CN108840571A - A kind of twin crystal phase glass ceramics and preparation method thereof for fluorescence temperature probe - Google Patents
A kind of twin crystal phase glass ceramics and preparation method thereof for fluorescence temperature probe Download PDFInfo
- Publication number
- CN108840571A CN108840571A CN201810718578.9A CN201810718578A CN108840571A CN 108840571 A CN108840571 A CN 108840571A CN 201810718578 A CN201810718578 A CN 201810718578A CN 108840571 A CN108840571 A CN 108840571A
- Authority
- CN
- China
- Prior art keywords
- cspbbr
- glass
- 30mol
- eupo
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002241 glass-ceramic Substances 0.000 title claims abstract description 45
- 239000013078 crystal Substances 0.000 title claims abstract description 9
- 239000000523 sample Substances 0.000 title abstract description 14
- 238000002360 preparation method Methods 0.000 title abstract description 11
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 claims abstract description 18
- 238000001514 detection method Methods 0.000 claims abstract description 15
- 239000011521 glass Substances 0.000 claims abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 claims description 8
- 229910000024 caesium carbonate Inorganic materials 0.000 claims description 4
- 229910052681 coesite Inorganic materials 0.000 claims description 4
- 229910052593 corundum Inorganic materials 0.000 claims description 4
- 229910052906 cristobalite Inorganic materials 0.000 claims description 4
- ZASWJUOMEGBQCQ-UHFFFAOYSA-L dibromolead Chemical compound Br[Pb]Br ZASWJUOMEGBQCQ-UHFFFAOYSA-L 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 229910052682 stishovite Inorganic materials 0.000 claims description 4
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 claims description 4
- 229910000018 strontium carbonate Inorganic materials 0.000 claims description 4
- 229910052905 tridymite Inorganic materials 0.000 claims description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 4
- 229910016644 EuCl3 Inorganic materials 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims description 2
- NNMXSTWQJRPBJZ-UHFFFAOYSA-K europium(iii) chloride Chemical compound Cl[Eu](Cl)Cl NNMXSTWQJRPBJZ-UHFFFAOYSA-K 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 20
- 230000035945 sensitivity Effects 0.000 abstract description 20
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract description 5
- 229910004298 SiO 2 Inorganic materials 0.000 abstract description 5
- 230000009977 dual effect Effects 0.000 description 8
- 238000000295 emission spectrum Methods 0.000 description 8
- 230000005284 excitation Effects 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 6
- 238000009529 body temperature measurement Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- 150000002910 rare earth metals Chemical class 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 239000005355 lead glass Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000000695 excitation spectrum Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000002419 bulk glass Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000006064 precursor glass Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000004054 semiconductor nanocrystal Substances 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000156 glass melt Substances 0.000 description 1
- 238000007578 melt-quenching technique Methods 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
- C03B32/02—Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/20—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- General Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Glass Compositions (AREA)
Abstract
本发明提出一种可实现高效温度检测的含CsPbBr3和EuPO4晶相的玻璃陶瓷及其制备技术。本发明的玻璃陶瓷中玻璃组分与百分含量(mol%)为:10‑60mol%P2O5;0‑40mol%SiO2;0‑40mol%Al2O3;0‑30mol%Cs2CO3;0‑30mol%PbBr2;0‑30mol%SrCO3;5‑30mol%NaBr;5‑30mol%EuCl3,上述组分的摩尔总量为100mol%。本发明还提供这种玻璃陶瓷的制备技术。在波长为393纳米的紫外光的照射下,Eu3+的611nm处的红光发射带与CsPbBr3位于516nm处的绿光发射带的荧光强度比随温度变化明显,能够实现一定温度范围的温度检测。在303‑483K温度范围内,CsPbBr3/EuPO4双相玻璃陶瓷的最高绝对灵敏度达到了0.082K‑1,最高相对灵敏度达到了1.8%K‑1。不仅如此,这种材料具有良好的热稳定性,可多次循环利用。由此表明,CsPbBr3/EuPO4双相玻璃陶瓷是一种可实现高效温度检测的荧光温度探针材料。
The invention proposes a glass ceramic containing CsPbBr 3 and EuPO 4 crystal phases capable of realizing high-efficiency temperature detection and its preparation technology. The glass components and percentages (mol%) in the glass ceramics of the present invention are: 10-60mol% P 2 O 5 ; 0-40mol% SiO 2 ; 0-40mol% Al 2 O 3 ; 0-30mol% Cs 2 CO 3 ; 0-30mol% PbBr 2 ; 0-30mol% SrCO 3 ; 5-30mol% NaBr; The invention also provides the preparation technology of the glass ceramics. Under the irradiation of ultraviolet light with a wavelength of 393 nanometers, the fluorescence intensity ratio of the red emission band at 611nm of Eu 3+ to the green emission band of CsPbBr 3 at 516nm changes significantly with temperature, which can achieve a certain temperature range. detection. In the temperature range of 303‑483K, the highest absolute sensitivity of CsPbBr 3 /EuPO 4 duplex glass ceramics reaches 0.082K ‑1 , and the highest relative sensitivity reaches 1.8%K ‑1 . Not only that, this material has good thermal stability and can be recycled many times. It shows that CsPbBr 3 /EuPO 4 dual-phase glass-ceramic is a kind of fluorescent temperature probe material that can realize high-efficiency temperature detection.
Description
技术领域technical field
本发明涉及固体发光材料领域,尤其是涉及一种能够应用于荧光温度探针的双晶相玻璃陶瓷及其制备工艺。The invention relates to the field of solid luminescent materials, in particular to a dual crystal phase glass ceramic that can be applied to a fluorescent temperature probe and a preparation process thereof.
背景技术Background technique
温度是最基本的热力学参数,它在工业和科技应用中扮演着重要的角色。传统的测温方式需要与待测物体接触,代表性的有温度计,热电偶等。但这种接触式测温会改变物体的实际温度,容易造成测温不准。除此之外,测试体积小的物体以及快速移动的物体,其效果也不尽如人意。最近,荧光强度比基温度探针材料受到了人们的广泛关注,这类荧光材料属于非接触式,具有高的测量精度和空间分辨率,并且能够在恶劣的环境中使用。理想的荧光强度比基的荧光探针需要有两个可分辨的发射峰,高的灵敏度以及优异的热稳定性。Temperature is the most fundamental thermodynamic parameter, which plays an important role in industrial and scientific applications. The traditional temperature measurement method needs to be in contact with the object to be measured, representatively there are thermometers, thermocouples and so on. However, this kind of contact temperature measurement will change the actual temperature of the object, which may easily cause inaccurate temperature measurement. In addition, the effect of testing small objects and fast-moving objects is not satisfactory. Recently, fluorescent intensity-ratio-based temperature probe materials have received widespread attention. This type of fluorescent material is non-contact, has high measurement accuracy and spatial resolution, and can be used in harsh environments. An ideal fluorescence intensity ratio based fluorescent probe needs to have two distinguishable emission peaks, high sensitivity and excellent thermal stability.
大多数研究集中于稀土荧光强度比基荧光温度探针,这主要利用的是稀土丰富的能级。传统地,单个稀土(Er,Tm,Ho)的热耦合能级对常用作荧光强度比基荧光探针,随着温度的变化,电子在热偶合能级的布局向相反方向移动。但是热耦合能级对中小的能隙差容易造成两个监测发射峰的交叠,从而导致测温不准。为了解决这个问题,双发射中心稀土/稀土掺杂的材料被报导作为荧光温度探针材料。然而,稀土4f-4f宇称禁戒的特性决定了其低的吸收截面和弱的荧光强度。除此之外,稀土的价格比较昂贵。Most studies have focused on rare-earth fluorescence intensity-ratio-based fluorescent temperature probes, which mainly exploit the abundant energy levels of rare earths. Traditionally, thermally coupled energy level pairs of a single rare earth (Er, Tm, Ho) are often used as fluorescence intensity ratio base fluorescent probes, and electrons move in opposite directions in the configuration of thermally coupled energy levels as the temperature changes. However, the small gap difference between thermally coupled energy levels can easily cause the two monitoring emission peaks to overlap, resulting in inaccurate temperature measurement. To address this issue, rare-earth/rare-earth-doped materials with dual emission centers were reported as fluorescent temperature probe materials. However, the parity-forbidden nature of rare earth 4f-4f determines its low absorption cross-section and weak fluorescence intensity. In addition, the price of rare earth is relatively expensive.
因此,人们将目光投向了半导体纳米晶类测温材料,它具有大的吸收截面,高的荧光量子场,高的光稳定性和可调控的发射谱带。这些优异的性质使得它们适合作为荧光温度探针材料。但是,半导体纳米晶不稳定,并且容易受到其它外界环境因素的影响(比如PH值),不利于温度的检测。Therefore, people turn their attention to semiconductor nanocrystal temperature measuring materials, which have large absorption cross section, high fluorescence quantum field, high photostability and adjustable emission band. These excellent properties make them suitable as fluorescent temperature probe materials. However, semiconductor nanocrystals are unstable and easily affected by other external environmental factors (such as pH value), which is not conducive to temperature detection.
目前,大多数基于荧光强度比基的荧光材料为荧光粉和晶体。然而,荧光粉容易散射,造成测温不准;而晶体的制备工艺复杂,并且需要耗费大量的时间,需要高的成本。最近几年来,玻璃陶瓷基荧光测温材料受到了人们的关注,不仅制备技术简单、易于大批量生产、可加工成各种形状,而且具有优异的热稳定性,并可循环利用。这些优异的性质使得它在荧光温度探针领域具有潜在的应用前景。At present, most fluorescent materials based on fluorescence intensity ratios are phosphor powders and crystals. However, the phosphor powder is easy to scatter, resulting in inaccurate temperature measurement; and the preparation process of the crystal is complicated, and requires a lot of time and high cost. In recent years, glass-ceramic-based fluorescent temperature-measuring materials have attracted people's attention. They are not only simple in preparation technology, easy to mass-produce, and can be processed into various shapes, but also have excellent thermal stability and can be recycled. These excellent properties make it a potential application prospect in the field of fluorescent temperature probes.
本发明提出一种用于高灵敏度温度检测的双相玻璃陶瓷及其制备方法。在393纳米紫外光激发下,CsPbBr3/EuPO4双相玻璃陶瓷呈现出CsPbBr3和Eu3+的荧光发射带,主峰分别位于516纳米处的绿光发射带和593纳米,611纳米,700纳米处的红光发射带。在303K-483K温度范围内,测量其变温发射谱,采用Eu3+中611纳米处和CsPbBr3的516纳米处两个峰的荧光强度比作为温度检测信号,两者的荧光强度比变化非常明显,这种材料的最高绝对灵敏度达到了0.082K-1,最高相对灵敏度达到了1.8%K-1,高于绝大部分报导的荧光温度探针材料。这种新型的CsPbBr3/EuPO4双相玻璃陶瓷是一种性能优异的荧光温度探针材料。The invention provides a dual-phase glass ceramic for high-sensitivity temperature detection and a preparation method thereof. Under the excitation of 393 nm ultraviolet light, the CsPbBr 3 /EuPO 4 dual-phase glass ceramics presents the fluorescence emission bands of CsPbBr 3 and Eu 3+ , and the main peaks are located at the green emission band at 516 nm and 593 nm, 611 nm, and 700 nm, respectively. red emission band. In the temperature range of 303K-483K, measure its variable temperature emission spectrum, use the fluorescence intensity ratio of the two peaks at 611 nm in Eu 3+ and 516 nm in CsPbBr 3 as the temperature detection signal, and the change in the fluorescence intensity ratio between the two is very obvious , the highest absolute sensitivity of this material reaches 0.082K -1 , and the highest relative sensitivity reaches 1.8% K -1 , which are higher than most of the reported fluorescent temperature probe materials. This new type of CsPbBr 3 /EuPO 4 dual-phase glass-ceramic is an excellent fluorescent temperature probe material.
发明内容Contents of the invention
本发明涉及CsPbBr3/EuPO4双相玻璃陶瓷的制备,目的在于制备出高的灵敏度和优异的热稳定性,可被紫外激发的,用于温度检测的玻璃陶瓷基荧光温度探针材料。The invention relates to the preparation of CsPbBr 3 /EuPO 4 dual-phase glass ceramics, aiming to prepare a glass ceramic-based fluorescent temperature probe material for temperature detection which has high sensitivity and excellent thermal stability and can be excited by ultraviolet rays.
本发明中还提供了上述CsPbBr3/EuPO4双相玻璃陶瓷的制备方法,即通过合理设计前驱玻璃组分,并采用熔体急冷技术,通过自析晶制备出所需玻璃陶瓷,在冷却过程中,CsPbBr3和EuPO4晶粒同时在玻璃基体中析出,形成CsPbBr3/EuPO4双相玻璃陶瓷。该材料可被紫光激发,最高绝对灵敏度达到了0.082K-1,最高相对灵敏度达到了1.8%K-1,能有效地进行温度检测。The present invention also provides the preparation method of the above-mentioned CsPbBr 3 /EuPO 4 dual-phase glass-ceramics, that is, by rationally designing the precursor glass components, and adopting melt quenching technology, the required glass-ceramic is prepared by self-crystallization, and in the cooling process In the process, CsPbBr 3 and EuPO 4 grains precipitated in the glass matrix at the same time, forming CsPbBr 3 /EuPO 4 dual-phase glass ceramics. The material can be excited by purple light, the highest absolute sensitivity reaches 0.082K -1 , the highest relative sensitivity reaches 1.8%K -1 , and can effectively detect temperature.
CsPbBr3/EuPO4双相玻璃陶瓷的制备方法,包括以下步骤:The preparation method of CsPbBr 3 /EuPO 4 duplex glass ceramics, comprises the following steps:
(1)前驱玻璃基体的设计,该玻璃基体组分含量如下:(1) The design of the precursor glass matrix, the composition content of the glass matrix is as follows:
10-60mol%P2O5;0-40mol%SiO2;0-40mol%Al2O3;0-30mol%Cs2CO3;0-30mol%PbBr2;0-30mol%SrCO3;5-30mol%NaBr;5-30mol%EuCl3,上述组分的摩尔总量为100mol%。10-60mol% P2O5 ; 0-40mol % SiO2 ; 0-40mol% Al2O3 ; 0-30mol% Cs2CO3 ; 0-30mol% PbBr2 ; 0-30mol% SrCO3 ; 30mol% NaBr; 5-30mol% EuCl 3 , the total molar amount of the above components is 100mol%.
根据本发明,各组分的优选含量如下:According to the present invention, the preferred content of each component is as follows:
P2O5优选为20-50mol%; P2O5 is preferably 20-50mol %;
SiO2优选为5-30mol%; SiO2 is preferably 5-30mol%;
Al2O3优选为5-30mol%; Al2O3 is preferably 5-30mol %;
Cs2CO3优选为5-25mol%; Cs2CO3 is preferably 5-25mol %;
PbBr2优选为5-25mol%;PbBr2 is preferably 5-25mol %;
SrCO3优选为5-25mol%; SrCO3 is preferably 5-25mol%;
NaBr优选为5-25mol%;NaBr is preferably 5-25mol%;
EuCl3优选为10-25mol%;EuCl3 is preferably 10-25mol %;
(2)将P2O5、SiO2、Al2O3、Cs2CO3、PbBr2、SrCO3、NaBr、EuCl3等粉体原料按照一定组分配比称量,在玛瑙球磨罐中混合并充分研磨均匀后置于氧化铝坩埚中,加热、并保温一段时间使之熔融,而后,将熔融液体迅速倒入模具中成形,通过自析晶即得到块状玻璃陶瓷,最后,将获得的玻璃陶瓷放入电阻炉中退火以消除内应力,随炉冷却后,切成块状;(2) Weigh P 2 O 5 , SiO 2 , Al 2 O 3 , Cs 2 CO 3 , PbBr 2 , SrCO 3 , NaBr, EuCl 3 and other powder materials according to a certain composition ratio, and mix them in an agate ball mill jar After being fully ground and uniform, place it in an alumina crucible, heat and keep it warm for a period of time to melt it, and then quickly pour the molten liquid into a mold to form it, and obtain a block glass ceramic through self-crystallization. Finally, the obtained The glass ceramics are annealed in a resistance furnace to eliminate internal stress, and then cut into blocks after cooling with the furnace;
根据本发明,步骤(2)中,在电阻炉中加热到900-1300℃,优选1000-1200℃。保温1-4小时,优选1-3小时使粉体原料熔融。According to the present invention, in step (2), heating is carried out in a resistance furnace to 900-1300°C, preferably 1000-1200°C. Heat preservation for 1-4 hours, preferably 1-3 hours to melt the powder raw material.
根据本发明,步骤(2)中,将玻璃熔体取出并快速倒入模具中成形,得到块状玻璃陶瓷。According to the present invention, in step (2), the glass melt is taken out and quickly poured into a mold for forming to obtain block glass ceramics.
根据本发明,在步骤(2)中,退火温度为200-400℃。According to the present invention, in step (2), the annealing temperature is 200-400°C.
根据本发明,步骤(2)中,在升温过程中,控制升温速率为1-10℃/min,优选2-5℃/min。According to the present invention, in step (2), during the heating process, the heating rate is controlled to be 1-10°C/min, preferably 2-5°C/min.
本发明中,采用以上材料组分和制备工艺,可以获得在玻璃基体中镶嵌CsPbBr3/EuPO4晶粒的玻璃陶瓷。In the present invention, the glass ceramics with CsPbBr 3 /EuPO 4 crystal grains embedded in the glass matrix can be obtained by adopting the above material components and preparation process.
本发明还涉及一种玻璃陶瓷的应用,其特征在于,所述玻璃陶瓷荧光温度探针应用于温度检测。The present invention also relates to an application of glass ceramics, which is characterized in that the glass ceramic fluorescent temperature probe is used for temperature detection.
在393纳米紫外光激发下,CsPbBr3/EuPO4双相玻璃陶瓷呈现出CsPbBr3和Eu3+的荧光发射带,主峰分别位于516纳米处的绿光发射带和593纳米,611纳米,700纳米处强的红光发射带。采用Eu3+中611纳米处和CsPbBr3的516纳米处两个峰的荧光强度比作为温度检测信号。在303K-483K温度范围内,两者的荧光强度比变化非常明显。CsPbBr3的荧光强度下降非常明显,而Eu3+的发射强度只有轻微的减弱。不同温度下的荧光强度比通过指数拟合,最高绝对灵敏度达到了0.082K-1,最高相对灵敏度达到了1.8%K-1,性能优于绝大部分报导过的荧光温度探针材料。通过测量两者的荧光强度比就可以得出环境所处的温度。同时随着温度的改变,颜色从绿色变成了红色,有利于远程观察。除此之外,CsPbBr3/EuPO4双相玻璃陶瓷被证实具有优异的热稳定性。这些结果表明,CsPbBr3/EuPO4双相玻璃陶瓷是一种理想的荧光温度探针材料,在温度检测领域具有广阔的应用前景。Under the excitation of 393 nm ultraviolet light, the CsPbBr 3 /EuPO 4 dual-phase glass ceramics presents the fluorescence emission bands of CsPbBr 3 and Eu 3+ , and the main peaks are located at the green emission band at 516 nm and 593 nm, 611 nm, and 700 nm, respectively. strong red emission band. The fluorescence intensity ratio of the two peaks at 611 nm in Eu 3+ and at 516 nm in CsPbBr 3 was used as the temperature detection signal. In the temperature range of 303K-483K, the fluorescence intensity ratio of the two changes very obviously. The decrease of fluorescence intensity of CsPbBr 3 is very obvious, while the emission intensity of Eu 3+ is only slightly weakened. The ratio of fluorescence intensity at different temperatures is exponentially fitted, and the highest absolute sensitivity reaches 0.082K -1 , and the highest relative sensitivity reaches 1.8%K -1 , which is superior to most of the reported fluorescent temperature probe materials. The temperature of the environment can be obtained by measuring the ratio of the fluorescence intensity between the two. At the same time, as the temperature changes, the color changes from green to red, which is conducive to remote observation. Besides, CsPbBr 3 /EuPO 4 dual phase glass-ceramic has been proved to have excellent thermal stability. These results indicated that CsPbBr 3 /EuPO 4 duplex glass-ceramic is an ideal fluorescent temperature probe material, which has broad application prospects in the field of temperature detection.
附图说明Description of drawings
图1:CsPbBr3/EuPO4双相玻璃陶瓷的X射线衍射图。Figure 1: X-ray diffraction pattern of CsPbBr 3 /EuPO 4 dual phase glass ceramics.
图2:CsPbBr3/EuPO4双相玻璃陶瓷扫描电镜图。Figure 2: SEM image of CsPbBr 3 /EuPO 4 duplex glass ceramics.
图3:CsPbBr3/EuPO4双相玻璃陶瓷的激发光谱,监测波长为516nm,611nm。Figure 3: Excitation spectra of CsPbBr 3 /EuPO 4 dual phase glass ceramics, the monitoring wavelengths are 516nm and 611nm.
图4:393nm激发下,CsPbBr3/EuPO4双相玻璃陶瓷的发射光谱。Figure 4: Emission spectrum of CsPbBr 3 /EuPO 4 dual phase glass ceramics under excitation at 393nm.
图5:CsPbBr3/EuPO4双相玻璃陶瓷的变温发射光谱,温度变化为303K-483K,393nm激发。Figure 5: The temperature-variable emission spectrum of CsPbBr 3 /EuPO 4 dual-phase glass ceramics, the temperature changes from 303K to 483K, and the excitation is at 393nm.
图6:CsPbBr3(516nm)和Eu3+离子的Eu3+:5D0→7F1(593nm),5D0→7F2(611nm),5D0→7F4(700nm)跃迁发射强度柱状图。Figure 6: Eu 3+ of CsPbBr 3 (516nm) and Eu 3+ ions: 5 D 0 → 7 F 1 (593nm), 5 D 0 → 7 F 2 (611nm), 5 D 0 → 7 F 4 (700nm) Histogram of transition emission intensity.
图7:实验测量值与拟合得到的发射强度比FIR611/516与温度的关系图。Figure 7: Experimental measurements and fitted emission intensity ratio FIR 611/516 versus temperature.
图8:计算得出的绝对灵敏度、相对灵敏度,与相对应的拟合曲线。Figure 8: Calculated absolute sensitivity, relative sensitivity, and corresponding fitting curves.
具体实施方式Detailed ways
实例1:将纯的P2O5、SiO2、Al2O3、Cs2CO3、PbBr2、SrCO3、NaBr、EuCl3粉体,按30P2O5;20SiO2;10Al2O3;10Cs2CO3;10PbBr2;5SrCO3;5NaBr;10EuCl3(摩尔比)的配比进行称量,在玛瑙球磨罐中混合并充分研磨均匀后置于氧化铝坩埚中,放入电阻炉中加热到1000℃,并保温2小时使之熔融,而后,将熔融液体迅速倒入模具中成形,通过自析晶方式得到块状玻璃陶瓷,最后,将获得的玻璃陶瓷放入电阻炉中,在200℃下退火以消除内应力,随炉冷却后,切成块状,得到CsPbBr3/EuPO4双晶相玻璃陶瓷。Example 1: Pure P 2 O 5 , SiO 2 , Al 2 O 3 , Cs 2 CO 3 , PbBr 2 , SrCO 3 , NaBr, EuCl 3 powder, according to 30P 2 O 5 ; 20SiO 2 ; 10Al 2 O 3 ; 10Cs 2 CO 3 ; 10PbBr 2 ; 5SrCO 3 ; 5NaBr ; Heating to 1000°C and keeping it warm for 2 hours to melt it, then quickly pour the molten liquid into a mold to form it, and obtain block glass ceramics by self-crystallization, and finally, put the obtained glass ceramics into a resistance furnace, Anneal at 200°C to eliminate internal stress, and after cooling in the furnace, cut into blocks to obtain CsPbBr 3 /EuPO 4 double crystal glass ceramics.
X射线衍射数据表明在玻璃基体中析出了CsPbBr3和EuPO4晶相(如图1所示)。扫描电子显微图表明了CsPbBr3和EuPO4晶相在玻璃基体中的分布情况(如图2所示)。样品经过表面抛光,用FLS920荧光光谱仪测量其室温激发和发射。在监测Eu3+离子611纳米发射的激发谱上,探测到对应于Eu3+-O2-电荷迁移和Eu3+:4f→4f吸收跃迁(强度最高的波长位于393纳米)的激发带(如图3所示)。在监测CsPbBr3的516纳米发射的激发谱上,探测到对应CsPbBr3跃迁的激发带(如图4所示)。在393纳米激发的发射谱上,出现对应于Eu3+:5D0→7FJ(J=1,2,3,4)跃迁的强的红光发射(中心波长分别对应于593纳米,611纳米,652纳米,700纳米)。在波长为393纳米的紫外光激发下,测量其变温发射谱,温度变化范围是303K-483K。观察到CsPbBr3的荧光强度下降非常明显,而Eu3+的发射强度只有轻微的减弱(如图5所示)。在CsPbBr3和Eu3+离子跃迁发射强度柱状图中可进一步证实(如图6所示)。Eu3+中611纳米处和CsPbBr3的516纳米处两个峰的荧光强度比随温度变化明显(如图7所示)。利用两者的荧光强度比作为温度检测信号,最高绝对灵敏度达到了0.082K-1,最高相对灵敏度达到了1.8%K-1(如图8所示)。X-ray diffraction data indicated that CsPbBr 3 and EuPO 4 crystalline phases were precipitated in the glass matrix (as shown in Figure 1). Scanning electron micrographs show the distribution of CsPbBr 3 and EuPO 4 crystalline phases in the glass matrix (as shown in Figure 2). The samples were surface polished, and their excitation and emission at room temperature were measured with a FLS920 fluorescence spectrometer. On the excitation spectrum monitoring the 611 nm emission of Eu 3+ ions, an excitation band corresponding to Eu 3+ -O 2- charge transfer and Eu 3+ : 4f→4f absorption transition (the wavelength with the highest intensity at 393 nm) was detected ( As shown in Figure 3). On the excitation spectrum monitoring the 516 nm emission of CsPbBr 3 , an excitation band corresponding to the transition of CsPbBr 3 was detected (as shown in FIG. 4 ). On the emission spectrum excited at 393 nanometers, there is a strong red light emission corresponding to the transition of Eu 3+ : 5 D 0 → 7 F J (J=1,2,3,4) (the center wavelengths correspond to 593 nanometers, respectively 611 nm, 652 nm, 700 nm). Under the excitation of ultraviolet light with a wavelength of 393 nanometers, the temperature-varying emission spectrum is measured, and the temperature range is 303K-483K. It was observed that the fluorescence intensity of CsPbBr 3 decreased significantly, while the emission intensity of Eu 3+ was only slightly weakened (as shown in Figure 5). It can be further confirmed in the CsPbBr 3 and Eu 3+ ion transition emission intensity histograms (as shown in Figure 6). The fluorescence intensity ratio of the two peaks at 611 nm in Eu 3+ and at 516 nm in CsPbBr 3 varies significantly with temperature (as shown in Figure 7). Using the fluorescence intensity ratio between the two as the temperature detection signal, the highest absolute sensitivity reached 0.082K -1 , and the highest relative sensitivity reached 1.8%K -1 (as shown in Figure 8).
实例2:将纯的P2O5、SiO2、Al2O3、Cs2CO3、PbBr2、EuCl3粉体,按20P2O5;20SiO2;10Al2O3;20Cs2CO3;20PbBr2;10EuCl3(摩尔比)的配比进行称量,在玛瑙球磨罐中混合并充分研磨均匀后置于氧化铝坩埚中,放入电阻炉中加热到1300℃,并保温2小时使之熔融,而后,将熔融液体迅速倒入模具中成形,通过自析晶方式得到块状玻璃陶瓷,最后,将获得的玻璃陶瓷放入电阻炉中,200℃下退火以消除内应力,随炉冷却后,切成块状,得到CsPbBr3/EuPO4双晶相玻璃陶瓷。测试双晶相玻璃陶瓷的变温发射谱,并利用Eu3+中611纳米处和CsPbBr3的516纳米处两个峰的荧光强度比作为温度检测信号,最高绝对灵敏度达到了0.064K-1,最高相对灵敏度达到了1.5%K-1。Example 2: Pure P 2 O 5 , SiO 2 , Al 2 O 3 , Cs 2 CO 3 , PbBr 2 , EuCl 3 powders, according to 20P 2 O 5 ; 20SiO 2 ; 10Al 2 O 3 ; 20Cs 2 CO 3 ; 20PbBr 2 ; 10EuCl 3 (molar ratio) is weighed, mixed in an agate ball mill jar and fully ground evenly, then placed in an alumina crucible, heated to 1300°C in a resistance furnace, and kept for 2 hours. Then, the molten liquid is quickly poured into the mold to form, and the block glass ceramics is obtained by self-crystallization. Finally, the obtained glass ceramics are placed in a resistance furnace and annealed at 200 ° C to eliminate internal stress. After cooling, cut into blocks to obtain CsPbBr 3 /EuPO 4 double crystal glass ceramics. Tested the temperature-variable emission spectrum of dual-phase glass ceramics, and used the fluorescence intensity ratio of the two peaks at 611 nm in Eu 3+ and 516 nm in CsPbBr 3 as the temperature detection signal. The highest absolute sensitivity reached 0.064K -1 , the highest The relative sensitivity reached 1.5%K -1 .
实例3:将纯的P2O5、Al2O3、Cs2CO3、PbBr2、NaBr、EuCl3粉体,按40P2O5;5Al2O3;15Cs2CO3;10PbBr2;10NaBr;20EuCl3(摩尔比)的配比进行称量,在玛瑙球磨罐中混合并充分研磨均匀后置于氧化铝坩埚中,放入电阻炉中加热到900℃,并保温4小时使之熔融,而后,将熔融液体迅速倒入模具中成形,通过自析晶方式得到块状玻璃陶瓷,最后,将获得的玻璃陶瓷放入电阻炉中,在300℃下退火以消除内应力,随炉冷却后,切成块状,得到CsPbBr3/EuPO4双晶相玻璃陶瓷。测试双晶相玻璃陶瓷的变温发射谱,并利用Eu3+中611纳米处和CsPbBr3的516纳米处两个峰的荧光强度比作为温度检测信号,最高绝对灵敏度达到了0.036K-1,最高相对灵敏度达到了1.2%K-1。Example 3: The pure P 2 O 5 , Al 2 O 3 , Cs 2 CO 3 , PbBr 2 , NaBr, EuCl 3 powder, according to 40P 2 O 5 ; 5Al 2 O 3 ; 15Cs 2 CO 3 ; 10PbBr 2 ; 10NaBr; 20EuCl 3 (molar ratio) is weighed, mixed in an agate ball mill jar and fully ground evenly, then placed in an alumina crucible, heated to 900°C in a resistance furnace, and kept for 4 hours to melt , and then, the molten liquid is quickly poured into the mold to form it, and the bulk glass ceramics are obtained by self-crystallization. Finally, the obtained glass ceramics are placed in a resistance furnace, annealed at 300 ° C to eliminate internal stress, and cooled with the furnace After that, it was cut into blocks to obtain CsPbBr 3 /EuPO 4 dual phase glass ceramics. Tested the temperature-variable emission spectrum of dual-phase glass ceramics, and used the fluorescence intensity ratio of the two peaks at 611 nm in Eu 3+ and at 516 nm in CsPbBr 3 as the temperature detection signal. The highest absolute sensitivity reached 0.036K -1 , the highest The relative sensitivity reached 1.2%K -1 .
实例4:将纯的P2O5、SiO2、Cs2CO3、PbBr2、NaBr、SrCO3、EuCl3粉体,按10P2O5;40SiO2;20Cs2CO3;10PbBr2;10NaBr;5SrCO3;5EuCl3(摩尔比)的配比进行称量,在玛瑙球磨罐中混合并充分研磨均匀后置于氧化铝坩埚中,放入电阻炉中加热到1400℃,并保温4小时使之熔融,而后,将熔融液体迅速倒入模具中成形,通过自析晶方式得到块状玻璃陶瓷,最后,将获得的玻璃陶瓷放入电阻炉中,在400℃下退火以消除内应力,随炉冷却后,切成块状,得到CsPbBr3/EuPO4双晶相玻璃陶瓷。测试双晶相玻璃陶瓷的变温发射谱,并利用Eu3+中611纳米处和CsPbBr3的516纳米处两个峰的荧光强度比作为温度检测信号,最高绝对灵敏度达到了0.022K-1,最高相对灵敏度达到了0.8%K-1。Example 4: Pure P 2 O 5 , SiO 2 , Cs 2 CO 3 , PbBr 2 , NaBr, SrCO 3 , EuCl 3 powder, according to 10P 2 O 5 ; 40SiO 2 ; 20Cs 2 CO 3 ; 10PbBr 2 ; 10NaBr ; 5SrCO 3 ; 5EuCl 3 (molar ratio) is weighed, mixed in an agate ball mill jar and fully ground evenly, then placed in an alumina crucible, heated to 1400°C in a resistance furnace, and kept for 4 hours. Then, the molten liquid is quickly poured into the mold to form, and the bulk glass ceramics are obtained by self-crystallization. Finally, the obtained glass ceramics are put into a resistance furnace and annealed at 400 ° C to eliminate internal stress. After cooling in the furnace, cut into blocks to obtain CsPbBr 3 /EuPO 4 double crystal glass ceramics. Tested the temperature-variable emission spectrum of dual crystal glass ceramics, and used the fluorescence intensity ratio of the two peaks at 611 nm in Eu 3+ and 516 nm in CsPbBr 3 as the temperature detection signal. The highest absolute sensitivity reached 0.022K -1 , the highest The relative sensitivity reached 0.8%K -1 .
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810718578.9A CN108840571B (en) | 2018-07-03 | 2018-07-03 | A kind of double crystal phase glass ceramics for fluorescent temperature probe and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810718578.9A CN108840571B (en) | 2018-07-03 | 2018-07-03 | A kind of double crystal phase glass ceramics for fluorescent temperature probe and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108840571A true CN108840571A (en) | 2018-11-20 |
CN108840571B CN108840571B (en) | 2020-12-29 |
Family
ID=64201042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810718578.9A Active CN108840571B (en) | 2018-07-03 | 2018-07-03 | A kind of double crystal phase glass ceramics for fluorescent temperature probe and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108840571B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109553303A (en) * | 2018-12-21 | 2019-04-02 | 温州大学 | A kind of CsPb (1-x) SnXBr3 quantum dot microcrystal glass material |
CN110642515A (en) * | 2019-09-29 | 2020-01-03 | 昆明理工大学 | A kind of preparation method and application of all-inorganic perovskite quantum dot glass |
CN111732341A (en) * | 2020-07-03 | 2020-10-02 | 福建师范大学 | A kind of double crystal phase glass-ceramic material and preparation method |
CN112322287A (en) * | 2020-10-16 | 2021-02-05 | 厦门华厦学院 | Temperature sensing material and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103951222A (en) * | 2014-05-08 | 2014-07-30 | 宁波大学 | SrBr2 glass ceramics doped with rare earth ions and its preparation method |
CN105198225A (en) * | 2015-10-13 | 2015-12-30 | 杭州电子科技大学 | Double active ion doped bicrystal glass ceramic fluorescence temperature probe materials and preparation method thereof |
CN105461230A (en) * | 2015-11-16 | 2016-04-06 | 宁波大学 | Glass film containing divalent europium ion doped strontium bromide microcrystals and preparation method thereof |
CN106495474A (en) * | 2016-10-11 | 2017-03-15 | 杭州电子科技大学 | A Eu2+/Eu3+ double-doped glass-ceramic composite material that can be used for temperature detection and its preparation method and application |
CN107129154A (en) * | 2017-07-02 | 2017-09-05 | 桂林电子科技大学 | Transparent glass ceramics material and preparation method for fluorescence temperature probe |
-
2018
- 2018-07-03 CN CN201810718578.9A patent/CN108840571B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103951222A (en) * | 2014-05-08 | 2014-07-30 | 宁波大学 | SrBr2 glass ceramics doped with rare earth ions and its preparation method |
CN105198225A (en) * | 2015-10-13 | 2015-12-30 | 杭州电子科技大学 | Double active ion doped bicrystal glass ceramic fluorescence temperature probe materials and preparation method thereof |
CN105461230A (en) * | 2015-11-16 | 2016-04-06 | 宁波大学 | Glass film containing divalent europium ion doped strontium bromide microcrystals and preparation method thereof |
CN106495474A (en) * | 2016-10-11 | 2017-03-15 | 杭州电子科技大学 | A Eu2+/Eu3+ double-doped glass-ceramic composite material that can be used for temperature detection and its preparation method and application |
CN107129154A (en) * | 2017-07-02 | 2017-09-05 | 桂林电子科技大学 | Transparent glass ceramics material and preparation method for fluorescence temperature probe |
Non-Patent Citations (2)
Title |
---|
BING AI等: "Precipitation and Optical Properties of CsPbBr3 Quantum Dots in Phosphate Glasses", 《RAPID COMMUNICATIONS OF THE AMERICAN CERAMIC SOCIETY》 * |
QINGSONG HU等: "Rare Earth Ion-Doped CsPbBr3 Nanocrystals", 《ADVANCED OPTICAL MATERIALS》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109553303A (en) * | 2018-12-21 | 2019-04-02 | 温州大学 | A kind of CsPb (1-x) SnXBr3 quantum dot microcrystal glass material |
CN110642515A (en) * | 2019-09-29 | 2020-01-03 | 昆明理工大学 | A kind of preparation method and application of all-inorganic perovskite quantum dot glass |
CN111732341A (en) * | 2020-07-03 | 2020-10-02 | 福建师范大学 | A kind of double crystal phase glass-ceramic material and preparation method |
CN112322287A (en) * | 2020-10-16 | 2021-02-05 | 厦门华厦学院 | Temperature sensing material and preparation method and application thereof |
CN112322287B (en) * | 2020-10-16 | 2022-11-08 | 厦门华厦学院 | Temperature sensing material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108840571B (en) | 2020-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Upconverting luminescence based dual-modal temperature sensing for Yb3+/Er3+/Tm3+: YF3 nanocrystals embedded glass ceramic | |
Liu et al. | Investigation into the temperature sensing behavior of Yb 3+ sensitized Er 3+ doped Y 2 O 3, YAG and LaAlO 3 phosphors | |
Chen et al. | Yb 3+/Ln 3+/Cr 3+(Ln= Er, Ho) doped transparent glass ceramics: crystallization, Ln 3+ sensitized Cr 3+ upconversion emission and multi-modal temperature sensing | |
Gong et al. | Dual-mode optical thermometry based on transparent NaY2F7: Er3+, Yb3+ glass-ceramics | |
CN108840571B (en) | A kind of double crystal phase glass ceramics for fluorescent temperature probe and preparation method thereof | |
Gao et al. | Investigation of optical properties: Eu with Al codoping in aluminum silicate glasses and glass‐ceramics | |
Liang et al. | Preparation, crystallization kinetics, and optical temperature sensing properties of Er3+-Yb3+ co-doped fluorosilicate glass-ceramics containing ZnAl2O4 crystals | |
CN107129154B (en) | Transparent glass-ceramic material for fluorescent temperature probe and preparation method | |
Li et al. | Upconversion of transparent glass ceramics containing β-NaYF 4: Yb 3+, Er 3+ nanocrystals for optical thermometry | |
CN109761499B (en) | Divalent manganese doped CsPbCl3Perovskite quantum dot glass fluorescence temperature probe composite material and preparation method and application thereof | |
Xing et al. | Enhanced upconversion luminescence and temperature sensing feature in NaBi (MoO4) 2: Er3+, Yb3+ transparent glass ceramics | |
CN106495474A (en) | A Eu2+/Eu3+ double-doped glass-ceramic composite material that can be used for temperature detection and its preparation method and application | |
Xu et al. | Anti-Stokes excited Er3+/Yb3+ codoped oxyfluoride glass ceramic for luminescence thermometry | |
Xing et al. | Tm3+, Yb3+ co-doped borophosphate glasses—Spectral characteristics and upconversion optical thermometry | |
Zhou et al. | Optical thermometry using fluorescence intensities multi-ratios in NaGdTiO4: Yb3+/Tm3+ phosphors | |
Xing et al. | Eu3+/Tb3+ co-doped transparent fluorophosphate glass ceramics for optical thermometry | |
Niu et al. | Color-tunable luminescence and temperature sensing in Ce3+/Tb3+ co-doped transparent oxyfluoride glass-ceramics containing Na1. 5Y2. 5F9 nanocrystals | |
Li et al. | Insight into site occupancy of cerium and manganese ions in MgAl2O4 and their energy transfer for dual-mode optical thermometry | |
Zhang et al. | Novel transparent glass-ceramics of NaLu2F7: Yb3+, Er3+ for accurate temperature sensing and anti-counterfeiting | |
Wang et al. | The effect of substrate thickness on the fluorescence of single-doped Cu+ glass prepared by ion exchange | |
Dong et al. | Comparative study on fluorescence intensity ratio and chromatic coordinate temperature measurement using CsPbBr3-Eu3+ co-doped glass | |
Zhao et al. | Effect of Lu3+ on optical properties of Er3+/Yb3+ co-doped oxyfluoride glass-ceramics containing Y5O4F7 nanocrystals | |
CN108675641B (en) | A dual-mode temperature sensing glass-ceramic and its preparation method and application | |
Doğan et al. | Investigation of spectral output of Er 3+ and Yb 3+/Er 3+ doped TeO 2–ZnO–BaO glasses for photonic applications | |
CN114437725B (en) | Temperature sensing material based on trivalent terbium and trivalent europium co-doped and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |