CN1088312A - 高温全息光栅及其制造方法 - Google Patents

高温全息光栅及其制造方法 Download PDF

Info

Publication number
CN1088312A
CN1088312A CN 93106837 CN93106837A CN1088312A CN 1088312 A CN1088312 A CN 1088312A CN 93106837 CN93106837 CN 93106837 CN 93106837 A CN93106837 A CN 93106837A CN 1088312 A CN1088312 A CN 1088312A
Authority
CN
China
Prior art keywords
high temperature
grating
holographic grating
coating
holographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 93106837
Other languages
English (en)
Other versions
CN1035135C (zh
Inventor
谢惠民
戴福隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN93106837A priority Critical patent/CN1035135C/zh
Publication of CN1088312A publication Critical patent/CN1088312A/zh
Application granted granted Critical
Publication of CN1035135C publication Critical patent/CN1035135C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Transform (AREA)

Abstract

高温全息光栅,是将可动光源制作全息光栅技术 与真空镀膜技术结合研制出来的,是一种具有高灵敏 度的位移测量基本元件。它是采用双镀层光刻法制 作,由两抗氧化能力强的金属镀层构成。两镀层的金 属材料相同时如Cr-Cr,则构成位相型高温全息光 栅;若两镀层金属材料不同,如Au-Cr则构成振幅 型高温全息光栅。
本发明的高温全息光栅,频率高,f≤2400L/ mm,工作温度范围由常温到950℃均可,抗氧化力 强,为光学测量方法在高温领域中的应用奠定了基 础。

Description

本发明所属技术领域为光测力学,无损检测。
高频位相栅是云纹干涉法进行物体变形测量的基本元件,目前常温高频位相栅的制作工艺和试件栅转移技术已趋成熟,随着新型材料高温力学性能研究和航空、航天、动力工业发展对高温元件的变形实测工作的需要,发展云纹干涉法在高温领域的应用日益受到国内、外学者的关注。
目前云纹干涉法在高温领域测量的温度范围较低,一般只能对200℃以下的变形构件进行分析,1988年柯鲁德提出使用镍网制作高温栅,该光栅需要使用高温陶瓷胶与物体固化连接,限制了其在现埸条件下的应用。后来波斯特曾提出利用等离子体刻蚀技术制作高温位相栅,至今未能实现。目前光测实验力学中使用的高温云纹光栅,多采用光栅拷贝法并结合真空镀膜技术制作的单镀层高温栅,属于高温振幅型粗栅,其栅线频率在100L/mm。
相近技术的引用材料
1.波斯特等,“云纹干涉法中的零厚度试件栅”,《实验力学》美,1991年第2期,P45-47页。
2.柯鲁德“长期高温条件下使用的云纹光栅”,《实验力学》美,1979年10月,P19-21页。
本发明的目的,针对现有技术存在的问题,本发明者提出双镀层高温全息光栅,可做为高温变形测量的基本元件使用,为云纹干涉法,光栅应变计法及超细网格法在高温领域高灵敏度光学测量工作的开展奠定了基础。
本发明的目的由以下主要技术实现的
用可动光源制作高温全息光栅技术与真空镀膜技术结合起来研制出的高温全息光栅,本发明者提出用双镀层光刻法制作,由两抗氧化能力强的金属镀膜构成。具体工艺流程如下:
首先对试件基体表面抛光,在其上镀一层在高温下难氧化的金属膜,然后涂布光刻胶,可用正型光刻胶,用可动光源制作全息光栅,在制作的光栅上镀一层高温下难氧化的金属膜,除去光刻胶,而形成双镀层高温全息光栅。
高温全息光栅分为振幅型和位相型。由金属Au-Cr构成的双镀层高温全息光栅为振幅型,由金属Cr-Cr构成的双镀层高温全息光栅为位相型。它们的几何形状均为方波型,其频率f≤2400L/mm,工作温度从常温到950℃范围内均可。
附图
图1双镀层光刻法制作高温全息光栅工艺流程图
图2高温全息光栅结构形状示意图
图3制作全息光栅的光路系统图
结合附图说明实现本发明的具体技术方案和具体结构。
目前在光测实验力学中使用的高温云纹光栅,一般使用单镀层并结合光栅拷贝技术制作,这种光栅的频率在100L/mm以下,无法应用于高灵敏度的光学方法对高温物体变形的测量。本发明的高温全息光栅采用双镀层光刻法制作,它由两抗氧化能力强的金属镀层构成。双镀层光刻法制作高温全息光栅的工艺流程图见图1。首先在试件表面抛光1,然后在其表面镀一层在高温条件下难氧化的金属膜2,涂布光刻胶3,经曝光制作全息光栅4,在光栅上镀一层在高温条件下难氧化的金属膜5,用有机溶剂一般用丙酮除去光刻胶6,则在试件表面上形成双镀层高温全息光栅,两层金属镀膜可选用相同金属材料,也可选用不同金属材料。根据需要若第一层金属镀膜7,和第二层金属镀膜8选用相同金属材料,如Cr-Cr则构成位相型高温全息光栅;若第一层金属镀膜7和第二层金属镀膜8选用不同金属材料,第一层金属镀膜7为金(Au),第二属金属镀膜8选用与第一层金层镀7具有高反差的金属材料铬(Cr),则试件表面形成由Au-Cr构成的振幅型高温全息光栅,它特别适用于网格法对高温物体变形的测量。
采用双镀层光刻法制作的高温全息光栅几何形状及结构见图2。它由基体9,第一层金属镀膜7,光刻胶一般用正型光刻胶,第二层金属镀膜8,构成方波形高温全息光栅。将可动光源制作全息光栅技术应用于制作高温栅,把高温栅的频率提高了10-20倍,一般频率f≤2400l/mm,其工作温度从常温到950℃的温度范围均适用。
全息光栅的光学系统见图3。激光器11发出的光由带有楔角的楔块12经电机带动旋转,使入射激光光速成为可动光源。BE为扩束镜,L为准直镜,M,M1,M2,M3为反射镜,BS为分光比为1∶1的分光镜,SP为光栅记录面。将涂有光刻胶的试样放入光路中进行曝光,经显影、定影之后,在试样表面记录下频率为f的全息光栅。
f=2smα/λ    式中λ为使用激光波长
采用上述可动光源制作高温全息光栅,可以通过降低光源的相干性,消除散斑噪声,提高光栅的衍射效率,并改善了光栅表面的均匀性。
本发明的高温全息光栅,频率高,工作温度从常温到950℃范围均可以,抗氧化能力强,光栅的衍射效率高,光栅表面均匀性好。高温全息光栅的制作成功为云纹干涉法,光栅应变计法等高灵敏度光学测量方法在高温领域的应用奠定了基础。

Claims (8)

1、一种光栅,其特征在于它是一种高温全息光栅,它由基体9,第一层金属镀膜7,光刻胶10,第二层金属镀膜8构成方波形光栅,该光栅为双镀层,两抗氧化能力强的金属镀膜制成,其频率f≤2400L/mm,工作温度从常温到950℃范围内均适用。
2、按照权利要求1所说的高温全息光栅,其特征在于所说的双镀层两抗氧化能力强的金属层材料为Cr-Cr,则构成位相型高温全息光栅。
3、按照权利要求1所说的高温全息光栅,其特征在于所说的双镀层,两抗氧化能力强的金属层为不同金属材料Au-Cr,则构成振幅型高温全息光栅。
4、一种如权利要求1或2或3所说的高温全息光栅的制造方法,其特征在于该方法是将可动光源制作全息光栅技术与真空镀膜技术结合起来用双镀层光刻法制做高温全息光栅。
5、按照权利要求4所说的用双镀层光刻法制做高温全息光栅的方法其特征在于首先对试件机体表面抛光,在其上镀一层在高温下难氧化的金属膜7,然后涂布光刻胶10,用可动光源制作全息光栅,在制作的光栅上镀一层在高温条件下难氧化的金属膜8,用有机溶剂除去光刻胶而形成双镀层高温全息光栅。
6、按照权利要求4所说的高温全息光栅制作方法,其特征在于所说的光刻胶为正型光刻胶。
7、按照权利要求4所说的高温全息光栅制作方法,其特征在于除去光刻胶的有机溶剂为丙酮。
8、按照权利要求4所说的高温全息光栅的制作方法,其特征在于所说的可动光源制作全息光栅技术其光路系统为激光器11发出的光由带有楔角的楔块12,经电机带动旋转,使入射光速成为可动光源,BE为扩束镜,M,M1,M2,M3为反射镜,BS为分光比为1∶1的分光镜,SP为光栅记录面。
CN93106837A 1993-06-10 1993-06-10 高温全息光栅及其制造方法 Expired - Fee Related CN1035135C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN93106837A CN1035135C (zh) 1993-06-10 1993-06-10 高温全息光栅及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN93106837A CN1035135C (zh) 1993-06-10 1993-06-10 高温全息光栅及其制造方法

Publications (2)

Publication Number Publication Date
CN1088312A true CN1088312A (zh) 1994-06-22
CN1035135C CN1035135C (zh) 1997-06-11

Family

ID=4986435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93106837A Expired - Fee Related CN1035135C (zh) 1993-06-10 1993-06-10 高温全息光栅及其制造方法

Country Status (1)

Country Link
CN (1) CN1035135C (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149614A (zh) * 2013-03-06 2013-06-12 清华大学 一种高温光栅的制作及转移方法
CN104777528A (zh) * 2015-03-12 2015-07-15 浙江大学 一种基于二维光栅结构的全金属增透系统
CN105308411A (zh) * 2013-06-21 2016-02-03 辛特福特图有限公司 光学位移传感器元件
CN106959478A (zh) * 2015-09-29 2017-07-18 约翰内斯﹒海德汉博士有限公司 光学层系统
US10356533B2 (en) 2015-04-09 2019-07-16 Sintef Tto As Speech recognition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418010C (zh) * 2004-11-01 2008-09-10 中国科学院半导体研究所 同一半导体芯片不同周期全息光栅的制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1506400A (en) * 1975-12-08 1978-04-05 Rank Organisation Ltd Diffraction gratings
CN1018771B (zh) * 1989-12-21 1992-10-21 清华大学 高反差高温栅的制造工艺与应用技术

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149614A (zh) * 2013-03-06 2013-06-12 清华大学 一种高温光栅的制作及转移方法
CN103149614B (zh) * 2013-03-06 2015-01-07 清华大学 一种高温光栅的制作及转移方法
CN105308411A (zh) * 2013-06-21 2016-02-03 辛特福特图有限公司 光学位移传感器元件
CN105308411B (zh) * 2013-06-21 2018-09-11 辛特福特图有限公司 光学位移传感器元件
US10190870B2 (en) 2013-06-21 2019-01-29 Sintef Tto As Optical displacement sensor element
US10514249B2 (en) 2013-06-21 2019-12-24 Sintef Tto As Optical displacement sensor element
CN104777528A (zh) * 2015-03-12 2015-07-15 浙江大学 一种基于二维光栅结构的全金属增透系统
US10356533B2 (en) 2015-04-09 2019-07-16 Sintef Tto As Speech recognition
CN106959478A (zh) * 2015-09-29 2017-07-18 约翰内斯﹒海德汉博士有限公司 光学层系统

Also Published As

Publication number Publication date
CN1035135C (zh) 1997-06-11

Similar Documents

Publication Publication Date Title
Post Moiré interferometry at VPI & SU
Post Developments in moiré interferometry
Grédiac et al. Full-field measurements and identification in solid mechanics
US6031611A (en) Coherent gradient sensing method and system for measuring surface curvature
Post Optical Interference for Deformation Measurements--Classical, Holographic and Moire Interferometry
Dai et al. New methods of fabricating gratings for deformation measurements: A review
CN1035135C (zh) 高温全息光栅及其制造方法
Kokaly et al. Moiré interferometry for dynamic fracture study
Assa et al. Slope and curvature measurement by a double-frequency-grating shearing interferometer: A shearing interferometer is presented which is capable of the direct independent measurement of all components of the first and second derivatives of deflection of reflecting plate models. The wavefront shearing is provided by a double-frequency grating
KR100686923B1 (ko) 스펙클패턴 전단간섭법에 있어서 파장판을 이용한 위상천이방법 및 이를 이용한 계측시스템
Crandall et al. On the measurement of Poisson's ratio for modeling clay: A simple but effective test configuration for measuring Poisson's ratio is described by the authors and the test results are discussed
Post Moiré interferometry for damage analysis of composites
Asundi Moiré interferometry for deformation measurement
Hariharan et al. High precision digital interferometry: its application to the production of an ultrathin solid Fabry-Perot etalon
Czarnek Super high sensitivity moiré interferometry with optical multiplication
Liu et al. Response of interferometer based probe systems to photodisplacement in layered media
Subramanian et al. A selective diffraction order based lens plane grating shearing interferometer for the study of bent plates
Huimin et al. 600 C creep analysis of metals using the Moiré interferometry method
RU2221989C2 (ru) Способ измерения толщины металлической пленки
Liang et al. Simulation and experiment of the static FTIR based on micro multi-step mirrors
Sciammarella et al. Two new optical techniques to measure strain: A point-by-point technique and a field technique of strain determination based on optical filtering are presented
Theocaris Experimental methods for determining stress intensity factors
Light et al. Detection of cracks in concrete by holography
Eastman The scanning Fizeau interferometer: an automated instrument for characterizing optical surfaces
Mohammadalizadeh et al. Stitched acousto-optic modulator stroboscopic interferometry for characterizing larger microstructures

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee