CN108827477A - 一种单光子探测器探测效率自动校准装置及方法 - Google Patents

一种单光子探测器探测效率自动校准装置及方法 Download PDF

Info

Publication number
CN108827477A
CN108827477A CN201810674557.1A CN201810674557A CN108827477A CN 108827477 A CN108827477 A CN 108827477A CN 201810674557 A CN201810674557 A CN 201810674557A CN 108827477 A CN108827477 A CN 108827477A
Authority
CN
China
Prior art keywords
photon detector
fpga chip
photon
detection efficient
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810674557.1A
Other languages
English (en)
Inventor
马智
费洋扬
孟祥栋
王洪
高明
段乾恒
闫宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Information Engineering University of PLA Strategic Support Force
Original Assignee
Information Engineering University of PLA Strategic Support Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Information Engineering University of PLA Strategic Support Force filed Critical Information Engineering University of PLA Strategic Support Force
Priority to CN201810674557.1A priority Critical patent/CN108827477A/zh
Publication of CN108827477A publication Critical patent/CN108827477A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开一种单光子探测器探测效率自动校准装置及方法。所述装置包括电学模块、光学模块及单光子探测器;电学模块包括FPGA芯片和延时器;光学模块包括激光器和光衰减器。所述方法包括:FPGA芯片通过单光子探测器发送相应指令调节单光子探测器工作直流偏压,使得单光子探测器探测效率不为零;激光器在FPGA芯片触发信号控制下,发送固定脉宽的周期光信号,光信号经过衰减器后衰减为平均光子数已知的弱相干脉冲光信号;FPGA芯片控制延时器,调节单光子探测器触发信号的延时,使得计数率最大;FPGA芯片调节单光子探测器的工作直流偏压,使得实际探测效率与目标探测效率一致。本发明可以快速、精确地完成对单光子探测器探测效率的自动校准。

Description

一种单光子探测器探测效率自动校准装置及方法
技术领域
本发明属于单光子探测领域,具体涉及一种单光子探测器探测效率自动校准装置及方法。
背景技术
单光子信号探测技术广泛应用在在生物光子学、医学影像、非破坏性材料检查、量子成像以及量子密钥分配系统等领域。常用的单光子探测器主要包含工作在门控淬火模式下的雪崩半导体光电二极管单光子探测器和基于超导材料的超导单光子探测器两种。相比于超导单光子探测器,雪崩二极管单光子探测器具有体积小,易于集成,成本较低,无需极低温等优点,其应用范围也更加广泛。
雪崩二极管单光子探测器工作在盖革模式下,当单个光子被半导体材料吸收后,产生一个电子-空穴对,载流子在盖革模式下,由于雪崩效应输出宏观电流。为了使探测器在产生雪崩信号之后恢复到初始状态以探测下一个单光子信号,同时输出同步的探测信号,需要在探测器后端增加一个淬火电路。为了降低单光子探测器的暗计数率,单光子探测器通常工作在门控淬火模式下。
工作在门控淬火模式下的单光子探测器在使用之前需要对其探测效率进行校准,通过调节单光子探测器的直流偏压,使得其探测效率与目标值一致。需要注意的是,在调节单光子探测器的直流偏压之前,需要调节门控淬火电路的延时,使得单光子信号的达到时刻与单光子探测器的激活时刻一致。通常,这个工作由人工完成,这样做不仅会耗费大量的人力,效率低下,而且校准精度有限,误差较大。因此,需要一种单光子探测器探测效率自动校准的方法以及装置,将繁琐的过程自动化,提高校准的效率及精度。
发明内容
针对上述问题,本发明提出了一种单光子探测器探测效率自动校准装置及方法,可以快速、精确地完成对单光子探测器探测效率的自动校准。
为了实现上述目的,本发明采用以下技术方案:
一种单光子探测器探测效率自动校准装置,包括电学模块、光学模块及单光子探测器;其中,
所述电学模块包括FPGA芯片和延时器,所述FPGA芯片与单光子探测器电相连;所述FPGA芯片、延时器与单光子探测器依次电连接;
所述光学模块包括激光器和光衰减器,所述激光器、光衰减器与单光子探测器通过光纤依次相连接;
所述FPGA芯片与所述激光器电连接。
进一步地,所述单光子探测器由工作在门控淬火模式下的雪崩半导体光电二极管构成。
一种单光子探测器探测效率自动校准方法,包括:
步骤1:FPGA芯片通过发送相应指令调节单光子探测器工作直流偏压,使得单光子探测器探测效率不为零;
步骤2:激光器在FPGA芯片触发信号控制下,发送固定脉宽的周期光信号,周期光信号经过衰减器后衰减为平均光子数已知的弱相干脉冲光信号,并入射单光子探测器;
步骤3:FPGA芯片控制延时器,调节单光子探测器触发信号的延时,单光子探测器发送计数信号至FPGA芯片,FPGA芯片统计单光子探测器计数率信息,将延时设置为计数率最大位置;
步骤4:FPGA芯片根据单光子探测器的探测效率调节单光子探测器的工作直流偏压,使得实际探测效率与目标效率一致。
进一步地,所述步骤4包括:
根据下述公式计算单光子探测器的探测效率,判断是否大于目标探测效率:
其中,η为探测效率,μ为平均光子数,d为暗计数率,QD为计数率;
若计算出的探测效率低于目标探测效率,则FPGA芯片发送相应指令,提升单光子探测器的直流工作电压;
若计算出的探测效率高于目标探测效率,则FPGA芯片发送相应指令,降低单光子探测器的直流工作电压。
进一步地,所述激光器发送脉冲的波长与脉宽,与所述单光子探测器正常工作时入射的光脉冲一致。
进一步地,所述延时器的调节精度,与所述单光子探测器正常工作时的触发信号延时可以调节的精度一致。
与现有技术相比,本发明具有的有益效果:
本发明提供的单光子探测器探测效率自动校准装置及方法,可以完成单光子探测器探测效率的自动校准,具有高效率、高精度、低误差的优点。该自动校准装置结构简单,既可以单独完成对单光子探测器探测效率的自动校准,也可以集成到应用设备中,在单光子探测器使用之前完成对探测效率的自动校准,保证其测量结果的正确性与准确性。该自动校准方法流程简单,可以快速、精确地完成对单光子探测器探测效率的自动校准。
附图说明
图1为本发明实施例的一种单光子探测器探测效率自动校准装置的结构示意图。
图2为本发明实施例的一种单光子探测器探测效率自动校准方法的基本流程图。
具体实施方式
下面结合附图和具体的实施例对本发明做进一步的解释说明:
实施例一:
如图1所示,本发明的一种单光子探测器探测效率自动校准装置,包括电学模块10、光学模块20及单光子探测器30;
所述电学模块10由FPGA芯片11、延时器12、数据传输线13、单光子探测信号输出线14、延时器控制线15以及触发信号传输线16构成。其中,延时器12输入端及控制端与FPGA芯片11相连;延时器12输出端与单光子探测器30触发信号输入端相连;单光子探测器30通信接口与FPGA芯片11通过数据传输线13连接;单光子探测器30探测信号输出端与FPGA芯片11通过单光子探测信号输出线14连接。
所述光学模块20由激光器21和光衰减器22构成。其中,激光器21输入端与FPGA芯片11连接;激光器21输出端与光衰减器22输入端通过光纤连接;光衰减器22输出端与单光子探测器30光纤输入端通过光纤连接。
所述单光子探测器30由工作在门控淬火模式下的雪崩半导体光电二极管构成。
使用时,自动校准设备开始工作后,FPGA芯片11通过数据传输线13发送相应的指令给待校准单光子探测器30,以调节单光子探测器30的直流偏压,使单光子探测器30的探测效率不为零;激光器21开始工作,发送固定脉宽的周期光信号,该周期光信号经过衰减器22后衰减为平均光子数已知的弱相干脉冲光信号;通过延时器12,调节待校准单光子探测器30触发信号的延时,同时通过单光子探测信号输出线14统计单光子探测器30的计数率信息,利用传统的寻峰算法得出计数率最大的位置,将延时设置在计数率最大的位置;FPGA芯片11根据单光子探测器的探测效率调节待校准单光子探测器30的直流工作偏压,使得实际探测效率与目标效率一致。
实施例二:
如图2所示,本发明的一种单光子探测器探测效率自动校准方法,包括以下步骤:
步骤S201:FPGA芯片发送相应指令调节单光子探测器工作直流偏压,使得单光子探测器探测效率不为零。
步骤S202:激光器在FPGA芯片触发信号控制下,发送固定脉宽的周期光信号,周期光信号经过衰减器后衰减为平均光子数已知的弱相干脉冲光信号,并入射单光子探测器。
步骤S203:FPGA芯片控制延时器,调节单光子探测器触发信号的延时,单光子探测器发送计数信号至FPGA芯片,FPGA芯片统计单光子探测器计数率信息,将延时设置为计数率最大位置;作为一种可实施方式,利用传统的寻峰算法,得出计数率最大的位置。
步骤S204:FPGA芯片根据单光子探测器的探测效率调节单光子探测器的工作直流偏压,使得实际探测效率与目标效率一致。
所述步骤S204包括:
根据下述公式计算单光子探测器的探测效率,判断是否大于目标探测效率:
其中,η为探测效率,μ为平均光子数,d为暗计数率,QD为计数率;所述目标探测效率根据用户需求确定,如用户需要探测效率达到20%,则目标探测效率为20%。
若计算出的探测效率低于目标探测效率,则FPGA芯片发送相应指令,提升单光子探测器的直流工作电压;
若计算出的探测效率高于目标探测效率,则FPGA芯片发送相应指令,降低单光子探测器的直流工作电压。
上述步骤S204构成一个负反馈,其中,提升和降低直流工作电压的幅度可以根据实际设置,既可以通过“粗调”“细调”结合方法,加快调节速度,也可以简单的利用最小步长逐步调节。
以上所示仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种单光子探测器探测效率自动校准装置,其特征在于,包括电学模块、光学模块及单光子探测器;其中,
所述电学模块包括FPGA芯片和延时器,所述FPGA芯片与单光子探测器电相连;所述FPGA芯片、延时器与单光子探测器依次电连接;
所述光学模块包括激光器和光衰减器,所述激光器、光衰减器与单光子探测器通过光纤依次相连接;
所述FPGA芯片与所述激光器电连接。
2.根据权利要求1所述的一种单光子探测器探测效率自动校准装置,其特征在于,所述单光子探测器由工作在门控淬火模式下的雪崩半导体光电二极管构成。
3.一种单光子探测器探测效率自动校准方法,其特征在于,包括:
步骤1:FPGA芯片通过发送相应指令调节单光子探测器工作直流偏压,使得单光子探测器探测效率不为零;
步骤2:激光器在FPGA芯片触发信号控制下,发送固定脉宽的周期光信号,周期光信号经过衰减器后衰减为平均光子数已知的弱相干脉冲光信号,并入射单光子探测器;
步骤3:FPGA芯片控制延时器,调节单光子探测器触发信号的延时,单光子探测器发送计数信号至FPGA芯片,FPGA芯片统计单光子探测器计数率信息,将延时设置为计数率最大位置;
步骤4:FPGA芯片根据单光子探测器的探测效率调节单光子探测器的工作直流偏压,使得实际探测效率与目标效率一致。
4.根据权利要求3所述的一种单光子探测器探测效率自动校准方法,其特征在于,所述步骤4包括:
根据下述公式计算单光子探测器的探测效率,判断是否大于目标探测效率:
其中,η为探测效率,μ为平均光子数,d为暗计数率,QD为计数率;
若计算出的探测效率低于目标探测效率,则FPGA芯片发送相应指令,提升单光子探测器的直流工作电压;
若计算出的探测效率高于目标探测效率,则FPGA芯片发送相应指令,降低单光子探测器的直流工作电压。
CN201810674557.1A 2018-06-27 2018-06-27 一种单光子探测器探测效率自动校准装置及方法 Pending CN108827477A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810674557.1A CN108827477A (zh) 2018-06-27 2018-06-27 一种单光子探测器探测效率自动校准装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810674557.1A CN108827477A (zh) 2018-06-27 2018-06-27 一种单光子探测器探测效率自动校准装置及方法

Publications (1)

Publication Number Publication Date
CN108827477A true CN108827477A (zh) 2018-11-16

Family

ID=64138921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810674557.1A Pending CN108827477A (zh) 2018-06-27 2018-06-27 一种单光子探测器探测效率自动校准装置及方法

Country Status (1)

Country Link
CN (1) CN108827477A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109946582A (zh) * 2019-05-22 2019-06-28 北京中创为南京量子通信技术有限公司 一种用于测试探测器、光学器件的装置及其测试方法
CN111220286A (zh) * 2020-02-24 2020-06-02 四川九洲电器集团有限责任公司 一种单光子探测器参数测量系统及方法
CN111766596A (zh) * 2020-06-04 2020-10-13 深圳奥锐达科技有限公司 一种距离测量方法、系统及计算机可读存储介质
CN114625203A (zh) * 2021-12-31 2022-06-14 西安电子科技大学 一种单光子雪崩二极管的高压偏置电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579640A (zh) * 2014-12-24 2015-04-29 上海理工大学 量子通信系统的实时延时跟踪装置和方法
CN107356855A (zh) * 2017-07-20 2017-11-17 中国科学技术大学 一种单光子光电器件的测试装置和方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579640A (zh) * 2014-12-24 2015-04-29 上海理工大学 量子通信系统的实时延时跟踪装置和方法
CN107356855A (zh) * 2017-07-20 2017-11-17 中国科学技术大学 一种单光子光电器件的测试装置和方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109946582A (zh) * 2019-05-22 2019-06-28 北京中创为南京量子通信技术有限公司 一种用于测试探测器、光学器件的装置及其测试方法
CN109946582B (zh) * 2019-05-22 2019-08-16 北京中创为南京量子通信技术有限公司 一种用于测试探测器、光学器件的装置及其测试方法
CN111220286A (zh) * 2020-02-24 2020-06-02 四川九洲电器集团有限责任公司 一种单光子探测器参数测量系统及方法
CN111220286B (zh) * 2020-02-24 2021-10-22 四川九洲电器集团有限责任公司 一种单光子探测器参数测量系统及方法
CN111766596A (zh) * 2020-06-04 2020-10-13 深圳奥锐达科技有限公司 一种距离测量方法、系统及计算机可读存储介质
WO2021244011A1 (zh) * 2020-06-04 2021-12-09 深圳奥锐达科技有限公司 一种距离测量方法、系统及计算机可读存储介质
CN114625203A (zh) * 2021-12-31 2022-06-14 西安电子科技大学 一种单光子雪崩二极管的高压偏置电路
CN114625203B (zh) * 2021-12-31 2022-11-11 西安电子科技大学 一种单光子雪崩二极管的高压偏置电路

Similar Documents

Publication Publication Date Title
CN108827477A (zh) 一种单光子探测器探测效率自动校准装置及方法
US11725935B2 (en) Distance meter comprising SPAD arrangement for consideration of multiple targets
CN109196662B (zh) 光检测装置以及电子设备
Migdall et al. Absolute detector quantum-efficiency measurements using correlated photons
AU2014352833B2 (en) LiDAR scanner calibration
Kurtti et al. A wide dynamic range CMOS laser radar receiver with a time-domain walk error compensation scheme
CN107356855B (zh) 一种单光子光电器件的测试装置和方法
RU2649607C2 (ru) Способ контроля коэффициента усиления и установки в ноль многопиксельного счетчика фотонов и система измерения света, реализующая указанный способ
US11112494B2 (en) Photodetector and portable electronic equipment
CN105548848A (zh) 用于测量击穿电压的装置、设备及方法
CN104101880A (zh) 光学测距装置
CN109459149A (zh) 一种高精度单光子探测芯片实时温度测量及性能优化系统
CN103140735B (zh) 位移传感器
CN105258794A (zh) 极小占空比半导体激光器峰值光功率的测试装置及方法
US7239157B2 (en) Optical trigger for PICA technique
CN111121986A (zh) 一种具有后脉冲校正功能的单光子探测系统
US20200278387A1 (en) Apparatus comprising a semiconductor-based photomultiplier and method regarding gain stabilization
CN114089319B (zh) 一种vcsel器件的纳秒级liv测试系统及方法
CN102338664A (zh) 一种目标辐射测量背景实时扣除的方法
CN113552556A (zh) 用于激光雷达的光电探测模块、激光雷达和环境光检测方法
CN108227044A (zh) 一种基于双线阵的雨滴测量装置及方法
CN110677244B (zh) 一种适用于连续变量量子密钥分发系统的自平衡方法
Zappa et al. Single-photon avalanche diode arrays for fast transients and adaptive optics
CN103033263A (zh) 一种基于雪崩二极管的超灵敏光功率检测装置
CN102435325B (zh) 无光照热电子噪声脉冲鉴别单光子计数器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181116