CN108837152B - Application of flagella main regulatory gene flhDC or expression product thereof as target in antibacterial drug development - Google Patents

Application of flagella main regulatory gene flhDC or expression product thereof as target in antibacterial drug development Download PDF

Info

Publication number
CN108837152B
CN108837152B CN201810501136.9A CN201810501136A CN108837152B CN 108837152 B CN108837152 B CN 108837152B CN 201810501136 A CN201810501136 A CN 201810501136A CN 108837152 B CN108837152 B CN 108837152B
Authority
CN
China
Prior art keywords
flhdc
flagella
gene
flhd
stm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810501136.9A
Other languages
Chinese (zh)
Other versions
CN108837152A (en
Inventor
余旭平
王明晓
余子豪
刘金泽
李统战
张远星
李倩文
刘蕾
刘云惠
相国
李永霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810501136.9A priority Critical patent/CN108837152B/en
Publication of CN108837152A publication Critical patent/CN108837152A/en
Application granted granted Critical
Publication of CN108837152B publication Critical patent/CN108837152B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Epidemiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses application of flagella main regulatory gene flhDC or expression product thereof as a target in antibacterial drug development. The research of the invention finds that the flagella main control gene flhDC of salmonella or escherichia coli is over-expressed in the escherichia coli to kill the escherichia coli, namely, the product FlhD expressed by the flagella main control gene flhDC4C2The Escherichia coli can be killed due to the over-high total activity of the protein, so that the gene or an expression product thereof can be used as a target for developing antibacterial drugs, and a direction is provided for solving the problem of bacterial drug resistance.

Description

Application of flagella main regulatory gene flhDC or expression product thereof as target in antibacterial drug development
Technical Field
The invention relates to the technical field of biology, in particular to application of a flagella main regulatory gene flhDC or an expression product thereof as a target point in antibacterial drug development.
Background
The flagella are important moving organs of bacteria, promote the bacteria to tend to a nutrient-rich environment, escape from a hostile environment containing harmful substances, and benefit and avoid harm. Many bacteria contain flagella, including E.coli, Salmonella, Proteus, and the like.
The complete bacterial flagella (flagellum) structure comprises three parts, namely a basal body, a flagella hook and a flagella filament, spanning from the inner membrane to the cell wall and the outer membrane and extending to the outside of the cell (Evans L.D.B, Hughes C and Fraser G.M. building a flagella outer side the bacterial cell. trends in microbiology.2014,22(10): 566) 572.). Wherein, the matrix consists of a central flagpole (rod) and a plurality of annular structures embedded in cell membranes and cell walls. A part of the structure of the C-loop protrudes inward from the cytoplasm, and within this enclosed cavity is a flagellar type III secretion system (fT 3SS) which is responsible for flagellin secretion and self-assembly.
The gene cluster encoding the flagella is located at 4 different positions in the bacterial genome, contains more than 50 genes, and consists of at least 14 operons (Kalir S, McClure J, Pabbaraju K et al. organic genes in a flagellate pathway by analysis of expression kinetics from bacteria. science 2001,292(5524): 2080-. Expression of the bacterial flagella gene cluster exhibits a three-level ladder (see FIG. 1). The flhD and flhC genes of the first-stage ladder flhDC operon are main regulatory genes for flagella expression, the expression of other downstream flagella genes is controlled, the expression intensity is regulated, and the length, the number and the motility of flagella on the surface of bacteria are finally determined. The flhDC operon is regulated by a number of environmental factors, such as: ambient temperature, pH, osmotic pressure, oxygen, and other environmental factors (Fahrner K.A, Berg H.C. metals which is stuck flexible DC expression in Escherichia coli K-12.J.bacteriol.2015,197(19): 3087-96.). FlhDC gene expression product composition FlhD4C2Flagella major regulatory protein, FlhD4C2Binding to the gene promoter of the second step, activating the level II gene, opening expression of the matrix-flagellate sheath (HBB) gene group and assembly of HBB, and at the same time, FlhD4C2Also turn on expression of sigma required for class III promoter expression28Factor (FliA) and antagonist factor (FlgM) thereof, before HBB assembly is completed, FliA cannot be combined with promoter of third ladder gene due to the presence of FlgM, III-level gene is temporarily not expressed, when HBB assembly is completed, antagonist factor FlgM is secreted to the outside of cells and antagonism is eliminated, III-level gene is subsequently expressed, flagella begin to assemble and finally complete, and bacteria obtain motility and chemotaxis capability.
Most salmonella have flagella and are motile, with the exception of pullorum and salmonella gallinarum. However, Chaubal and Holt (1.Holt P.S and Chaubal L.H.detection of motion and reactive synthesis of flagellar proteins in Salmonella pulverum culture.J.Clin.Micro.1997,35:1016-1020.2.Chaubal L.H and Holt P.S.characteristics of swammingmotion and identification of flagellar proteins in Salmonella pulverum isolates.am.J.vet.Res.1999,60:1322 1327.) have reported that Salmonella pullorum has flagellar activity in certain situations.
Killing or inhibiting bacterial growth is a major strategy for human control of bacterial diseases, however, with the widespread use of antibacterial drugs, particularly extensive abuse, the problem of bacterial resistance is becoming more serious, and new drugs are urgently sought for controlling bacterial diseases.
Disclosure of Invention
Aiming at the defects in the prior art, the invention provides a flagella main regulatory gene flhDC or an expression product FlhD thereof4C2The protein (flagella major regulatory protein) is used as a target point to be applied to the development of antibacterial drugs.
Experimental research shows that the flagella main control gene flhDC of salmonella or escherichia coli is overexpressed in escherichia coli to kill escherichia coli, namely, a product FlhD expressed by the flagella main control gene flhDC4C2The over-high total activity of the protein can kill Escherichia coli, which shows that the gene or its expression product can be used as target for developing antibacterial drug, and find a gene which can make flagella main control gene flhDC in bacteria over-express or enhance its expression product FlhD4C2Protein Activity, when the FlhDC Gene is overexpressed, the product FlhD4C2The amount of protein is increased, and the total activity is overhigh; while if FlhD can be enhanced4C2The activity of the protein is increased under the condition that the total amount of the protein is not changed, so that the aim of inhibiting the growth of bacteria or killing the bacteria can be fulfilled.
An action target of an antibacterial drug, wherein the target is flagella main regulatory gene flhDC or expression product FlhD thereof4C2A protein.
The invention also provides a flagella major regulatory gene flhDC or an expression product FlhD thereof4C2The protein is used as a target point in the development of antibacterial drugs.
The antibacterial drug can up-regulate the expression of flagella major regulatory gene flhDC or enhance FlhD4C2The activity of the protein.
The antibacterial agent is used for killing or inhibiting bacteria having flagellar activity. Preferably, the antibacterial agent is used for killing or inhibiting salmonella or escherichia coli.
The invention also provides an antibacterial drug which can up-regulate the expression of flagella major regulatory gene flhDC in bacteria or enhance FlhD4C2The activity of the protein. The bacteria have flagellar activity. Preferably, the bacteria are salmonella or escherichia coli.
According to the invention, through researches, the host bacteria can be killed by the overexpression of the flagella main control gene flhDC, a new target point is provided for the research and development of novel antibacterial drugs, and a direction is provided for solving the problem of drug resistance of bacteria.
Drawings
FIG. 1 is a schematic diagram of the tertiary regulation of flagella genes.
FIG. 2 is a diagram showing the result of electrophoretic detection of a PCR-amplified flhDC gene fragment, in which lane M is a standard molecular weight Marker DL2000 (the same applies below), and lane 1 is flhDCSTMLane 2 is flhDCEcoliLane 3 is flhCSTMLane 4 is flhCEcoliLane 5 is flhDSTMLane 6 is flhDEcoli
FIG. 3 shows PCR amplificationThe electrophoresis detection result of the other flagella gene segments is shown in the figure, wherein the numbers of the lanes 1-9 are fliA respectivelyEcoli、fliASTMflgK, fliI, flgM, fliT, fliZ, fliC, motA, and the fragment sizes are 795bp, 747bp, 1702bp, 1401bp, 353bp, 443bp, 610bp, 1223bp, and 848bp, respectively.
FIG. 4 shows pN15E6-flhDCSTMFIG. A shows the results of experiments on lethal E.coli DH31 soprocI, where A is a Kan + Chl plate and B is a Kan + Chl + IPTG plate.
FIG. 5 shows pN15E6-flhDSTMFIG. A is a graph showing the results of experiments on non-lethal E.coli DH31 soprocI, wherein A is a Kan + Chl plate and B is a Kan + Chl + IPTG plate.
FIG. 6 shows pN15E6-flhDCSTMFIG. of the results of growth curve measurement of E.coli DH31 soprocI strain.
FIG. 7 shows pN15E6-flhDCEcoliThe result of the experiment for inhibiting Escherichia coli DH31 soprocI is shown in the figure, wherein A is Kan + Chl plate, and B is Kan + Chl + IPTG plate.
FIG. 8 shows pN15E6-flhDEcoliFIG. A is a graph showing the results of experiments on non-lethal E.coli DH31 soprocI, wherein A is a Kan + Chl plate and B is a Kan + Chl + IPTG plate.
FIG. 9 is fliASTMExperimental results of overexpression lethal E.coli DH31 soprocI, wherein A is Kan + Chl plate, and B is Kan + Chl + IPTG plate.
FIG. 10 is fliAEcoliExperimental results of overexpression lethal E.coli DH31 soprocI, wherein A is Kan + Chl plate, and B is Kan + Chl + IPTG plate.
Detailed Description
The main reagents are as follows: NcoI enzyme, BglII enzyme, T4DNA ligase were purchased from New England Biolabs; DL2000marker, DL5000marker, Taq DNA polymerase, ExTaq DNA polymerase were purchased from TaKaRa, Inc., Boehringer Biotech (Dalian Co., Ltd.); the bacterial plasmid rapid extraction kit and the PCR cleaning kit are purchased from Axygen company; IPTG was purchased from Shanghai Biotechnology, Inc.
Plasmid and strain: the s.typhimurium STM542 strain was purchased from the chinese veterinary drug institute; the DH31 soprocI strain, pN15E6 plasmid, was given by the Russian scientist Ravin NV (Andrey V.Mardanov, Taisia S.Strakhova, Vladimir A.Smagin, Nikolai V.ravin.Tightly regulated, high-level expression from controlled copy number vector based on the reproduction of the plasmid of temperature phase N15[ J ]. Gene 395(2007) 15-21.); JM109 strain was stored in this laboratory.
The pKDb plasmid is a plasmid which is self-ligated to the backbone of pKD46 plasmid (Datsenko KA & Wanner BL. one-step inactivation of chromosomal genes in Escherichia coli K-12using PCR products. PNAS (2000)97(12):6640-45.) and has 2 XcmI cleavage sites added thereto, and the plasmid is constructed and stored in the laboratory. The pKDb plasmid is cut by XcmI to form a linear T vector with two heads protruding 1T, and a PCR product with the end protruding 1A can be directly cloned.
Example 1
Amplification of various flagella gene fragments and homology comparison of flhD and flhC.
Using JM109 and STM542 genome DNA as templates, carrying out PCR amplification on flhDC, flhD, flhC and fliA gene fragments of escherichia coli and salmonella, and using STM542 genome DNA as templates, carrying out PCR amplification on fliT, fliZ, flgM, flgK, fliI, fliC and motA gene fragments. The primers and characteristics used for amplification are shown in Table 1, and primer synthesis and sequencing are available from Huada Biotech, Inc.
TABLE 1 amplification of Gene fragments of interest
Figure BDA0001670369120000041
Figure BDA0001670369120000051
Note: the underlined bases are recognition sites for NcoI or BglII, and the bases preceding the recognition sites are protecting bases.
Using the primers shown in table 1, PCR-amplifying the target gene fragment: FlhDCSTM、flhDCEcoli、flhCSTM、flhCEcoli、flhDSTM、flhDEcoli、fliAEcoli、fliASTMflgK, fliI, flgM, fliT, fliZ, fliC, motA. Wherein, flhDCSTM、flhDCEcoli、flhCSTM、flhCEcoli、flhDSTM、flhDEcoliThe sizes of the gene fragments are 973bp, 579bp, 351bp and 351bp respectively, which are shown in figure 2; fliAEcoli、fliASTMThe sizes of the flgK, fliI, flgM, fliT, fliZ, fliC and motA gene fragments are 795bp, 747bp, 1702bp, 1401bp, 353bp, 443bp, 610bp, 1223bp and 848bp respectively, as shown in figure 3.
Reference to genomic sequence of 5 Salmonella enteritidis strains (Salmonella enterica) in GenBank: s.typhimurium LT2, s.galingarum 287/91, s.typhi CT18, s.cholereas SC-B67, s.enteritidis P125109; and 3 Escherichia coli (Escherichia coli) genomic sequences: MG1655, W3110 and DH10B were aligned with the deduced amino acids of the sequence of 5 Salmonella strains, 3 Escherichia coli flhD and flhC, respectively, and the homology was calculated.
The result shows that the deduced amino acids of 5 salmonella enteritidis flhD are completely the same, and the deduced amino acid homology of flhC is 98.96-99.83%. The deduced amino acid homology of the 3 strains of escherichia coli flhD and flhC is more than 97%. The deduced amino acid difference of flhD and flhC between salmonella and colibacillus is large, and the homology is 74.34-75.78% and 76.51-81.69% respectively. The result shows that the flhDC gene is different between salmonella and escherichia coli, and the regulation and control functions of the salmonella flhDC gene in escherichia coli host bacteria need to be further verified.
Example 2
Flagella main regulation gene flhDCSTMEffect of overexpression on the survival of E.coli DH31 soprocI strains.
(1) Construction and identification of pN15E6 expression vector:
the PCR target gene fragment and pN15E6 plasmid were digested simultaneously with NcoI and BglII, and ligated to construct a recombinant expression plasmid. The recombinant expression plasmids were identified by PCR using pN15-insChKUp3 and pN15-insChKDn2 as primers (Table 1).
(2)flhDCSTMOverexpression of lethal E.coli DH31 soplacI:
transforming pN15E6 recombinant plasmids of different flagellum genes into DH31 soprocI strains, selecting monoclone for overnight culture, and diluting an overnight culture 10 by taking sterile LB liquid6Double, spread on kanamycin chloride (Kan + Chl) double resistant LB agar plate and Kan + Chl double resistant LB agar plate containing 0.4mM IPTG, 37 ℃ culture for 24h, observe the results.
The recombinant plasmid pN15E6-flhDCSTMTransformation of DH31 soprocI strain followed by plate culture revealed that it contained flhDCSTMThe kanamycin-chloramphenicol plates had a large amount of bacterial growth, while the corresponding inducer-containing plates had no bacterial growth. Indicating flhDCSTMThe gene overexpression can kill Escherichia coli DH31 soprocI. The specific test results are shown in FIG. 4.
(3)flhDSTM、flhCSTMOverexpression of non-lethal E.coli DH31 soprocI alone:
the recombinant plasmid pN15E6-flhD was introducedSTMAnd pN15E6-flhCSTMAfter the DH31 soprocI strain is respectively transformed, the plate coating culture is carried out, and the result shows that flhDSTMAnd flhCSTMOverexpression alone did not kill E.coli DH31 soplacI. Thus indicating flhDCSTMGene overexpression lethal Escherichia coli DH31 soprocI is prepared from flhDSTMAnd flhCSTMTwo genes are expressed simultaneously (combined into FlhD)4C2Flagellin major regulatory protein) rather than either alone. The specific test results are shown in FIG. 5, and FIG. 5 shows pN15E6-flhDSTMResults of experiments with non-lethal E.coli DH31 soprocI due to flhCSTMAnd flhDSTMThe experimental results are similar and the figure is omitted.
(4)flhDSTMAnd flhCSTMCo-expression of lethal e.coli DH31 soplacI:
pKDb-flhDSTMconstruction and identification of recombinant expression plasmids: using pN15E6-flhDSTMPlasmid as template, Trrn _ up1 and T0_ dn1 as primers (Table 1), and flhD was PCR-amplifiedSTMThe expression cassette is connected with a T-vector prepared by XcmI enzyme digestion pKDb plasmid to construct a recombinant expression vector. And identifying the recombinant expression plasmid by PCR by taking pKDb _ SeqR and pKDb _ SeqF as primers.
Recombinant plasmid pKDb-flhDSTM(carrying the amp + resistance gene, ampicillin resistance in the transformant) and pN15E6-flhCSTM(with kan + resistance gene, kanamycin resistance of the transformant) simultaneous transformation of DH31soplacI strain followed by plating, and results showed flhDSTMAnd flhCSTMSimultaneous overexpression with flhDCSTMThe results of the two-gene over-expression lethal host bacteria are the same. Further indicating flhDSTMAnd flhCSTMAt the same time, the expression is performed to assemble FlhD4C2Flagella major regulatory protein, FlhD4C2An excess of flagellar major regulatory protein leads to death of the host bacteria.
(5) pN15E6-flhDCSTMDetermination of growth curves of E.coli DH31soplacI Strain:
for the vector containing pN15E6-flhDCSTMColi DH31soplacI strain of plasmid was subjected to the determination of growth curve. Culturing pN15E6-flhDCSTMAn overnight culture of plasmid E.coli DH31soplacI strain was inoculated in LB liquid medium at 0.5% and cultured at 37 ℃ to OD600About.0.5, different concentrations of IPTG (final IPTG concentrations 0, 0.0004mM, 0.0015625mM, 0.00625mM, 0.025mM, 0.1mM, 0.4mM, respectively) were added and samples were taken each half hour of induction for OD determination600And drawing a curve chart.
The results of the growth curve measurements are shown in FIG. 6. The results show that bacterial growth is similar to that of the control induced without IPTG when the IPTG concentration is 0.0004mM and 0.0015625 mM; when the IPTG concentration is 0.00625mM and 0.025mM, the bacteria begin to generate a certain degree of growth inhibition after being induced for 4 hours; whereas, at IPTG concentrations of 0.1mM and 0.4mM, growth inhibition occurred after 1.5h of induction of the bacteria, followed by OD600The value begins to drop, indicating that the bacteria died and the amount of bacteria decreased.
(6) pN15E6-flhDCSTMDetermination of the E.coli DH31soplacI Strain motility test: for the vector containing pN15E6-flhDCSTMColi DH31soplacI strain of plasmid was subjected to the kinetic test assay. The method comprises the following steps: respectively taking 2 mu L of pN15E6-flhDCSTMAn overnight culture of the E.coli DH31 soprocI strain of the plasmid was spotted at different IPTG concentrations (0, 0.0004mM, 0.0015625mM, 0.00625mM, 0.025 mM)mM, 0.1mM) of a sports agar plate (without corresponding antibiotics), culturing for 6-7 h at 37 ℃, and evaluating the influence of the salmonella flhDC gene expression on the growth and the power of escherichia coli host bacteria by measuring the diameter of a colony on the semisolid plate.
The results show that at IPTG concentrations of 0.0004mM, 0.0015625mM and 0.00625mM, the bacterial motility (i.e.the size of the colony grown by the bacteria on the kinetic plate) is higher than that of the control without IPTG, and increases in sequence with increasing inducer concentration. When the IPTG concentration is 0.0004mM and 0.0015625mM, the growth curve of the induced strain is basically consistent with that of a control, the bacterial power is enhanced, and the flhDC gene is induced to express but the expression quantity does not reach the dose for inhibiting the growth of the host bacteria; when the concentration of IPTG is 0.00625mM, the growth curve of the induced strain shows a certain degree of inhibition, but the bacterial colony of the bacterial growth is still larger than that of a control, even the bacterial colony size of the IPTG induced strain is higher than that of the IPTG induced strain with the concentrations of 0.0004mM and 0.0015625mM, which indicates that the inhibition effect of the flhDC gene product on the bacterial power can be counteracted by the enhancement effect of the flhDC gene product on the bacterial power, and the comprehensive result still shows that the bacterial growth has larger bacterial colony, and the bacteria have stronger power; when the IPTG concentration is increased to 0.025mM, the inhibition effect of the flhDC product on the growth of host bacteria cannot be counteracted probably due to the enhancement effect of the flhDC product induced to express on the bacterial power, and the colony of the bacterial growth is reduced; when the IPTG concentration was increased to 0.1mM, bacterial growth was completely inhibited and no colony growth was observed. The results of the bacterial motility test are shown in Table 2.
TABLE 2 pN15E6-flhDCSTMResults of the kinetic test of Escherichia coli DH31soplacI Strain
Figure BDA0001670369120000071
Note: the kinetic test results are expressed in terms of colony size on the kinetic plate, and the test data is obtained from three reproducible test results.
Example 3
Flagella main regulation gene flhDCEcoliOverexpression of the P.coliEffect of survival of bacillus DH31soplac strain.
(1)flhDCEcoliOverexpression inhibits growth of E.coli DH31 soplacI:
the procedure is as in example 2, plasmid pN15E6-flhDCEcoliTransformation of DH31soplacI strain followed by plating. The results showed that the contained flhDCEcoliThe kanamycin-chloramphenicol plates had a large amount of bacteria growth, while the bacterial colonies growth was smaller on the corresponding inducer-containing plates. Indicating flhDCEcoliOverexpression can inhibit the growth of E.coli DH31 soprocI. The specific test results are shown in FIG. 7.
(2)flhDEcoli、flhCEcoliOverexpression of non-lethal E.coli DH31soplac alone:
the procedure is as in example 2, plasmid pN15E6-flhDEcoliAnd pN15E6-flhCEcoliThe DH31soplacI strain was transformed separately and plated for culture. The results showed flhDEcoliAnd flhCEcoliOverexpression alone did not kill E.coli DH31 soplacI. Thus indicating flhDCEcoliThe gene over-expression inhibits the growth of Escherichia coli DH31 soprocIEcoliAnd flhCEcoliTwo genes are expressed simultaneously (combined into FlhD)4C2Flagellin major regulatory protein) rather than either alone. The specific test results are shown in FIG. 8, in which FIG. 8 shows pN15E6-flhDEcoliResults of experiments with non-lethal E.coli DH31soplacI, flhCEcoliAnd flhDEcoliThe experimental results are similar and the figure is omitted.
Example 4
Effect of overexpression of other flagellar genes on the survival of E.coli DH31soplacI strains.
(1)fliASTMOverexpression of lethal E.coli DH31 soplacI:
to verify whether other flagella genes involved also had a similar phenomenon of overexpression of the flhDC gene, lethal E.coli DH31soplacI, pN15E6-fliA was used in this experimentSTMpN15E6-fliT, pN15E6-fliZ, pN15E6-flgM, pN15E6-flgK, pN15E6-fliI, pN15E6-fliC and pN15E6-motA plasmids into DH31soplac strains, and then plating and culturing (the concrete method is the same as the embodiment for implementing the method for transforming the DH31soplac strains into the pN15E6-fliI strainsExample 2). The results showed fliASTMThe gene over-expression can kill Escherichia coli DH31soplac I, while other flagella genes such as fliT, fliZ, flgM, fliI and the like do not have the effect of over-expressing the lethal Escherichia coli DH31soplac I, and a plate picture of a specific test result is shown in FIG. 9.
(2)fliAEcoliOverexpression of lethal E.coli DH31 soplacI:
mixing pN15E6-fliAEcoliThe DH31soplacI strain was transformed with the plasmid and plated (as described in example 2). The results showed fliAEcoliOverexpression of the gene likewise leads to lethality in E.coli DH31 soplacI. The image of the plate for the specific test results is shown in FIG. 10.
Sequence listing
<110> Zhejiang university
<120> application of flagella main regulatory gene flhDC or expression product thereof as target in antibacterial drug development
<160> 48
<170> SIPOSequenceListing 1.0
<210> 1
<211> 975
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 1
ccatgggaat aatgcatacc tccgagttgc tgaaacacat ttatgacatc aacttgtcat 60
atttactact tgcacagcgt ttgattgttc aggacaaagc gtccgctatg tttcgtctcg 120
gcataaatga agaaatggcg acaacgttag cggcactgac tcttccgcaa atggttaagc 180
tggcagaaac caatcaactg gtttgtcact tccgttttga cagccaccag acgattactc 240
agttgacgca agattcccgc gttgacgatc tccagcaaat tcataccggc atcatgctct 300
caacacgctt gctgaatgat gttaatcagc ctgaagaagc gctgcgcaag aaaagggcct 360
gatcatgagt gaaaaaagca ttgttcagga agcgcgggat attcagctgg caatggaatt 420
gatcaccctg ggcgctcgtt tgcagatgct ggaaagcgaa acacagttaa gtcgcggacg 480
cctgataaaa ctttataaag aactgcgcgg aagcccaccg ccgaaaggca tgctgccatt 540
ctcaaccgac tggtttatga cctgggaaca aaacgttcat gcttcgatgt tctgtaatgc 600
atggcagttt ttactgaaaa ccggtttgtg taatggcgtc gatgcggtga tcaaagccta 660
ccgtttatac cttgaacagt gcccacaagc agaagaagga ccactgctgg cattaacccg 720
tgcctggaca ttggtgcggt ttgttgaaag tggattactg caactttcca gctgcaactg 780
ctgcggcggc aattttatta cccacgctca ccagcctgtt ggcagctttg cctgcagctt 840
atgtcaaccg ccatcccggg cagtaaaaag acgtaaactt tcccagaatc ctgccgatat 900
tatcccacaa ctgctggatg aacagagagt acaggctgtt taactgatac ggtgaggcgc 960
aacattccaa gatct 975
<210> 2
<211> 377
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 2
ccatgggaat aatgcatacc tccgagttgc tgaaacacat ttatgacatc aacttgtcat 60
atttactact tgcacagcgt ttgattgttc aggacaaagc gtccgctatg tttcgtctcg 120
gcataaatga agaaatggcg acaacgttag cggcactgac tcttccgcaa atggttaagc 180
tggcagaaac caatcaactg gtttgtcact tccgttttga cagccaccag acgattactc 240
agttgacgca agattcccgc gttgacgatc tccagcaaat tcataccggc atcatgctct 300
caacacgctt gctgaatgat gttaatcagc ctgaagaagc gctgcgcaag aaaagggcct 360
gatcatgagt gagatct 377
<210> 3
<211> 613
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 3
ccatgggtga aaaaagcatt gttcaggaag cgcgggatat tcagctggca atggaattga 60
tcaccctggg cgctcgtttg cagatgctgg aaagcgaaac acagttaagt cgcggacgcc 120
tgataaaact ttataaagaa ctgcgcggaa gcccaccgcc gaaaggcatg ctgccattct 180
caaccgactg gtttatgacc tgggaacaaa acgttcatgc ttcgatgttc tgtaatgcat 240
ggcagttttt actgaaaacc ggtttgtgta atggcgtcga tgcggtgatc aaagcctacc 300
gtttatacct tgaacagtgc ccacaagcag aagaaggacc actgctggca ttaacccgtg 360
cctggacatt ggtgcggttt gttgaaagtg gattactgca actttccagc tgcaactgct 420
gcggcggcaa ttttattacc cacgctcacc agcctgttgg cagctttgcc tgcagcttat 480
gtcaaccgcc atcccgggca gtaaaaagac gtaaactttc ccagaatcct gccgatatta 540
tcccacaact gctggatgaa cagagagtac aggctgttta actgatacgg tgaggcgcaa 600
cattccaaga tct 613
<210> 4
<211> 789
<212> DNA
<213> Escherichia coli (Escherichia coli)
<400> 4
ccatgggaaa ttcactctat accgctgaag gtgtaatgga taaacactcg ctgtggcagc 60
gttatgtccc gctggtgcgt cacgaagcat tgcgcctgca ggttcgactg cccgcgagcg 120
tggaacttga cgatctgcta caggcgggcg gcattgggtt acttaatgcc gtcgaacgct 180
atgacgccct acaaggaacg gcatttacaa cttacgcagt gcagcgtatc cgtggcgcta 240
tgctggatga acttcgcagc cgtgactggg tgccgcgcag cgtgcgacgc aacgcgcgtg 300
aagtggcaca ggcaataggg caactggagc aggaacttgg ccgcaacgcc acggaaactg 360
aggtagcgga acgtttaggg atcgatattg ccgattatcg ccaaatgttg ctcgacacca 420
ataacagcca gctcttctcc tacgatgagt ggcgcgaaga gcacggcgat agcatcgaac 480
tggttactga tgatcatcag cgagaaaacc cgctacaaca actactggac agtaatctgc 540
gccagcgggt gatggaagcc atcgaaacgt tgccggagcg cgaaaaactg gtattaaccc 600
tctattacca ggaagagctg aatctcaaag agattggcgc ggtgctggag gtcggggaat 660
cgcgggtcag tcagttacac agccaggcta ttaaacggtt acgcactaaa ctgggtaagt 720
tataacgtca gtaaatgccg cactttaact ttgactacca ggagttctta atgatggtgc 780
agcagatct 789
<210> 5
<211> 966
<212> DNA
<213> Salmonella typhimurium (S.Typhimurium)
<400> 5
ccatgggaac aatgcataca tccgagttgc taaaacacat ttatgacatc aatttgtcat 60
atttactcct tgcacagcgt ttgatcgtcc aggacaaagc atctgcgatg ttccgcctcg 120
gtatcaacga agagatggca aacacactgg gcgcgttgac cctgccgcag atggtcaaac 180
tggcggagac gaaccagtta gtttgtcatt tccggtttga cgatcatcag acgatcaccc 240
gtttgactca ggattcgcgc gtcgatgact tacagcagat tcacacaggt atcatgcttt 300
caacgcgtct gctcaatgaa gtggacgata cggcgcgtaa gaaaagggca tgataatgag 360
tgaaaaaagc attgttcagg aagctcgcga tatccagttg gcgatggagt tgattaatct 420
tggcgctcgt ctacaaatgc tggaaagcga aacacagctc agccgtggtc gcctcatcag 480
gctgtacaaa gaattacgcg gtagcccgcc gcctaaaggg atgctgccat tttcgacaga 540
ctggtttatg acctgggagc aaaatattca tgcctccatg ttctgcaacg cctggcaatt 600
tttactgaag accggcttat gcagcggtgt ggatgcggtg attaaagctt atcggcttta 660
tcttgagcag tgtccgcaac cgcctgaagg gccgttgttg gcgctgactc gcgcatggac 720
gctggtgcgt tttgttgaaa gtgggttgct tgaattgtcg agctgtaact gctgcggtgg 780
gaactttatt acccatgcgc atcagcccgt aggcagcttt gcgtgtagtt tatgccagcc 840
gccatcccgc gcagtaaaaa gacgtaaact ttcccgagat gctgccgata ttattccaca 900
actgctggat gaacagatcg aacaggctgt ttaaccgaaa cggtgtggac aaacactcca 960
agatct 966
<210> 6
<211> 368
<212> DNA
<213> Salmonella typhimurium (S.Typhimurium)
<400> 6
ccatgggaac aatgcataca tccgagttgc taaaacacat ttatgacatc aatttgtcat 60
atttactcct tgcacagcgt ttgatcgtcc aggacaaagc atctgcgatg ttccgcctcg 120
gtatcaacga agagatggca aacacactgg gcgcgttgac cctgccgcag atggtcaaac 180
tggcggagac gaaccagtta gtttgtcatt tccggtttga cgatcatcag acgatcaccc 240
gtttgactca ggattcgcgc gtcgatgact tacagcagat tcacacaggt atcatgcttt 300
caacgcgtct gctcaatgaa gtggacgata cggcgcgtaa gaaaagggca tgataatgag 360
tgagatct 368
<210> 7
<211> 613
<212> DNA
<213> Salmonella typhimurium (S.Typhimurium)
<400> 7
ccatgggtga aaaaagcatt gttcaggaag ctcgcgatat ccagttggcg atggagttga 60
ttaatcttgg cgctcgtcta caaatgctgg aaagcgaaac acagctcagc cgtggtcgcc 120
tcatcaggct gtacaaagaa ttacgcggta gcccgccgcc taaagggatg ctgccatttt 180
cgacagactg gtttatgacc tgggagcaaa atattcatgc ctccatgttc tgcaacgcct 240
ggcaattttt actgaagacc ggcttatgca gcggtgtgga tgcggtgatt aaagcttatc 300
ggctttatct tgagcagtgt ccgcaaccgc ctgaagggcc gttgttggcg ctgactcgcg 360
catggacgct ggtgcgtttt gttgaaagtg ggttgcttga attgtcgagc tgtaactgct 420
gcggtgggaa ctttattacc catgcgcatc agcccgtagg cagctttgcg tgtagtttat 480
gccagccgcc atcccgcgca gtaaaaagac gtaaactttc ccgagatgct gccgatatta 540
ttccacaact gctggatgaa cagatcgaac aggctgttta accgaaacgg tgtggacaaa 600
cactccaaga tct 613
<210> 8
<211> 741
<212> DNA
<213> Salmonella typhimurium (S.Typhimurium)
<400> 8
ccatggctaa ttcactgtat accgctgaag gtgtaatgga taaacactcg ctgtggcagc 60
gttatgtacc gctggtgcgt cacgaagcat tgcgcctgca ggtgcgattg ccggcgagcg 120
tggaactgga cgatctgcta caagcgggcg gcatcgggtt attaaatgcg gtcgaccgat 180
atgacgcttt gcaaggaacg gcatttacca cttacgcagt gcagcgtatt cgtggggcga 240
tgctggatga attacgcagc cgcgattggg tgccgcgtag cgtccggcgt aatgcccgcg 300
aagtggcgca ggcgatggga caactggagc aggaactggg gcgtaatgcg acggaaaccg 360
aagtggcgga acgtcttggc atccctgttg cggagtatcg tcagatgttg ctcgatacca 420
acaacagcca acttttctct tacgatgagt ggcgggaaga gcatggcgat agcatcgaac 480
tggtgactga agaacatcaa caggaaaacc cgttacatca actgctggag ggcgacctgc 540
gacagcgggt aatggatgcg attgaatcgc tgccggaacg cgagcaactg gtgttaacgc 600
tgtattacca ggaagagctc aatctcaaag agattggcgc ggtactggaa gtcggcgaat 660
cgcgggtcag ccagttgcat agtcaggcca tcaaacgatt acgcaccaaa ctgggtaagt 720
tataggtcgc gcatgagatc t 741
<210> 9
<211> 437
<212> DNA
<213> Salmonella typhimurium (S.Typhimurium)
<400> 9
ccatgggtac ctcaaccgtg gagtttatca accgttggca gcgtattgcg ctgctcagtc 60
aatcgctgct tgaacttgcg cagcgaggtg aatgggatct cttactgcaa caagaggtct 120
cctatctgca aagtattgaa acggtgatgg aaaagcaaac tccaccgggc attacgcgaa 180
gtattcagga tatggtcgcc ggatacatca aacaaacgct ggacaatgag cagctcctga 240
aagggctgct gcaacagcga ctggatgaac tgagtagttt gatcggacaa tccacccgcc 300
aaaaatcact caacaacgcg tatggccgtc tttccggtat gttactcgtg ccagatgcgc 360
ctggcgcctc ataatatttt cccgtctcgt atgaaaattc ttccatactc cagaggtcgg 420
ctaaacgact tagatct 437
<210> 10
<211> 603
<212> DNA
<213> Salmonella typhimurium (S.Typhimurium)
<400> 10
ccatgggtac ggtgcagcaa cctaaaaggc ggcctttgag ccgctatctt aaagacttta 60
aacacagcca gacgcattgc gcgcattgtc acaaactgct cgaccgcatt acgctggttc 120
gccgtggcaa gatcgttaat aaaatcgcta tttcacagct ggatatgcta cttgacgacg 180
ctgcctggca gcgggagcag aaggagtggg tggcgctgtg tcgcttttgc ggcgatttgc 240
actgcaaaaa gcagagtgat tttttcgata ttatcggttt caagcagtat ttgtttgaac 300
aaaccgagat gagccatggc acggtgcggg aatatgtcgt gcgtttacga cgccttggca 360
attacctcag cgagcaaaac atttcccacg atctgctgca ggacggtttt ctcgatgaaa 420
gcctggcgcc atggttgccg gaaaccagca ccaataatta ccgtatcgca ctgcgtaaat 480
accagcaata taaagcgcat cagcagattg cgcccagaca gaaatccccc tttaccgcca 540
gttctgatat atattaaaaa agcataagat gtagcagagt cgtgttggtg aaacgtgaga 600
tct 603
<210> 11
<211> 347
<212> DNA
<213> Salmonella typhimurium (S.Typhimurium)
<400> 11
ccatgggtag cattgaccgt acctcacctt tgaaacccgt tagcactgtc cagacgcgcg 60
aaaccagcga cacgccggta caaaaaacgc gtcaggaaaa aacgtccgcc gcgacgagcg 120
ccagcgtaac gttaagcgac gcgcaagcga agctcatgca gccaggcgtc agcgacatta 180
atatggaacg cgtcgaagca ttaaaaacgg ctatccgtaa cggtgagtta aaaatggata 240
cgggaaaaat agcagactcg ctcattcgcg aggcgcagag ctacttacag agtaaataag 300
cgtatgactc gtttgtcaga aatacttgac cagatgacca cagatct 347
<210> 12
<211> 1696
<212> DNA
<213> Salmonella typhimurium (S.Typhimurium)
<400> 12
ccatgggttc cagcttgatt aatcacgcca tgagcggact taacgccgcg caggccgcgt 60
taaatacggt cagtaataac atcaacaatt ataacgttgc gggttatacc cggcagacaa 120
ctattctggc gcaggcaaac agtacgttag gggctggcgg ctggataggt aatggcgttt 180
acgtttcagg cgtacagcgc gaatatgatg cgtttatcac taatcagcta cgcggcgcgc 240
aaaaccagag cagcggctta accacgcgct atgaacaaat gtcgaaaatc gacaacctgc 300
tggccgataa atccagctca ctgtctggtt cgttgcagag tttttttacc agcctgcaaa 360
cgttagtcag taacgcggaa gatcctgcgg cgcgtcaggc gctgattggt aaagcggaag 420
ggctggtaaa ccagttcaaa accaccgatc agtatctgcg cgatcaggat aaacaggtca 480
atatcgcgat tggctccagc gtggcgcaaa tcaacaatta cgcgaagcag atagctaacc 540
tgaacgatca aatctcccgt atgacgggcg taggcgcggg cgcatcgccg aacgacctgc 600
tcgatcagcg tgatcagttg gtcagcgagc ttaacaagat cgttggcgtc gaggtgagtg 660
tacaggacgg cggcacctat aacctgacga tggccaatgg ctatacgctg gtgcaggggt 720
cgacggcgcg tcagttggcg gcggttccct ccagcgccga cccgacgcga acgactgtcg 780
cttatgtcga tgaggccgcc ggtaacatcg aaattccgga aaagttgctg aacaccggtt 840
cgctcggcgg gctactgacg ttccgttctc aggatctgga tcagactcgt aatacgctgg 900
gccagttggc gttggcgttt gccgatgcgt ttaacgcgca gcataccaaa ggttatgacg 960
ccgacggcaa taaagggaaa gacttcttta gcattggctc gccggtggta tatagcaaca 1020
gtaataatgc cgataaaacg gtatcgctaa ccgctaaggt ggtcgacagc acgaaggttc 1080
aggcgacgga ttataagatt gtttttgacg gtacagactg gcaggttact cgcactgcgg 1140
ataacaccac cttcacggcg acaaaagatg ctgacggaaa actggagatt gacggtctga 1200
aagtgacggt agggaccggc gcacagaaaa atgacagttt tcttctcaag ccggtcagca 1260
atgctatcgt cgacatgaac gttaaagtga caaatgaagc cgagattgcg atggcgtctg 1320
agtcaaaact cgatcctgac gtggataccg gcgacagcga taaccgcaat ggtcaggcat 1380
tgctggactt acaaaacagc aatgtagtgg gcggcaacaa aacttttaac gatgcttacg 1440
ccacgttggt cagcgatgtg ggtaacaaaa cgtcaacgct gaaaaccagc agcaccacgc 1500
aggcgaatgt ggttaaacag ctttataaac agcaacagtc ggtttccggc gttaacctcg 1560
acgaagagta cggcaatttg cagcgttatc agcagtatta tctggcgaat gcgcaagtat 1620
tgcagaccgc gaatgcgctg tttgatgcgt tattgaatat tcgctaaagg agaaggatga 1680
catgcgtatc agatct 1696
<210> 13
<211> 1398
<212> DNA
<213> Salmonella typhimurium (S.Typhimurium)
<400> 13
ccatgggtat gactactcgt ctgacccgct ggcttaccgc gctcgacaac tttgaagcca 60
aaatggcgtt attgccggcg gtgcgtcgtt atggacgttt aacccgcgcc actggcctgg 120
tactggaggc caccggtctc cagcttccgc tgggcgccac ctgcattatt gagcgccagg 180
acggccctga aaccaaagag gtggaatcag aagtcgtcgg ttttaacggc cagcgtctgt 240
ttctaatgcc gctggaagag gtcgaaggca ttctgcccgg tgcccgcgtt tacgcccgta 300
acgggcatgg cgacggtctg caaagcggca aacagttacc gctcggcccg gccctgcttg 360
gtcgggtgct ggatggcggc ggtaaaccgc tcgacggact gcctgcgccg gatacgctgg 420
aaaccggcgc gttaatcacg ccgccgttta acccgctaca gcgaacgcca atcgaacatg 480
tgctggatac cggcgtacgc gctatcaacg cgttgttaac cgtagggcgc ggtcagcgta 540
tgggactctt tgccggttcc ggcgttggta aatcggttct gcttggcatg atggcgcgct 600
acacgcgggc ggacgtgatt gtcgtgggac ttatcggcga acgtggccgc gaagttaaag 660
attttatcga aaatattctc ggccccgacg gtcgcgcgcg ttcggtggtg atcgccgccc 720
cggcggatgt ctcgccgctg ctgcgaatgc agggcgccgc ctatgccacc cgcatcgccg 780
aagactttcg cgatcgcgga cagcatgtgt tgctgattat ggattcgctg acgcgctatg 840
caatggcgca gcgtgagatt gcgctggcaa tcggcgaacc gccagccacc aaaggttatc 900
cgccctcggt gttcgcaaag ctgccggcgc tggtcgagcg tgccggtaat ggcatccacg 960
gcggtggctc tatcaccgcg ttttataccg tgttgaccga gggggacgac caacaagatc 1020
ccattgccga ctcggcacgc gcaatcctcg acgggcacat tgtcttgtcc cgccgtctgg 1080
cggaggccgg gcactatccg gccattgata tcgaggcgtc aatcagccgg gcgatgaccg 1140
cgctcattac cgagcagcac tatgcgcggg tacggctatt taaacagttg ctttccagtt 1200
tccagcgtaa ccgcgatctg gtcagcgtcg gcgcctatgc caaaggcagc gatccgatgc 1260
tcgataaagc cattacctta tggccgcaac tggaagcgtt tttacagcaa ggcatttttg 1320
aacgggccga ctgggaggac tctctgcagg cgctcgattt aattttcccg acggtgtgat 1380
aaagcaggag ggagatct 1398
<210> 14
<211> 1529
<212> DNA
<213> Salmonella typhimurium (S.Typhimurium)
<400> 14
ccatggcaca agtcattaat acaaacagcc tgtcgctgtt gacccagaat aacctgaaca 60
aatctcagtc ctcactgagt tccgctattg agcgtctgtc ctctggtctg cgtatcaaca 120
gcgcgaaaga cgatgcggca ggccaggcga ttgctaaccg cttcacttct aatatcaaag 180
gtctgactca ggcttcccgt aacgctaacg acggcatttc tattgcgcag accactgaag 240
gtgcgctgaa tgaaatcaac aacaacctgc agcgtgtgcg tgagttgtct gttcaggcca 300
ctaacgggac taactctgat tccgatctga aatctatcca ggatgaaatt cagcaacgtc 360
tggaagaaat cgatcgcgtt tctaatcaga ctcaatttaa cggtgttaaa gtcctgtctc 420
aggacaacca gatgaaaatc caggttggtg ctaacgatgg tgaaaccatt accatcgatc 480
tgcaaaaaat tgatgtgaaa agccttggcc ttgatgggtt caatgttaat gggccaaaag 540
aagcgacagt gggtgatctg aaatccagct tcaagaatgt tacgggttac gacacctatg 600
cagcgggtgc cgataaatat cgtgtagata ttaattccgg tgctgtagtg actgatgcag 660
cagcaccgga taaagtatat gtaaatgcag caaacggtca gttaacaact gacgatgcgg 720
aaaataacac tgcggttgat ctctttaaga ccactaaatc tactgctggt accgctgaag 780
ccaaagcgat agctggtgcc attaaaggtg gtaaggaagg agataccttt gattataaag 840
gcgtgacttt tactattgat acaaaaactg gtgatgacgg taatggtaag gtttctacta 900
ccatcaatgg tgaaaaagtt acgttaactg tcgctgatat tgccactggc gcgacggatg 960
ttaatgctgc taccttacaa tcaagcaaaa atgtttatac atctgtagtg aacggtcagt 1020
ttacttttga tgataaaacc aaaaacgaga gtgcgaaact ttctgatttg gaagcaaaca 1080
atgctgttaa gggcgaaagt aaaattacag taaatggggc tgaatatact gctaacgcca 1140
cgggtgataa gatcacctta gctggcaaaa ccatgtttat tgataaaaca gcttctggcg 1200
taagtacatt aatcaatgaa gacgctgccg cagccaagaa aagtaccgct aacccactgg 1260
cttcaattga ttctgcattg tcaaaagtgg acgcagttcg ttcttctctg ggggcaattc 1320
aaaaccgttt tgattcagcc attaccaacc ttggcaatac ggtaaccaat ctgaactccg 1380
cgcgtagccg tatcgaagat gctgactatg caacggaagt ttctaatatg tctaaagcgc 1440
agattctgca gcaggctggt acttccgttc tggcgcaggc taaccaggtt ccgcaaaacg 1500
tcctctcttt actgcgttaa tccagatct 1529
<210> 15
<211> 842
<212> DNA
<213> Salmonella typhimurium (S.Typhimurium)
<400> 15
ccatgggtac cggcggacac cttggggcac tctatcaacc tgctgaactg gtcatcattg 60
gcggcgcggg gataggggcg ttcattgtcg gcaacaacgg gaaggccatc aaaggcacga 120
tgaaagctat cccgttgtta tttcgtcgtt cgaaatacac aaaatctatg tacatggatt 180
tgctggcgtt gctctatcgc ctgatggcca aatcacgcca gcaggggatg ttctcccttg 240
aacgcgatat tgaaaatcca aaagagagtg aaatcttcgc cagttatccg cgtattctgg 300
ccgatgcggt aatgcttgat tttattgtcg attatctgcg cctgatcatc agcggcaaca 360
tgaatacgtt cgaaattgaa gcgttgatgg atgaagagat tgaaacccat gaaagcgagg 420
cggaagtccc ggccaacagt ctggcgatgg tgggggattc gctgcctgcc tttggtatcg 480
tcgcggcggt aatgggggtg gttcacgctc tggcttcagc cgatcgtccg gcagcggagt 540
tgggggcgct gattgcccat gccatggtag gtacgttcct cggtatttta ctggcttatg 600
gattcatttc accgttagcg accgttttgc gccagaagag cgccgaaacc accaagatga 660
tgcagtgcgt aaaaatcaca ctgctgtcta atctgaacgg ctatgcgccg ccgattgccg 720
tggaatttgg tcgtaaaacg ctttattcca gtgagcgtcc atcgtttatt gagttggaag 780
aacacgttcg cgcagtgaga aacccaaacc agcagcagac gactgaggaa gcatgaagat 840
ct 842
<210> 16
<211> 29
<212> DNA
<213> Artificial sequence (Artificial)
<400> 16
catgccatgg gaataatgca tacctccga 29
<210> 17
<211> 32
<212> DNA
<213> Artificial sequence (Artificial)
<400> 17
gaagatcttg gaatgttgcg cctcaccgta tc 32
<210> 18
<211> 32
<212> DNA
<213> Artificial sequence (Artificial)
<400> 18
gaagatcttg gagtgtttgt ccacaccgtt tc 32
<210> 19
<211> 29
<212> DNA
<213> Artificial sequence (Artificial)
<400> 19
catgccatgg gaacaatgca tacatccga 29
<210> 20
<211> 33
<212> DNA
<213> Artificial sequence (Artificial)
<400> 20
gtagatctca ctcatgatca ggcccttttc ttg 33
<210> 21
<211> 33
<212> DNA
<213> Artificial sequence (Artificial)
<400> 21
gtagatctca ctcatgatca ggcccttttc ttg 33
<210> 22
<211> 35
<212> DNA
<213> Artificial sequence (Artificial)
<400> 22
ctagccatgg gtgaaaaaag cattgttcag gaagc 35
<210> 23
<211> 29
<212> DNA
<213> Artificial sequence (Artificial)
<400> 23
gaagatctta ccgctgctgg agtgtttgt 29
<210> 24
<211> 34
<212> DNA
<213> Artificial sequence (Artificial)
<400> 24
catgccatgg gtgaaaaaag cattgttcag gaag 34
<210> 25
<211> 32
<212> DNA
<213> Artificial sequence (Artificial)
<400> 25
catgccatgg gaaattcact ctataccgct ga 32
<210> 26
<211> 32
<212> DNA
<213> Artificial sequence (Artificial)
<400> 26
gtagatctgc tgcaccatca ttaagaactc ct 32
<210> 27
<211> 42
<212> DNA
<213> Artificial sequence (Artificial)
<400> 27
catgccatgg ctaattcact gtataccgct gaaggtgtaa tg 42
<210> 28
<211> 32
<212> DNA
<213> Artificial sequence (Artificial)
<400> 28
gtagatctca tgcgcgacct ataacttacc ca 32
<210> 29
<211> 33
<212> DNA
<213> Artificial sequence (Artificial)
<400> 29
catgccatgg gtacctcaac cgtggagttt atc 33
<210> 30
<211> 31
<212> DNA
<213> Artificial sequence (Artificial)
<400> 30
gtagatctaa gtcgtttagc cgacctctgg a 31
<210> 31
<211> 32
<212> DNA
<213> Artificial sequence (Artificial)
<400> 31
catgccatgg gtacggtgca gcaacctaaa ag 32
<210> 32
<211> 31
<212> DNA
<213> Artificial sequence (Artificial)
<400> 32
gtagatctca cgtttcacca acacgactct g 31
<210> 33
<211> 36
<212> DNA
<213> Artificial sequence (Artificial)
<400> 33
catgccatgg gtagcattga ccgtacctca cctttg 36
<210> 34
<211> 33
<212> DNA
<213> Artificial sequence (Artificial)
<400> 34
gtagatctgt ggtcatctgg tcaagtattt ctg 33
<210> 35
<211> 34
<212> DNA
<213> Artificial sequence (Artificial)
<400> 35
catgccatgg gttccagctt gattaatcac gcca 34
<210> 36
<211> 31
<212> DNA
<213> Artificial sequence (Artificial)
<400> 36
gtagatctga tacgcatgtc atccttctcc t 31
<210> 37
<211> 38
<212> DNA
<213> Artificial sequence (Artificial)
<400> 37
cagtccatgg gtactactcg tctgacccgc tggcttac 38
<210> 38
<211> 30
<212> DNA
<213> Artificial sequence (Artificial)
<400> 38
gtagatctcc ctcctgcttt atcacaccgt 30
<210> 39
<211> 32
<212> DNA
<213> Artificial sequence (Artificial)
<400> 39
catgccatgg cacaagtcat taatacaaac ag 32
<210> 40
<211> 31
<212> DNA
<213> Artificial sequence (Artificial)
<400> 40
gtagatctgg attaacgcag taaagagagg a 31
<210> 41
<211> 28
<212> DNA
<213> Artificial sequence (Artificial)
<400> 41
catgccatgg gtaccggcgg acaccttg 28
<210> 42
<211> 31
<212> DNA
<213> Artificial sequence (Artificial)
<400> 42
gtagatcttc atgcttcctc agtcgtctgc t 31
<210> 43
<211> 21
<212> DNA
<213> Artificial sequence (Artificial)
<400> 43
cctggctgat acgttggtcc t 21
<210> 44
<211> 24
<212> DNA
<213> Artificial sequence (Artificial)
<400> 44
gcaaccgagc gttctgaaca aatc 24
<210> 45
<211> 25
<212> DNA
<213> Artificial sequence (Artificial)
<400> 45
gtcaagccgt caattcctgg tatga 25
<210> 46
<211> 23
<212> DNA
<213> Artificial sequence (Artificial)
<400> 46
gtcacgttgc ggccgcattc tca 23
<210> 47
<211> 24
<212> DNA
<213> Artificial sequence (Artificial)
<400> 47
acggaaggat ctgaggttct tatg 24
<210> 48
<211> 24
<212> DNA
<213> Artificial sequence (Artificial)
<400> 48
ggttattgtc tcatgagcgg atac 24

Claims (1)

1. Flagella main regulation gene flhDC or its expression product FlhD4C2Application of protein as target spot in screening antibacterial drugs, and antibacterial drugsThe composition is used for killing or inhibiting bacteria with flagellar activity,
the antibacterial drug can up-regulate the expression of flagella major regulatory gene flhDC or enhance FlhD4C2The activity of the protein is determined by the activity of the protein,
the antibacterial agent is used for killing or inhibiting salmonella or escherichia coli.
CN201810501136.9A 2018-05-23 2018-05-23 Application of flagella main regulatory gene flhDC or expression product thereof as target in antibacterial drug development Active CN108837152B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810501136.9A CN108837152B (en) 2018-05-23 2018-05-23 Application of flagella main regulatory gene flhDC or expression product thereof as target in antibacterial drug development

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810501136.9A CN108837152B (en) 2018-05-23 2018-05-23 Application of flagella main regulatory gene flhDC or expression product thereof as target in antibacterial drug development

Publications (2)

Publication Number Publication Date
CN108837152A CN108837152A (en) 2018-11-20
CN108837152B true CN108837152B (en) 2021-06-22

Family

ID=64213305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810501136.9A Active CN108837152B (en) 2018-05-23 2018-05-23 Application of flagella main regulatory gene flhDC or expression product thereof as target in antibacterial drug development

Country Status (1)

Country Link
CN (1) CN108837152B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024904A1 (en) * 2011-08-18 2013-02-21 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having enhanced expression of the flagella formation and motility cascade genes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120027786A1 (en) * 2010-02-23 2012-02-02 Massachusetts Institute Of Technology Genetically programmable pathogen sense and destroy
DK2855676T3 (en) * 2012-05-30 2021-04-12 Univ Utah Res Found COMPOSITIONS AND PROCEDURES FOR PEPTIDE EXPRESSION AND PURIFICATION USING A TYPE lll SECRETARY SYSTEM

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024904A1 (en) * 2011-08-18 2013-02-21 Ajinomoto Co.,Inc. A method for producing an l-amino acid using a bacterium of the family enterobacteriaceae having enhanced expression of the flagella formation and motility cascade genes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Non-genetic diversity shapes infectious capacity and host resistance;Mary K. Stewart等;《Trends in Microbiology》;20121031;第20卷(第10期);第461-466页 *
一种l acZ 报告基因T 载体的构建及其在沙门氏菌鞭毛主调控基因fl hDC 表达活性测定中的应用;刘蕾等;《中国预防兽医学报》;20170930;第39卷(第9期);第711-716页 *

Also Published As

Publication number Publication date
CN108837152A (en) 2018-11-20

Similar Documents

Publication Publication Date Title
CN110325545A (en) Protein delivery based on attenuated bacteria
Rather et al. Characterization and transcriptional regulation of the 2'-N-acetyltransferase gene from Providencia stuartii
MXPA01003770A (en) Stabilized bioactive peptides and methods of identification, synthesis and use.
AU2020218748B2 (en) A genetically modified lactobacillus and uses thereof
TWI328035B (en) Anti-bacterial vaccine compositions
AU2010206113A1 (en) Attenuated gram negative bacteria
EP2855676A2 (en) COMPOSITIONS AND METHODS FOR PEPTIDE EXPRESSION AND PURIFICATION USING A TYPE lll SECRETION SYSTEM
US20040253710A1 (en) Bacterial vaccine
KR20060134225A (en) Anti-bacterial vaccine compositions
CN108753998B (en) Application of flagellum secondary regulatory gene fliA or expression product thereof as target in antibacterial drug development
CN112876543B (en) Microcin MccY and preparation method and application thereof
CN108837152B (en) Application of flagella main regulatory gene flhDC or expression product thereof as target in antibacterial drug development
CN110229828B (en) Mutant gene soxR of escherichia coli global regulatory factor and application thereof
CN110195070B (en) Mutant gene crp of escherichia coli global regulatory factor and application
WO2020010452A1 (en) Bacterial conjugative system and therapeutic uses thereof
KR20100003490A (en) Novel plasmid isolated from pediococcus pentosaceus and use thereof
WO2008058116B1 (en) Tbpb proteins in attenuated oral live vaccines
EP1079861A1 (en) Regulation of biofilm formation
KR100801437B1 (en) Novel plasmid isolated from l. reuteri from pig and use thereof
US20030027286A1 (en) Bacterial promoters and methods of use
Pilipcinec et al. Identification by Tn 10 transposon mutagenesis of host factors involved in the biosynthesis of K99 fimbriae of Escherichia coli: effect of LPS core mutations
Hücker RIBOseq-based discovery of non-annotated genes in Escherichia coli O157: H7 Sakai and their functional characterization
US20040147000A1 (en) Pet family of efflux proteins
Bryant Substrate targeting and recognition in the flagellar type III secretion pathway
US20110020817A1 (en) De novo synthesized plasmid, methods of making and use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant