyloxy-5,9a-dimethyl-2,7-dioxo-4,5a,6,9-tetrahydro-3h-pyrano[3,4-b]oxepin-5-yl)-5-formyloxy-3-(furan-3-yl)-3a-methyl-7-methylidene-1a,2,3,4,5,6-hexahydroindeno[1,7a-b]oxiren-4-yl] 2-hydroxy-3-methylpentanoate Chemical compound CC12C(OC(=O)C(O)C(C)CC)C(OC=O)C(C3(C)C(CC(=O)OC4(C)COC(=O)CC43)OC(C)=O)C(=C)C32OC3CC1C=1C=COC=1 OMOVVBIIQSXZSZ-UHFFFAOYSA-N 0.000 claims description 10
- YNHIGQDRGKUECZ-UHFFFAOYSA-N dichloropalladium;triphenylphosphanium Chemical compound Cl[Pd]Cl.C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1[PH+](C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-N 0.000 claims description 10
- TWWQCBRELPOMER-UHFFFAOYSA-N [4-(n-phenylanilino)phenyl]boronic acid Chemical compound C1=CC(B(O)O)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 TWWQCBRELPOMER-UHFFFAOYSA-N 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 229910052763 palladium Inorganic materials 0.000 claims description 9
- 238000002390 rotary evaporation Methods 0.000 claims description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 150000003863 ammonium salts Chemical group 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 4
- 238000013375 chromatographic separation Methods 0.000 claims description 3
- 229910003002 lithium salt Inorganic materials 0.000 claims description 3
- 159000000002 lithium salts Chemical class 0.000 claims description 3
- 239000003208 petroleum Substances 0.000 claims description 3
- DSVGQVZAZSZEEX-UHFFFAOYSA-N [C].[Pt] Chemical compound [C].[Pt] DSVGQVZAZSZEEX-UHFFFAOYSA-N 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims description 2
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 claims description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims 2
- 235000017557 sodium bicarbonate Nutrition 0.000 claims 2
- 239000000463 material Substances 0.000 abstract description 31
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 50
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 42
- 229920000642 polymer Polymers 0.000 description 28
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 229920000547 conjugated polymer Polymers 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 13
- 229910052709 silver Inorganic materials 0.000 description 12
- 239000004332 silver Substances 0.000 description 12
- 238000004587 chromatography analysis Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- YLQWCDOCJODRMT-UHFFFAOYSA-N fluoren-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C2=C1 YLQWCDOCJODRMT-UHFFFAOYSA-N 0.000 description 8
- 230000007935 neutral effect Effects 0.000 description 8
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 7
- 230000033116 oxidation-reduction process Effects 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 239000011121 hardwood Substances 0.000 description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 description 6
- 235000010755 mineral Nutrition 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 239000012299 nitrogen atmosphere Substances 0.000 description 6
- 238000011056 performance test Methods 0.000 description 6
- 239000011435 rock Substances 0.000 description 6
- 125000006617 triphenylamine group Chemical group 0.000 description 6
- 239000003086 colorant Substances 0.000 description 5
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 5
- 239000000047 product Substances 0.000 description 4
- 238000004626 scanning electron microscopy Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 3
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical class [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 2
- FNQJDLTXOVEEFB-UHFFFAOYSA-N 1,2,3-benzothiadiazole Chemical compound C1=CC=C2SN=NC2=C1 FNQJDLTXOVEEFB-UHFFFAOYSA-N 0.000 description 1
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- GCTFWCDSFPMHHS-UHFFFAOYSA-M Tributyltin chloride Chemical compound CCCC[Sn](Cl)(CCCC)CCCC GCTFWCDSFPMHHS-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- YUFRAQHYKKPYLH-UHFFFAOYSA-N benzo[f]quinoxaline Chemical compound C1=CN=C2C3=CC=CC=C3C=CC2=N1 YUFRAQHYKKPYLH-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005893 bromination reaction Methods 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- COHIZWAIFCLIDY-UHFFFAOYSA-N pyrazine;thiophene Chemical compound C=1C=CSC=1.C1=CN=CC=N1 COHIZWAIFCLIDY-UHFFFAOYSA-N 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/11—Homopolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/22—Molecular weight
- C08G2261/228—Polymers, i.e. more than 10 repeat units
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/324—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
- C08G2261/3243—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/35—Macromonomers, i.e. comprising more than 10 repeat units
- C08G2261/354—Macromonomers, i.e. comprising more than 10 repeat units containing hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/50—Physical properties
- C08G2261/54—Physical properties electrochromatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2365/00—Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Nonlinear Science (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
The invention provides a DAD' asymmetric structure polymeric membrane PEWT as well as a preparation method and application thereof, wherein the preparation method comprises the following steps: under the action of an electron donating group, 2, 7-dibromo-9 fluorenone shown in the formula 1 is subjected to coupling reaction to form an asymmetric DAD 'structural monomer, and polymerization reaction is carried out at room temperature by adopting a cyclic voltammetry polymerization method to obtain an asymmetric DAD' structural polymer film deposited on a working electrode. The method provided by the invention is simple to operate, the monomer yield and the purity of the polymer film are higher, the prepared product has more prominent multicolor display and excellent electrochromic performance, and the material can be applied to electrochromic devices.
Description
Technical Field
The invention relates to a polymeric membrane PEWT with a multicolor display D-A-D ' (donor-acceptor-donor ') asymmetric structure and a preparation method thereof, wherein the polymeric membrane PEWT with the D-A-D ' asymmetric structure can be applied to preparation of electrochromic devices.
Technical Field
Since the discovery of Polymer Electrochromic (PEC) materials, it is considered to be one of the development directions of the next-generation EC materials because of its advantages of easy structure modification, high coloring efficiency, high optical contrast, and fast response speed, compared to inorganic electrochromic materials. At present, the method for realizing multicolor display of electrochromic polymers through molecular design or modification mainly comprises the design of a donor-acceptor (D-A) molecular structure and copolymerization among different molecules, wherein a copolymerization product is not favorable for mechanism research on the color change performance of electrochromic materials and quality control in actual production due to uncertainty of the molecular structure.
The D-A structure can effectively regulate and control the molecular energy band and the electrochromic property of the polymer. At present, various D-A structure conjugated polymers are reported, such as D-A structure copolymers taking benzothiadiazole, benzoquinoxaline, thiophene pyrazine, fluorenone and derivatives thereof as receptors. However, the understanding of the mechanism and the application of the material are still limited, so that the problems that the oxidation potential is single, the color change display is single and the optical contrast is general in the electrochromic property of the existing D-A-D symmetric conjugated polymer PEWE (a molecular polymer with the same 3, 4-Ethylenedioxythiophene (EDOT) introduced at two ends of fluorenone) are solved in order to deeply understand the relationship between the molecular structure of the conjugated polymer electrochromic material and the photoelectric property of the conjugated polymer electrochromic material. We design a fluorenone-based D-A-D' asymmetric conjugated polymer PEWT (a molecular polymer with different groups of 3, 4-Ethylenedioxythiophene (EDOT) and triphenylamine introduced into two ends of fluorenone), study the influence of a molecular structure on the performances of color display, aggregation state appearance, optical contrast and the like, and find that the polymer has more excellent electrochromic performance than PEWE.
Disclosure of Invention
In order to solve the problems of single oxidation potential, single color change display single optical contrast and the like of the existing D-A-D symmetrical conjugated polymer PEWE, the invention aims to provide a D-A-D' asymmetrical structure polymer PEWT, and the polymer is found to enrich electrochromic display and have higher optical contrast under a certain wavelength.
In order to achieve the purpose, the invention adopts the following technical scheme:
a D-A-D' asymmetric structure polymeric membrane PEWT is prepared according to the following method:
(1) mixing 2, 7-dibromo-9 fluorenone shown in formula 1 with 4- (diphenylamino) phenylboronic acid and tetra (tri) phenylphosphite palladium, dissolving in an organic solvent A under the action of an alkaline substance A under the condition of nitrogen protection, reacting at a reflux temperature for 8-12 hours to obtain a reaction mixed solution B, and carrying out aftertreatment to obtain a product 2-triphenylamine-7-bromo-9-fluorenone shown in formula 2; the amount ratio of the 2, 7-dibromo-9 fluorenone, 4- (diphenylamino) phenylboronic acid and tetra (di) phenylphosphide palladium shown in the formula 1 is 1: 0.5-1: 0.001-0.005; the alkaline substance A is added in the form of aqueous solution, and the addition amount of the water is based on just dissolving the alkaline substance A; the adding amount of the alkaline substance A is 2-4 mol/L based on the volume of the organic solvent A;
(2) dissolving 2-triphenylamine-7-bromo-9-fluorenone shown in formula 2, tributyl (2, 3-dihydrothieno [3,4-B ] - [1,4] dioxin-5-yl) stannane and bis (triphenylphosphine) palladium dichloride in an organic solvent B under the action of an alkaline substance B under the condition of nitrogen protection, reacting at the reflux temperature for 24-36 hours to obtain a reaction mixed solution C, and carrying out post-treatment to obtain a D-A-D' asymmetric structure monomer EWT shown in formula 3; the mass ratio of the 2-triphenylamine-7-bromo-9-fluorenone to the tributyl (2, 3-dihydrothieno [3,4-b ] - [1,4] dioxin-5-yl) stannane and the bis (triphenylphosphine) palladium dichloride is 1: 1-2: 0.001-0.005; the alkaline substance B is added in the form of aqueous solution, and the addition amount of the water is based on just dissolving the alkaline substance B; the addition amount of the organic solvent A is 10-100 mL/mmol based on the amount of the 2, 7-dibromo-9 fluorenone substance shown in the formula 1; the adding amount of the alkaline substance B is 2-4 mol/L based on the volume of the organic solvent B; the addition amount of the organic solvent B is 10-100 mL/mmol based on the amount of the 2-triphenylamine-7-bromo-9-fluorenone substance shown in the formula 2;
(3) dissolving the D-A-D' asymmetric structure monomer EWT and supporting electrolyte obtained in the step (3) in an electrolytic solvent to obtain electrolyte, performing deposition reaction in a three-electrode electrolytic cell by adopting a cyclic voltammetry anodic oxidation polymerization method under the conditions that the polymerization voltage range is 0-1.6 Vvs. Ag/AgCl and the number of polymerization cycle turns is 2-32, obtaining a polymer film deposited on a working electrode after the reaction is completed, and cleaning and drying by using an organic solvent to obtain a polymer film PEWT shown in a formula 4; the supporting electrolyte is ammonium salt, lithium salt or 1-butyl-3-methylimidazolium tetrafluoroborate; the electrolytic cell solvent is a mixed solvent of acetonitrile (chromatographic grade) and dioxymethane (chromatographic grade) with the volume ratio of 1: 0.1-10; the addition amount of the D-A-D 'asymmetric structure monomer EWT or the supporting electrolyte is calculated by the volume beam of the electrolytic solvent, the initial final concentration of the D-A-D' asymmetric structure monomer EWT is 0.1-10 mmol/L of the electrolytic solvent, and the initial final concentration of the supporting electrolyte is 0.01-1 mol/L of the electrolytic solvent;
the three-electrode system consists of an electrolytic cell, a working electrode, an auxiliary electrode and a reference electrode, wherein the working electrode is an Indium Tin Oxide (ITO) conductive glass, FTO or PET conductive film electrode, the auxiliary electrode is a platinum electrode or a platinum carbon electrode, the reference electrode is Ag/AgCl and takes 3mol/L potassium chloride aqueous solution as a first liquid connection, and the electrolyte is taken as a second liquid connection;
further, the 2, 7-dibromo-9 fluorenone represented by formula 1 may be prepared according to the following method:
taking fluorenone as a raw material, iodine as a catalyst and water as a solvent, dropwise adding liquid bromine under the stirring state, carrying out bromination reaction for 4-6 hours at 100 ℃ to obtain a reaction mixed solution A, carrying out suction filtration after the system is cooled, washing the obtained filter cake with a saturated sodium bisulfite solution and deionized water in sequence, and drying to obtain 2, 7-dibromo-9 fluorenone shown in formula 1; the amount ratio of iodine to fluorenone to liquid bromine is 1: 150: 300-450; the addition amount of the water is 1.5-2 ml/mmol based on the amount of the fluorenone substance.
In step (1), the alkaline substance a is sodium carbonate, sodium bicarbonate, potassium carbonate or the like, preferably potassium carbonate.
Furthermore, in the step (1), the organic solvent a is a mixed solvent of tetrahydrofuran and toluene mixed at any ratio, and preferably a mixed solution of tetrahydrofuran and toluene at a volume ratio of 1: 0.5-2.
Further, in the step (1), the post-treatment process of the obtained reaction mixed liquid B is as follows: after the reaction is finished, adding dichloromethane into the obtained reaction mixed liquid B for extraction, combining organic phases, drying by using anhydrous magnesium sulfate, carrying out rotary evaporation on a sample, taking a mixed solvent of Petroleum Ether (PE) and Dichloromethane (DCM) with the volume ratio of 1: 0.5-1.5 as a mobile phase component, and carrying out chromatographic separation to obtain the 2-triphenylamine-7-bromo-9-fluorenone shown in the formula 2.
In step (2), the basic substance B is sodium carbonate, sodium bicarbonate, potassium carbonate or the like, preferably potassium carbonate.
Further, in the step (2), the organic solvent B is a mixed solvent in which tetrahydrofuran and toluene are mixed at any ratio, and the volume ratio of tetrahydrofuran to toluene is preferably 1: 0.5-2.
Furthermore, in the step (2), the post-treatment process of the obtained reaction mixed liquid C is as follows: after the reaction is finished, adding a mixed reagent of deionized water and dichloromethane into the obtained reaction mixed solution C for extraction, combining organic phases, drying by using anhydrous magnesium hydrophosphate, carrying out rotary evaporation on a mixed sample, taking a mixed solvent of Petroleum Ether (PE) and Dichloromethane (DCM) with the volume ratio of 1: 0.5-1.5 as a mobile phase component, and carrying out chromatographic separation to obtain a D-A-D' asymmetric structure monomer EWT shown in a formula 3;
further, in the step (3), the ammonium salt is tetrabutyl ammonium perchlorate (TBAP) or tetrabutyl ammonium hexafluorophosphate (TBAPF)6)。
Further, in the step (3), the physical salt is lithium hexafluorophosphate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, or the like.
Further, in the step (3), the organic solvent for cleaning is a mixed solvent of acetonitrile and dichloromethane, wherein the volume ratio of the acetonitrile to the dichloromethane is 1: 0.1-10.
In the step (3), the working electrode is sequentially subjected to ultrasonic washing in 0.1% sodium hydroxide solution, absolute ethyl alcohol, acetone, toluene, absolute ethyl alcohol, toluene and acetone, preferably, the ultrasonic time is 15min each.
Further, in the step (3), the auxiliary electrode needs to be polished.
The thickness of the polymer film is 30-630 nm.
The structure of the monomer of the invention is characterized by nuclear magnetic resonance hydrogen (NMR) and mass spectra; the polymers were characterized by Scanning Electron Microscopy (SEM), ultraviolet-visible spectroscopy (UV), electrochemical workstation. From the NMR and mass spectra of the monomers, the formation of the monomers was confirmed; the ultraviolet-visible spectrum (UV) and the electrochemical workstation are used together to obtain the ultraviolet-visible spectrum absorption under different voltages and the contrast and response time under different spectra, thereby directly proving that the asymmetric structure of the D-A-D' improves the color display, the optical contrast or the response time of the electrochromic material under certain conditions; the appearance of the obtained polymer film is characterized by a Scanning Electron Microscope (SEM), and the D-A-D' asymmetric structure brings larger influence on the aggregation state appearance of the electrochromic material relative to the D-A-D symmetric structure.
Compared with the prior art, the invention has the beneficial effects that:
(1) the polymerization preparation method of the D-A-D' asymmetric structure material is simple and convenient, does not need harsh reaction conditions, can be operated at room temperature, does not need a complex purification process, has higher product purity and lower preparation energy consumption, and saves a material forming process, so the method has the advantages of simple and convenient operation, lower cost, easy control of the structure (size, thickness, character and the like), and is favorable for commercial application.
(3) Compared with the PEWE with a D-A-D symmetrical structure, the membrane material is electrochemically prepared, the appearance of the membrane is more fluffy, and the appearance of the PEWT membrane is not changed greatly after stability test; the actual assembly of the polymer film has revealed that the polymer film has high rigidity, and is easily broken as the film is brittle, and therefore, it is required to improve the film in the future.
(4) In the invention, the electrochemical cyclic voltammetry curve of the polymeric membrane shows that the conjugated polymer with the D-A-D' asymmetric structure has more redox sites, namely has more metastable states.
(5) The D-A-D' asymmetric conjugated polymer PEWT has more oxidation reduction peaks and richer color display. And as the voltage increases, the PEWT has more color, and when in the neutral state, the material exhibits a hardwood color; as the voltage was increased, the film slowly turned blue, showing a brilliant rock grey by the time the voltage reached 0.9V; subsequently, the voltage was slowly increased to 1.4V, showing a mineral purple color. The PEWE is sun-cured in the neutral state and is grayish purple in the oxidation state, and the color display is single.
(6) The film thickness of the material under different polymerization turns is measured by a Dektak-XT surface profiler, and the fact that the film thickness of the D-A-D' asymmetric structure material PEWT is increased more rapidly along with the cyclic voltammetry polymerization turns compared with the D-A-D symmetric structure material PEWE is found, and the phenomenon possibly has certain relation with the solubility of a material monomer and the film structure and needs to be continuously explored in the future.
(7) At 1100nm, the contrast is increased from 313% of PEWE to 48.8% of PEWT at the same film thickness; at 650nm, the contrast increased from 11.4% for PEWE to 26.7% for PEWT, and the introduction of triphenylamine groups dramatically changed its optical contrast in the visible and near infrared regions relative to the D-A-D symmetric structure polymeric film PSWS.
Drawings
FIG. 1 is an SEM photograph of a polymer thin film produced in a comparative example;
FIG. 2 is a cyclic voltammogram of a polymerization of a monomer in a comparative example;
FIG. 3 is a cyclic voltammogram of the polymeric membrane of the comparative example;
FIG. 4 is an SEM photograph of the polymer thin film obtained in example 1;
FIG. 5 is a cyclic voltammogram of the polymerization of monomers in example 1;
FIG. 6 is a cyclic voltammogram of the polymeric membrane of example 1;
FIG. 7 is a graph showing the measurement of the film thickness of polymer films in comparative examples and examples (using a Dektak-XT surface profiler);
FIG. 8 is a graph showing the optical contrast of polymer films PEWE and PEWT at the same film thickness;
Detailed Description
The invention is further described below by means of specific examples, without restricting its scope to these. The invention adopts cyclic voltammetry polymerization to prepare the polymer film, and the instruments adopted in the whole preparation process are an electrochemical workstation (CHI660E, Shanghai Chenghua instruments Co.) and a three-electrode system.
In the embodiment, the voltage range of the PEWT polymeric film in the photoelectric property test is 0-1.6V vs. Ag/AgCl.
Firstly, preparing 2, 7-dibromo-9 fluorenone, adding 4g of fluorenone, 35mL of aqueous solvent and 0.015g of iodine catalyst into a 100mL clean flask, dropwise adding 3mL of bromine under stirring, heating at 100 ℃ for 6 hours, performing suction filtration after a system is cooled, washing an obtained filter cake with saturated sodium bisulfite solution and deionized water in sequence, and drying to obtain a yellow solid target product.
In addition, tributyl (2, 3-dihydrothieno [3,4-b ] - [1,4] dioxin-5-yl) stannane needs to be prepared in the experiment, and the specific steps are as follows: slowly adding n-butyllithium (1.6M) dropwise at-78 ℃, stirring for 0.5h, then raising the temperature to-40 ℃, slowly adding tributyltin chloride (18.8mmol, 6.12g) dropwise, reacting for 8h at room temperature, and separating to obtain tributyl (2, 3-dihydrothieno [3,4-b ] - [1,4] dioxin-5-yl) stannane.
Comparative example
(1) Preparation of monomeric EWE
Dissolving 2, 7-dibromo-9-fluorenone (3mmol, 1.014g), tributyl (2, 3-dihydrothieno [3,4-b ] - [1,4] dioxin-5-yl) stannane (7mmol, 3.0248 g), potassium carbonate (3mmol, 1.3821g) and bis (triphenylphosphine) palladium dichloride (0.025mmol, 0.01755g) in a mixed solution of tetrahydrofuran (20ML) and toluene (30ML), adding 2ML of deionized water, refluxing for 24 hours in a nitrogen atmosphere, cooling the system, extracting with a mixed reagent of deionized water and dichloromethane, adding anhydrous magnesium hydrophosphate to the obtained organic phase, drying, carrying out rotary evaporation on the sample, and selecting a corresponding mobile phase (PE: DCM ═ 1: 1.5) for chromatography to obtain a monomer (EWE). 1H NMR (500MHz, CDCl3)8.07(d, J ═ 1.6Hz, 1H), 7.82(dd, J ═ 7.9, 1.7Hz, 1H), 7.78(d, J ═ 1.8Hz, 1H), 7.61(dd, J ═ 7.9, 1.8Hz, 1H), 7.49(d, J ═ 7.9Hz, 1H), 7.39(d, J ═ 7.9Hz, 1H), 6.36(s, 1H), 4.38-4.34(m, 2H), 4.30-4.25(m, 3H), MALDI-TOF-ms (m) (m/z): 461.1[ M + H ] +.
(2) Preparation of Polymer (PEWE) Material
EWE monomer (1mmol, 0.0046g) and tetrabutylammonium perchlorate (1mmol, 0.342g) are dissolved in a mixed solution of 7ml of dichloromethane and 3ml of acetonitrile to prepare a mixed solution with the monomer concentration of 0.005mol/L and the supporting electrolyte concentration of 0.1mol/L as an electrolyte. A three-electrode electrolytic cell system is selected, indium tin conductive glass (ITO) is used as a working electrode (the indium tin conductive glass is subjected to ultrasonic washing in 0.1% sodium hydroxide solution, absolute ethyl alcohol, acetone, toluene, absolute ethyl alcohol, toluene and acetone for 15min in sequence), a polished platinum wire is used as an auxiliary electrode (the length of the platinum wire is 4cm), a double-liquid-connection type silver/silver chloride electrode is used as a reference electrode (Ag/AgCl, 3mol/L potassium chloride aqueous solution is used as a first liquid connection, and the prepared electrolyte is used as a second liquid connection). At room temperature (25 ℃), a polymer film is prepared by an electrochemical workstation through a cyclic voltammetry anodic oxidation polymerization method, wherein cyclic voltammetry refers to that a linear scanning voltage is applied to an electrode, scanning is carried out at a constant change speed, and when a certain set termination voltage is reached, the linear scanning voltage reversely returns to the originally set initial voltage. Therefore, firstly, setting the initial voltage 0v, the termination voltage 1.6v and the scanning rate 0.1v/s of the monomer polymerization, setting the number of polymerization cycles to be 26 (the thickness of the obtained polymerization film is 630nm), and starting the electrochemical workstation; as shown in FIG. 2, the graph is a cyclic voltammetry polymerization curve of a monomer, and the oxidation potential of the monomer is 0.71v, which indicates that the polymerization potential is lower, the energy consumption is less, and the practical production application is facilitated. After polymerization, a layer of polymer film is deposited on the surface of the ITO conductive glass of the working electrode, the ITO conductive glass is cleaned by dichloromethane and dried to obtain the working electrode with the polymer film deposited on the surface, as shown in figure 1, the aggregation state of the surface of the polymer film is uniform and dense as seen by an electron scanning microscope, and after 500 cyclic voltammetry stability tests, the polymer film forms a fluffy structure, which indicates that the stability of the polymer film is not ideal.
(3) Polymer (PEWE) electrochemical Performance test
Tetrabutylammonium perchlorate (1mmol, 0.342g) is dissolved in a mixed solution of 6ml dichloromethane and 4ml acetonitrile to prepare an electrolyte solution with the concentration of 0.1mol/L, a three-electrode electrolytic cell system is selected, a polymeric membrane PEWE is used as a working electrode, a polished platinum wire is used as an auxiliary electrode (the length of the platinum wire is 4cm), a double liquid connection type silver/silver chloride electrode is used as a reference electrode (an Ag/AgCl, 3mol/L potassium chloride aqueous solution is used as a first liquid connection, and the prepared electrolyte is used as a second liquid connection). When the cyclic voltammetry curve of the polymeric film is tested at room temperature, the polymeric film has only one pair of oxidation-reduction peaks and has single color change, and the polymeric film shows solarization in a neutral state, and the oxidation state changes into grayish purple with the increase of voltage.
Example 1
(1) Preparation of monomeric EWT
Dissolving 2, 7-dibromo-9 fluorenone (3mmol, 1.044g), 4- (diphenylamino) phenylboronic acid (1.5mmol, 0.438g), potassium carbonate (2mmol, 0.2764g) and tetrakis (tri) phenylphosphoric palladium (0.0025mmol, 0.0311g) in a mixed solution of tetrahydrofuran (20ML) and toluene (30ML) under the condition of nitrogen protection, adding 2ML of deionized water, refluxing for 8 hours, after the system is cooled, extracting by using a mixed reagent of the deionized water and dichloromethane, adding anhydrous magnesium sulfate into the obtained organic phase for drying, then carrying out rotary evaporation on a sample, selecting a corresponding mobile phase for chromatography, and passing through a column to finally obtain a 2-triphenylamine-7-bromo-9-fluorenone monomer; then, 2-triphenylamine-7-bromo-9-fluorenone monomer (3mmol, 1.503g), tributyl (2, 3-dihydrothieno [3,4-b ] - [1,4] dioxin-5-yl) stannane (3mmol, 1.2963g), potassium carbonate (2mmol, 0.2764g) and bis (triphenylphosphine) palladium dichloride (0.025mmol, 0.01755g) were dissolved in a mixed solution of tetrahydrofuran (20mL) and toluene (30mL), 2mL of deionized water was added, reflux was carried out for 24 hours in a nitrogen atmosphere, after the system was cooled, a mixed reagent of deionized water and dichloromethane was used for extraction, the resulting organic phase was dried over anhydrous magnesium sulfate, and then the sample was rotary-stirred, and the corresponding mobile phase (PE: DCM: 1: 1.5) was selected for chromatography and passed through a column, to obtain monomer (EWT). 1H NMR (500MHz, DMSO)8.08(d, J ═ 1.4Hz, 1H), 7.92(d, J ═ 1.5Hz, 1H), 7.82(dd, J ═ 7.9, 1.7Hz, 1H), 7.73(dd, J ═ 7.8, 1.8Hz, 1H), 7.51(d, J ═ 3.9Hz, 1H), 7.50(d, J ═ 4.1Hz, 1H), 7.39(dd, J ═ 3.6, 1.0Hz, 1H), 7.32(dd, J ═ 5.1, 1.0Hz, 1H), 7.11(dd, J ═ 5.1, 3.6 Hz, 1H), 6.35(s, 1H), 4.40-4.34(m, 2H), 4.24.24 (TOF-2 m) (ms — 2 m): 564.1[ M + H ] +.
(2) Preparation of Polymer (PEWT) Material
EWT monomer (1mmol, 0.00563g) and tetrabutylammonium perchlorate (1mmol, 0.342g) are dissolved in a mixed solution of 7ml of dichloromethane and 3ml of acetonitrile to prepare a mixed solution with the monomer concentration of 0.005mol/L and the supporting electrolyte TBAP concentration of 0.1mol/L as an electrolyte. A three-electrode electrolytic cell system is selected, indium tin conductive glass (ITO) is used as a working electrode (sequentially washed in 0.1% sodium hydroxide solution, absolute ethyl alcohol, acetone, toluene, absolute ethyl alcohol, toluene and acetone for 15min in an ultrasonic mode), a polished platinum wire is used as an auxiliary electrode (the length of the platinum wire is 4cm), a double-liquid-connection type silver/silver chloride electrode is used as a reference electrode (Ag/AgCl, 3mol/L potassium chloride aqueous solution is used as a first liquid connection, and the prepared electrolyte is used as a second liquid connection). Preparing a polymer film by adopting a cyclic voltammetry anodic oxidation polymerization method at room temperature (25 ℃), firstly setting the initial voltage 0v, the final voltage 1.6v and the scanning rate 0.1v/s of the monomer polymerization, setting the number of polymerization cycles to be 16 (the thickness of the obtained polymerized film is 630nm), and starting the working procedure of an electrochemical workstation. Referring to fig. 5, which is a graph showing cyclic voltammetry polymerization curves of monomers, it can be seen that oxidation potentials of the monomers are 1.1v and 1.47v, and the monomer molecules have excellent ability to form a film by polymerization, and thus it can be seen that the structural monomer EWT has more oxidation-reduction potentials than EWE. After polymerization, a layer of polymer film is deposited on the surface of the ITO conductive glass of the working electrode, the ITO conductive glass is cleaned by dichloromethane and dried to obtain the working electrode with the polymer film deposited on the surface, as can be seen from figure 4, the surface of the polymer film is looser relative to the polymer, but after 500 cycles, the appearance change is small, and the polymer film is stable.
(3) Polymer (PEWT) electrochemical Performance test
Tetrabutylammonium perchlorate (1mmol, 0.342g) is dissolved in a mixed solution of 6ml dichloromethane and 4ml acetonitrile to prepare an electrolyte solution with the concentration of 0.1mol/L, a three-electrode electrolytic cell system is selected, a polymeric membrane PEWT is taken as a working electrode, a polished platinum wire is taken as an auxiliary electrode (the length of the platinum wire is 4cm), a double liquid connection type silver/silver chloride electrode is taken as a reference electrode (an Ag/AgCl, 3mol/L potassium chloride aqueous solution is taken as a first liquid connection, and the prepared electrolyte is taken as a second liquid connection). At room temperature, testing the cyclic voltammetry curve of the polymeric film, namely, under the polymerization voltage range of 0-1.6V vs. Ag/AgCl, carrying out cyclic voltammetry scanning on a working electrode containing the polymeric film at the rate of 0.1V/s for one week, and as can be seen from figure 6, the D-A-D' asymmetric structure conjugated polymer PEWT has more redox peaks and more abundant colors, and when the material is in a neutral state, the material shows a hardwood color; as the voltage was increased, the film slowly turned blue, showing a brilliant rock grey by the time the voltage reached 0.9V; subsequently, the voltage was slowly increased to 1.4V, showing a mineral purple color. As shown in FIG. 8 and Table 1, at the same film thickness, the contrast increased from 313% for PEWE to 48.8% for PEWT at 1100 nm; at 650nm, the contrast ratio is increased from 11.4% of PEWE to 26.7% of PEWT, and the introduction of triphenylamine groups greatly changes the optical contrast ratio in the visible and near infrared regions relative to the D-A-D symmetrical structure polymeric film PSWS, and the specific spectral kinetic performance parameters are shown in Table 1.
Table 1 shows the spectral kinetic properties of the polymer films PEWE and PEWT in comparative example and example 1
Example 2
(1) Preparation of monomeric EWT
Dissolving 2, 7-dibromo-9 fluorenone (3mmol, 1.044g), 4- (diphenylamino) phenylboronic acid (1.5mmol, 0.438g), potassium carbonate (2mmol, 0.2764g) and tetrakis (tri) phenylphosphoric palladium (0.0025mmol, 0.0311g) in a mixed solution of tetrahydrofuran (20ML) and toluene (30ML) under the condition of nitrogen protection, adding 2ML of deionized water, refluxing for 6 hours, after the system is cooled, extracting by using a mixed reagent of the deionized water and dichloromethane, adding anhydrous magnesium sulfate into the obtained organic phase for drying, then carrying out rotary evaporation and sample mixing, selecting a corresponding mobile phase for chromatography, and passing through a column to finally obtain a 2-triphenylamine-7-bromo-9-fluorenone monomer; then, 2-triphenylamine-7-bromo-9-fluorenone monomer (3mmol, 1.503g), tributyl (2, 3-dihydrothieno [3,4-b ] - [1,4] dioxin-5-yl) stannane (3mmol, 1.2963g), potassium carbonate (2mmol, 0.2764g) and bis (triphenylphosphine) palladium dichloride (0.025mmol, 0.01755g) are dissolved in a mixed solution of tetrahydrofuran (20mL) and toluene (30mL), 2mL of deionized water is added, reflux is carried out for 36 hours in a nitrogen atmosphere, after the system is cooled, the obtained organic phase is added with anhydrous magnesium hydrophosphate and dried, then the sample is steamed in a rotary manner, and a corresponding mobile phase (PE: DCM ═ 1: 1.5) is selected to carry out chromatography, so that monomer (EWT) is obtained. 1H NMR (500MHz, DMSO)8.08(d, J ═ 1.4Hz, 1H), 7.92(d, J ═ 1.5Hz, 1H), 7.82(dd, J ═ 7.9, 1.7Hz, 1H), 7.73(dd, J ═ 7.8, 1.8Hz, 1H), 7.51(d, J ═ 3.9Hz, 1H), 7.50(d, J ═ 4.1Hz, 1H), 7.39(dd, J ═ 3.6, 1.0Hz, 1H), 7.32(dd, J ═ 5.1, 1.0Hz, 1H), 7.11(dd, J ═ 5.1, 3.6 Hz, 1H), 6.35(s, 1H), 4.40-4.34(m, 2H), 4.24.24 (TOF-2 m) (ms — 2 m): 564.1[ M + H ] +.
(2) Preparation of Polymer (PEWT) Material
EWT monomer (1mmol, 0.00563g) and tetrabutylammonium perchlorate (1mmol, 0.342g) are dissolved in a mixed solution of 7ml of dichloromethane and 3ml of acetonitrile to prepare a mixed solution with the monomer concentration of 0.005mol/L and the supporting electrolyte TBAP concentration of 0.1mol/L as an electrolyte. A three-electrode electrolytic cell system is selected, indium tin conductive glass (ITO) is used as a working electrode (sequentially washed in 0.1% sodium hydroxide solution, absolute ethyl alcohol, acetone, toluene, absolute ethyl alcohol, toluene and acetone for 15min in an ultrasonic mode), a polished platinum wire is used as an auxiliary electrode (the length of the platinum wire is 4cm), a double-liquid-connection type silver/silver chloride electrode is used as a reference electrode (Ag/AgCl, 3mol/L potassium chloride aqueous solution is used as a first liquid connection, and the prepared electrolyte is used as a second liquid connection). Preparing a polymer film by adopting a cyclic voltammetry anodic oxidation polymerization method at room temperature (25 ℃), firstly setting the initial voltage 0v, the final voltage 1.6v and the scanning rate 0.1v/s of the monomer polymerization, setting the number of polymerization cycles to be 16 (the thickness of the obtained polymerized film is 630nm), and starting the working procedure of an electrochemical workstation. From cyclic voltammetry polymerization curves of the monomers, the oxidation potentials of the monomers are 1.1v and 1.47v, and the monomer molecules have excellent polymerization film forming capability, so that the structural monomer EWT has more oxidation-reduction potentials than EWE. After polymerization, a layer of polymer film is deposited on the surface of the ITO conductive glass of the working electrode, the ITO conductive glass is cleaned by dichloromethane and dried to obtain the working electrode with the polymer film deposited on the surface, and the surface of the polymer film is looser relative to the polymer as shown by a scanning electron microscope, but after 500 cycles, the appearance change is small, and the polymer film is stable.
(3) Polymer (PEWT) electrochemical Performance test
Tetrabutylammonium perchlorate (1mmol, 0.342g) is dissolved in a mixed solution of 6ml dichloromethane and 4ml acetonitrile to prepare an electrolyte solution with the concentration of 0.1mol/L, a three-electrode electrolytic cell system is selected, a polymeric membrane PEWT is taken as a working electrode, a polished platinum wire is taken as an auxiliary electrode (the length of the platinum wire is 4cm), a double liquid connection type silver/silver chloride electrode is taken as a reference electrode (an Ag/AgCl, 3mol/L potassium chloride aqueous solution is taken as a first liquid connection, and the prepared electrolyte is taken as a second liquid connection). Testing the cyclic voltammetry curve of the polymeric film at room temperature, namely, under the polymerization voltage range of 0-1.6V vs. Ag/AgC1, carrying out cyclic voltammetry scanning on a working electrode containing the polymeric film at the rate of 0.1V/s for one week, wherein the test shows that the D-A-D' asymmetric structure conjugated polymer PEWT has more redox peaks and more abundant colors, and when the material is in a neutral state, the material shows a hardwood color; as the voltage was increased, the film slowly turned blue, showing a brilliant rock grey by the time the voltage reached 0.9V; subsequently, the voltage was slowly increased to 1.4V, showing a mineral purple color. At the same film thickness, at 1100nm, the contrast is increased from 31.3% of PEWE to 48.8% of PEWT; at 650nm, the contrast increased from 11.4% for PEWE to 26.7% for PEWT, and the introduction of triphenylamine groups dramatically changed its optical contrast in the visible and near infrared regions relative to the D-A-D symmetric structure polymeric film PSWS.
Example 3
(1) Preparation of monomeric EWT
Dissolving 2, 7-dibromo-9 fluorenone (3mmol, 1.044g), 4- (diphenylamino) phenylboronic acid (1.5mmol, 0.438g), potassium carbonate (2mmol, 0.2764g) and tetrakis (tri) phenylphosphoric palladium (0.0025mmol, 0.0311g) in a mixed solution of tetrahydrofuran (20ML) and toluene (30ML) under the condition of nitrogen protection, adding 2ML of deionized water, refluxing for 8 hours, after the system is cooled, extracting by using a mixed reagent of the deionized water and dichloromethane, adding anhydrous magnesium sulfate into the obtained organic phase for drying, then carrying out rotary evaporation on a sample, selecting a corresponding mobile phase for chromatography, and passing through a column to finally obtain a 2-triphenylamine-7-bromo-9-fluorenone monomer; then, 2-triphenylamine-7-bromo-9-fluorenone monomer (3mmol, 1.503g), tributyl (2, 3-dihydrothieno [3,4-b ] - [1,4] dioxin-5-yl) stannane (3mmol, 1.2963g), potassium carbonate (2mmol, 0.2764g) and bis (triphenylphosphine) palladium dichloride (0.025mmol, 0.01755g) were dissolved in a mixed solution of tetrahydrofuran (20mL) and toluene (30mL), 2mL of deionized water was added, reflux was carried out for 24 hours in a nitrogen atmosphere, after the system was cooled, a mixed reagent of deionized water and dichloromethane was used for extraction, the resulting organic phase was dried over anhydrous magnesium sulfate, and then the sample was rotary-stirred, and the corresponding mobile phase (PE: DCM: 1: 1.5) was selected for chromatography and passed through a column, to obtain monomer (EWT). 1H NMR (500MHz, DMSO)8.08(d, J ═ 1.4Hz, 1H), 7.92(d, J ═ 1.5Hz, 1H), 7.82(dd, J ═ 7.9, 1.7Hz, 1H), 7.73(dd, J ═ 7.8, 1.8Hz, 1H), 7.51(d, J ═ 3.9Hz, 1H), 7.50(d, J ═ 4.1Hz, 1H), 7.39(dd, J ═ 3.6, 1.0Hz, 1H), 7.32(dd, J ═ 5.1, 1.0Hz, 1H), 7.11(dd, J ═ 5.1, 3.6 Hz, 1H), 6.35(s, 1H), 4.40-4.34(m, 2H), 4.24.24 (TOF-2 m) (ms — 2 m): 564.1[ M + H ] +.
(2) Preparation of Polymer (PEWT) Material
EWT monomer (1mmol, 0.00563g) and tetrabutylammonium perchlorate (1mmol, 0.342g) are dissolved in a mixed solution of 7ml of dichloromethane and 3ml of acetonitrile to prepare a mixed solution with the monomer concentration of 0.005mol/L and the supporting electrolyte TBAP concentration of 0.1mol/L as an electrolyte. A three-electrode electrolytic cell system is selected, indium tin conductive glass (ITO) is used as a working electrode (sequentially washed in 0.1% sodium hydroxide solution, absolute ethyl alcohol, acetone, toluene, absolute ethyl alcohol, toluene and acetone for 15min in an ultrasonic mode), a polished platinum wire is used as an auxiliary electrode (the length of the platinum wire is 4cm), a double-liquid-connection type silver/silver chloride electrode is used as a reference electrode (Ag/AgCl, 3mol/L potassium chloride aqueous solution is used as a first liquid connection, and the prepared electrolyte is used as a second liquid connection). Preparing a polymer film by adopting a cyclic voltammetry anodic oxidation polymerization method at room temperature (25 ℃), firstly setting the initial voltage 0v, the final voltage 1.6v and the scanning rate 0.05v/s of the monomer polymerization, setting the number of polymerization cycles to be 16 (the thickness of the obtained polymerized film is 630nm), and starting the working procedure of an electrochemical workstation. From cyclic voltammetry polymerization curves of the monomers, the oxidation potentials of the monomers are 1.1v and 1.47v, and the monomer molecules have excellent polymerization film forming capability, so that the structural monomer EWT has more oxidation-reduction potentials than EWE. After polymerization, a layer of polymer film is deposited on the surface of the ITO conductive glass of the working electrode, the ITO conductive glass is cleaned by dichloromethane and dried to obtain the working electrode with the polymer film deposited on the surface, and the surface of the polymer film is looser relative to the polymer as shown by a scanning electron microscope, but after 500 cycles, the appearance change is small, and the polymer film is stable.
(3) Polymer (PEWT) electrochemical Performance test
Tetrabutylammonium perchlorate (1mmol, 0.342g) is dissolved in a mixed solution of 6ml dichloromethane and 4ml acetonitrile to prepare an electrolyte solution with the concentration of 0.1mol/L, a three-electrode electrolytic cell system is selected, a polymeric membrane PEWT is taken as a working electrode, a polished platinum wire is taken as an auxiliary electrode (the length of the platinum wire is 4cm), a double liquid connection type silver/silver chloride electrode is taken as a reference electrode (an Ag/AgCl, 3mol/L potassium chloride aqueous solution is taken as a first liquid connection, and the prepared electrolyte is taken as a second liquid connection). Testing the cyclic voltammetry curve of the polymeric membrane at room temperature, namely under the polymerization voltage range of 0-1.6V vs. Ag/AgCl, carrying out cyclic voltammetry scanning on a working electrode containing the polymeric membrane at the rate of 0.05V/s for one week, wherein the test shows that the D-A-D' asymmetric structure conjugated polymer PEWT has more redox peaks and more abundant colors, and the material shows a hardwood color when in a neutral state; as the voltage was increased, the film slowly turned blue, showing a brilliant rock grey by the time the voltage reached 0.9V; subsequently, the voltage was slowly increased to 1.4V, showing a mineral purple color. At the same film thickness, at 1100nm, the contrast is increased from 31.3% of PEWE to 48.8% of PEWT; at 650nm, the contrast increased from 11.4% for PEWE to 26.7% for PEWT, and the introduction of triphenylamine groups dramatically changed its optical contrast in the visible and near infrared regions relative to the D-A-D symmetric structure polymeric film PSWS.
Example 4
(1) Preparation of monomeric EWT
Dissolving 2, 7-dibromo-9 fluorenone (3mmol, 1.044g), 4- (diphenylamino) phenylboronic acid (1.5mmol, 0.438g), potassium carbonate (2mmol, 0.2764g) and tetrakis (tri) phenylphosphoric palladium (0.0025mmol, 0.0311g) in a mixed solution of tetrahydrofuran (20ML) and toluene (30ML) under the condition of nitrogen protection, adding 2ML of deionized water, refluxing for 8 hours, after the system is cooled, extracting by using a mixed reagent of the deionized water and dichloromethane, adding anhydrous magnesium sulfate into the obtained organic phase for drying, then carrying out rotary evaporation on a sample, selecting a corresponding mobile phase for chromatography, and passing through a column to finally obtain a 2-triphenylamine-7-bromo-9-fluorenone monomer; then, 2-triphenylamine-7-bromo-9-fluorenone monomer (3mmol, 1.503g), tributyl (2, 3-dihydrothieno [3,4-b ] - [1,4] dioxin-5-yl) stannane (3mmol, 1.2963g), potassium carbonate (2mmol, 0.2764g) and bis (triphenylphosphine) palladium dichloride (0.025mmol, 0.01755g) were dissolved in a mixed solution of tetrahydrofuran (20mL) and toluene (30mL), 2mL of deionized water was added, reflux was carried out for 24 hours in a nitrogen atmosphere, after the system was cooled, a mixed reagent of deionized water and dichloromethane was used for extraction, the resulting organic phase was dried over anhydrous magnesium sulfate, and then the sample was rotary-stirred, and the corresponding mobile phase (PE: DCM: 1: 1.5) was selected for chromatography and passed through a column, to obtain monomer (EWT). 1H NMR (500MHz, DMSO)8.08(d, J ═ 1.4Hz, 1H), 7.92(d, J ═ 1.5Hz, 1H), 7.82(dd, J ═ 7.9, 1.7Hz, 1H), 7.73(dd, J ═ 7.8, 1.8Hz, 1H), 7.51(d, J ═ 3.9Hz, 1H), 7.50(d, J ═ 4.1Hz, 1H), 7.39(dd, J ═ 3.6, 1.0Hz, 1H), 7.32(dd, J ═ 5.1, 1.0Hz, 1H), 7.11(dd, J ═ 5.1, 3.6 Hz, 1H), 6.35(s, 1H), 4.40-4.34(m, 2H), 4.24.24 (TOF-2 m) (ms — 2 m): 564.1[ M + H ] +.
(2) Preparation of Polymer (PEWT) Material
EWT monomer (1mmol, 0.00563g) and lithium hexafluorophosphate (1mmol, 0.152g) are dissolved in a mixed solution of 7ml of dichloromethane and 3ml of acetonitrile to prepare a mixed solution with a monomer concentration of 0.005mol/L and a supporting electrolyte TBAP concentration of 0.1mol/L as an electrolyte. A three-electrode electrolytic cell system is selected, indium tin conductive glass (ITO) is used as a working electrode (sequentially washed in 0.1% sodium hydroxide solution, absolute ethyl alcohol, acetone, toluene, absolute ethyl alcohol, toluene and acetone for 15min in an ultrasonic mode), a polished platinum wire is used as an auxiliary electrode (the length of the platinum wire is 4cm), a double-liquid-connection type silver/silver chloride electrode is used as a reference electrode (Ag/AgCl, 3mol/L potassium chloride aqueous solution is used as a first liquid connection, and the prepared electrolyte is used as a second liquid connection). Preparing a polymer film by adopting a cyclic voltammetry anodic oxidation polymerization method at room temperature (25 ℃), firstly setting the initial voltage 0v, the final voltage 1.6v and the scanning rate 0.1v/s of the monomer polymerization, setting the number of polymerization cycles to be 16 (the thickness of the obtained polymerized film is 630nm), and starting the working procedure of an electrochemical workstation. From cyclic voltammetry polymerization curves of the monomers, the oxidation potentials of the monomers are 1.1v and 1.47v, and the monomer molecules have excellent polymerization film forming capability, so that the structural monomer EWT has more oxidation-reduction potentials than EWE. After polymerization, a layer of polymer film is deposited on the surface of the ITO conductive glass of the working electrode, the ITO conductive glass is cleaned by dichloromethane and dried to obtain the working electrode with the polymer film deposited on the surface, and the surface of the polymer film is looser relative to the polymer as shown by a scanning electron microscope, but after 500 cycles, the appearance change is small, and the polymer film is stable.
(3) Polymer (PEWT) electrochemical Performance test
Lithium hexafluorophosphate (1mmol, 0.152g) is dissolved in a mixed solution of 6ml dichloromethane and 4ml acetonitrile to prepare an electrolyte solution with the concentration of 0.1mol/L, a three-electrode electrolytic cell system is selected, a polymeric membrane PEWT is used as a working electrode, a polished platinum wire is used as an auxiliary electrode (the length of the platinum wire is 4cm), a double liquid connection type silver/silver chloride electrode is used as a reference electrode (an Ag/AgCl, 3mol/L potassium chloride aqueous solution is used as a first liquid connection, and the prepared electrolyte is used as a second liquid connection). Testing a cyclic voltammetry curve of the polymeric film at room temperature, namely, under the condition that the polymerization voltage range is 0-1.6V vs. Ag/AgCl, carrying out cyclic voltammetry scanning on a working electrode containing the polymeric film at the rate of 0.1V/s for one week, wherein the cyclic voltammetry curve of the polymeric film shows that the D-A-D' asymmetric structure conjugated polymer PEWT has more redox peaks and more abundant colors, and the material shows a hardwood color when being in a neutral state; as the voltage was increased, the film slowly turned blue, showing a brilliant rock grey by the time the voltage reached 0.9V; subsequently, the voltage was slowly increased to 1.4V, showing a mineral purple color. According to the test, at 1100nm, the contrast is increased from 31.3% of PEWE to 48.8% of PEWT under the same film thickness; at 650nm, the contrast increased from 11.4% for PEWE to 26.7% for PEWT, and the introduction of triphenylamine groups dramatically changed its optical contrast in the visible and near infrared regions relative to the D-A-D symmetric structure polymeric film PSWS.
Example 5
(1) Preparation of monomeric EWT
Dissolving 2, 7-dibromo-9 fluorenone (3mmol, 1.044g), 4- (diphenylamino) phenylboronic acid (1.5mmol, 0.438g), potassium carbonate (2mmol, 0.2764g) and tetrakis (tri) phenylphosphoric palladium (0.0025mmol, 0.0311g) in a mixed solution of tetrahydrofuran (20ML) and toluene (30ML) under the condition of nitrogen protection, adding 2ML of deionized water, refluxing for 8 hours, after the system is cooled, extracting by using a mixed reagent of the deionized water and dichloromethane, adding anhydrous magnesium sulfate into the obtained organic phase for drying, then carrying out rotary evaporation on a sample, selecting a corresponding mobile phase for chromatography, and passing through a column to finally obtain a 2-triphenylamine-7-bromo-9-fluorenone monomer; then, 2-triphenylamine-7-bromo-9-fluorenone monomer (3mmol, 1.503g), tributyl (2, 3-dihydrothieno [3,4-b ] - [1,4] dioxin-5-yl) stannane (3mmol, 1.2963g), potassium carbonate (2mmol, 0.2764g) and bis (triphenylphosphine) palladium dichloride (0.025mmol, 0.01755g) were dissolved in a mixed solution of tetrahydrofuran (20mL) and toluene (30mL), 2mL of deionized water was added, reflux was carried out for 24 hours in a nitrogen atmosphere, after the system was cooled, a mixed reagent of deionized water and dichloromethane was used for extraction, the resulting organic phase was dried over anhydrous magnesium sulfate, and then the sample was rotary-stirred, and the corresponding mobile phase (PE: DCM: 1: 1.5) was selected for chromatography and passed through a column, to obtain monomer (EWT). 1H NMR (500MHz, DMSO)8.08(d, J ═ 1.4Hz, 1H), 7.92(d, J ═ 1.5Hz, 1H), 7.82(dd, J ═ 7.9, 1.7Hz, 1H), 7.73(dd, J ═ 7.8, 1.8Hz, 1H), 7.51(d, J ═ 3.9Hz, 1H), 7.50(d, J ═ 4.1Hz, 1H), 7.39(dd, J ═ 3.6, 1.0Hz, 1H), 7.32(dd, J ═ 5.1, 1.0Hz, 1H), 7.11(dd, J ═ 5.1, 3.6 Hz, 1H), 6.35(s, 1H), 4.40-4.34(m, 2H), 4.24.24 (TOF-2 m) (ms — 2 m): 564.1[ M + H ] +.
(2) Preparation of Polymer (PEWT) Material
EWT monomer (1mmol, 0.00563g) and tetrabutylammonium perchlorate (1mmol, 0.342g) are dissolved in a mixed solution of 7ml of dichloromethane and 3ml of acetonitrile to prepare a mixed solution with the monomer concentration of 0.005mol/L and the supporting electrolyte TBAP concentration of 0.1mol/L as an electrolyte. A three-electrode electrolytic cell system is selected, indium tin conductive glass (ITO) is used as a working electrode (sequentially washed in 0.1% sodium hydroxide solution, absolute ethyl alcohol, acetone, toluene, absolute ethyl alcohol, toluene and acetone for 15min in an ultrasonic mode), a polished platinum wire is used as an auxiliary electrode (the length of the platinum wire is 4cm), a double-liquid-connection type silver/silver chloride electrode is used as a reference electrode (Ag/AgCl, 3mol/L potassium chloride aqueous solution is used as a first liquid connection, and the prepared electrolyte is used as a second liquid connection). Preparing a polymer film by adopting a cyclic voltammetry anodic oxidation polymerization method at room temperature (25 ℃), firstly setting the initial voltage 0v, the final voltage 1.6v and the scanning rate 0.1v/s of the monomer polymerization, setting the number of polymerization cycles to be 16 (the thickness of the obtained polymerized film is 630nm), and starting the working procedure of an electrochemical workstation. From cyclic voltammetry curves of the monomers, the oxidation potentials of the monomers are 1.1v and 1.47v, and the monomer molecules have excellent polymerization film forming capability, so that the structural monomer EWT has more oxidation-reduction potentials than EWE. After polymerization, a layer of polymer film is deposited on the surface of the ITO conductive glass of the working electrode, the ITO conductive glass is cleaned by dichloromethane and dried to obtain the working electrode with the polymer film deposited on the surface, and a scanning electron microscope shows that the surface of the polymer film is looser relative to the polymer, but after 500 cycles, the appearance change is small, and the polymer film is stable.
(3) Polymer (PEWT) electrochemical Performance test
Tetrabutylammonium perchlorate (1mmol, 0.342g) is dissolved in a mixed solution of 12ml dichloromethane and 8ml acetonitrile to prepare an electrolyte solution with the concentration of 0.05mol/L, a three-electrode electrolytic cell system is selected, a polymeric membrane PEWT is used as a working electrode, a polished platinum wire is used as an auxiliary electrode (the length of the platinum wire is 4cm), a double liquid connection type silver/silver chloride electrode is used as a reference electrode (an Ag/AgCl, 3mol/L potassium chloride aqueous solution is used as a first liquid connection, and the prepared electrolyte is used as a second liquid connection). Testing a cyclic voltammetry curve of the polymeric film at room temperature, namely under the condition that the polymerization voltage range is 0-1.6V vs. Ag/AgCl, carrying out cyclic voltammetry scanning on a working electrode containing the polymeric film at the rate of 0.1V/s for one week, wherein the test shows that the D-A-D' asymmetric structure conjugated polymer PEWT has more redox peaks and more abundant colors, and the material shows a hardwood color when being in a neutral state; as the voltage was increased, the film slowly turned blue, showing a brilliant rock grey by the time the voltage reached 0.9V; subsequently, the voltage was slowly increased to 1.4V, showing a mineral purple color. At the same film thickness, at 1100nm, the contrast is increased from 31.3% of PEWE to 48.8% of PEWT; at 650nm, the contrast increased from 11.4% for PEWE to 26.7% for PEWT, and the introduction of triphenylamine groups dramatically changed its optical contrast in the visible and near infrared regions relative to the D-A-D symmetric structure polymeric film PSWS.
Claims (10)
1. A polymer film PEWT of D-A-D' asymmetric structure, characterized in that: the D-A-D' asymmetric structure polymeric membrane PEWT is prepared by the following method:
(1) mixing 2, 7-dibromo-9 fluorenone shown in formula 1 with 4- (diphenylamino) phenylboronic acid and tetra (tri) phenylphosphite palladium, dissolving in an organic solvent A under the protection of nitrogen under the action of an alkaline substance A, reacting at a reflux temperature for 8-12 hours to obtain a reaction mixed solution B, and carrying out post-treatment to obtain a product 2-triphenylamine-7-bromo-9-fluorenone shown in formula 2; the mass ratio of the 2, 7-dibromo-9 fluorenone to the 4- (diphenylamino) phenylboronic acid and the tetra (tri) phenylphosphide palladium shown in the formula 1 is 1: 0.5-1: 0.001 to 0.005; the alkaline substance A is added in the form of aqueous solution, and the addition amount of the water is based on just dissolving the alkaline substance A; the adding amount of the alkaline substance A is 2-4 mol/L based on the volume of the organic solvent A; the addition amount of the organic solvent A is 10-100 mL/mmol based on the amount of the 2, 7-dibromo-9 fluorenone substance shown in the formula 1;
(2) dissolving 2-triphenylamine-7-bromo-9-fluorenone shown in formula 2, tributyl (2, 3-dihydrothieno [3,4-B ] - [1,4] dioxin-5-yl) stannane and bis (triphenylphosphine) palladium dichloride in an organic solvent B under the protection of nitrogen under the action of an alkaline substance B, reacting at a reflux temperature for 24-36 hours to obtain a reaction mixed solution C, and performing post-treatment to obtain a D-A-D' asymmetric structure monomer EWT shown in formula 3; the mass ratio of the 2-triphenylamine-7-bromo-9-fluorenone to the tributyl (2, 3-dihydrothieno [3,4-b ] - [1,4] dioxin-5-yl) stannane and the bis (triphenylphosphine) palladium dichloride is 1: 1-2: 0.001 to 0.005; the alkaline substance B is added in the form of aqueous solution, and the addition amount of the water is based on just dissolving the alkaline substance B; the adding amount of the alkaline substance B is 2-4 mol/L based on the volume of the organic solvent B; the addition amount of the organic solvent B is 10-100 mL/mmol based on the amount of the 2-triphenylamine-7-bromo-9-fluorenone substance shown in the formula 2;
(3) dissolving the D-A-D' asymmetric structure monomer EWT and supporting electrolyte obtained in the step (3) in an electrolytic solvent to obtain electrolyte, performing deposition reaction in a three-electrode electrolytic cell by adopting a cyclic voltammetry anodic oxidation polymerization method under the conditions that the polymerization voltage range is 0-1.6V vs. Ag/AgCl and the number of polymerization cycles is 2-32, obtaining a polymer film deposited on a working electrode after the reaction is completed, and cleaning and drying by using an organic solvent to obtain a polymer film PEWT shown in a formula 4; the supporting electrolyte is ammonium salt, lithium salt or 1-butyl-3-methylimidazolium tetrafluoroborate; the volume ratio of the electrolytic cell solvent is 1: 0.1-10 parts of a mixed solvent of acetonitrile and dichloromethane; the addition amount of the D-A-D 'asymmetric structure monomer EWT or the supporting electrolyte shown in the formula 3 is calculated by the volume of the electrolytic solvent, the initial final concentration of the D-A-D' asymmetric structure monomer EWT shown in the formula 3 is 0.1-10 mmol/L of the electrolytic solvent, and the initial final concentration of the supporting electrolyte is 0.01-1 mol/L of the electrolytic solvent;
the three-electrode system consists of an electrolytic cell, a working electrode, an auxiliary electrode and a reference electrode, wherein the working electrode is Indium Tin Oxide (ITO) conductive glass, FTO or PET conductive film electrode, the auxiliary electrode is a platinum electrode or a platinum carbon electrode, the reference electrode is Ag/AgCl and takes 3mol/L potassium chloride aqueous solution as a first liquid connection, and the electrolyte is taken as a second liquid connection;
2. the D-a-D' asymmetric structure polymeric membrane PEWT of claim 1, wherein: in the step (1), the alkaline substance A is sodium carbonate, sodium bicarbonate or potassium carbonate.
3. The D-a-D' asymmetric structure polymeric membrane PEWT of claim 1, wherein: in the step (1), the organic solvent A is a mixed solvent of tetrahydrofuran and toluene in any proportion.
4. The D-a-D' asymmetric structure polymeric membrane PEWT of claim 1, wherein: in the step (2), the alkaline substance B is sodium carbonate, sodium bicarbonate or potassium carbonate.
5. The D-a-D' asymmetric structure polymeric membrane PEWT of claim 1, wherein: in the step (2), the organic solvent B is a mixed solvent of tetrahydrofuran and toluene in any proportion.
6. The D-a-D' asymmetric structure polymeric membrane PEWT of claim 1, wherein: in the step (2), the post-treatment process of the obtained reaction mixed liquid C is as follows: after the reaction is finished, adding a mixed reagent of deionized water and dichloromethane into the obtained reaction mixed solution C for extraction, combining organic phases, drying by anhydrous magnesium sulfate, carrying out rotary evaporation and sample mixing, and mixing the organic phases in a volume ratio of 1: the mixed solvent of petroleum ether and dichloromethane of 0.5-2.5 is used as a mobile phase component, and the asymmetric structural monomer EWT D-A-D' shown in the formula 3 is obtained through chromatographic separation.
7. The D-a-D' asymmetric structure polymeric membrane PEWT of claim 1, wherein: in the step (3), the ammonium salt is tetrabutylammonium perchlorate or tetrabutylammonium hexafluorophosphate.
8. The D-a-D' asymmetric structure polymeric membrane PEWT of claim 1, wherein: in the step (3), the lithium salt is lithium hexafluorophosphate, lithium tetrafluoroborate or lithium trifluoromethanesulfonate.
9. The D-a-D' asymmetric structure polymeric membrane PEWT of claim 1, wherein: in the step (3), the organic solvent for cleaning is a mixed solvent of acetonitrile and dichloromethane with a volume ratio of 1: 0.1-10.
10. The use of the D-a-D' asymmetric-structured polymeric film PEWT of claim 1 for the preparation of electrochromic devices.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810491811.4A CN108840993B (en) | 2018-05-21 | 2018-05-21 | Polymeric membrane PEWT with D-A-D' asymmetric structure and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810491811.4A CN108840993B (en) | 2018-05-21 | 2018-05-21 | Polymeric membrane PEWT with D-A-D' asymmetric structure and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108840993A CN108840993A (en) | 2018-11-20 |
CN108840993B true CN108840993B (en) | 2020-10-27 |
Family
ID=64213208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810491811.4A Active CN108840993B (en) | 2018-05-21 | 2018-05-21 | Polymeric membrane PEWT with D-A-D' asymmetric structure and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108840993B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113388104B (en) * | 2021-07-02 | 2022-09-16 | 黑龙江大学 | Triarylamine polyamide containing fluorenyl directly bonded with triphenylamine, and preparation method and application thereof |
CN116153673B (en) * | 2023-02-09 | 2024-10-08 | 平湖市浙江工业大学新材料研究院 | Bipolar conductive polymer and preparation method and application thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006245021A (en) * | 2005-02-28 | 2006-09-14 | Sanyo Electric Co Ltd | Hole transporting material for organic electroluminescent device and electroluminescent device employing the same |
JP2014527086A (en) * | 2011-07-13 | 2014-10-09 | 独立行政法人物質・材料研究機構 | Organic dye, dye-sensitized metal oxide semiconductor electrode, and dye-sensitized solar cell |
CN103923106B (en) * | 2014-04-29 | 2016-08-24 | 常州大学 | Conjugated polymer that a kind of mental retardation gap length absorbs and preparation method thereof |
-
2018
- 2018-05-21 CN CN201810491811.4A patent/CN108840993B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108840993A (en) | 2018-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101293961B (en) | Electrochromic polymeric compounds, preparing method and application thereof | |
Zhu et al. | Electropolymerization of DAD type monomers consisting of thiophene and quionaxline moieties for electrochromic devices and supercapacitors | |
CN108840993B (en) | Polymeric membrane PEWT with D-A-D' asymmetric structure and preparation method and application thereof | |
Qin et al. | Poly (3, 4-dioxythiophene) soft nano-network with a compatible ion transporting channel for improved electrochromic performance | |
CN112094400A (en) | Orange red-green display electrochromic material based on quinacridone-bithiophene and preparation method thereof | |
Lu et al. | Stepwise enhancement on optoelectronic performances of polyselenophene via electropolymerization of mono-, bi-, and tri-selenophene | |
Pan et al. | Electropolymerization of DA type monomers consisting of mono-triphenylamine moiety for electrochromic devices and supercapacitors | |
CN111323980B (en) | Preparation method and application of titanium dioxide/poly [2- (4-thiophene) benzene ] amine composite film | |
CN107739430B (en) | Panchromatic electrochromic polymer and preparation method thereof | |
Hu et al. | Tuning optoelectronic performances for 3-methylselenophene-EDOT hybrid polymer | |
CN109438678B (en) | D-A-D' asymmetric structure polymer film PSWE and preparation method and application thereof | |
CN110713493B (en) | Electrochemical polymerization preparation and application of triphenylamine derivative conjugated polymer material | |
CN110938193A (en) | Polymer film PEFE with D-A-D structure and preparation method and application thereof | |
CN115806656B (en) | Thiophene conductive polymer bifunctional electrode material based on 9-phenyl-carbazole, and preparation method and application thereof | |
WO2015043182A1 (en) | Electrochromic material, preparation method therefor, and assembly thereof | |
CN109161169B (en) | D-A-D' asymmetric structure polymeric membrane PSWT as well as preparation method and application thereof | |
CN109053675B (en) | Benzene-methyl-bithiophene derivative and preparation method and application thereof | |
CN114316216A (en) | Symmetric polymer based on dithienoquinoxaline-containing matrix as center and flexible electrochromic device | |
CN109608475B (en) | A '-pi-A' type organic small molecule and preparation method and application thereof | |
CN107964091B (en) | Multifunctional bipolar conductive polymer and preparation method and application thereof | |
CN109020948A (en) | A kind of benzene-bigeminy thiophene derivant and the preparation method and application thereof | |
Shao et al. | Liquid/liquid interfacial cross-linking reaction of conjugated polymer prepared cross-linked films with improved electrochromic and capacitance properties | |
CN115960120B (en) | Preparation, electrochemical polymerization and application of D-A type monomer based on camphorquinoxaline | |
CN109053674A (en) | A kind of-four bithiophenes of benzene-benzene derivative and the preparation method and application thereof | |
Gu et al. | Synthesis and Electropolymerization of Furan End− capped Dibenzothiophene/Dibenzofuran and Electrochromic Properties of Their Polymers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |