CN108821266A - A kind of preparation method of nitrogen-doped graphene - Google Patents
A kind of preparation method of nitrogen-doped graphene Download PDFInfo
- Publication number
- CN108821266A CN108821266A CN201811004564.7A CN201811004564A CN108821266A CN 108821266 A CN108821266 A CN 108821266A CN 201811004564 A CN201811004564 A CN 201811004564A CN 108821266 A CN108821266 A CN 108821266A
- Authority
- CN
- China
- Prior art keywords
- nitrogen
- doped graphene
- temperature
- preparation
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 94
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 67
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims abstract description 25
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 20
- 210000003298 dental enamel Anatomy 0.000 claims abstract description 18
- MYFXBBAEXORJNB-UHFFFAOYSA-N calcium cyanamide Chemical compound [Ca+2].[N-]=C=[N-] MYFXBBAEXORJNB-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000010792 warming Methods 0.000 claims abstract description 16
- 239000008367 deionised water Substances 0.000 claims abstract description 13
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 12
- 239000007787 solid Substances 0.000 claims abstract description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052573 porcelain Inorganic materials 0.000 claims abstract description 6
- 238000003756 stirring Methods 0.000 claims abstract description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 5
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 5
- 229930091371 Fructose Natural products 0.000 claims description 5
- 239000005715 Fructose Substances 0.000 claims description 5
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 5
- 229930006000 Sucrose Natural products 0.000 claims description 5
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 5
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 5
- 235000015165 citric acid Nutrition 0.000 claims description 5
- 239000012153 distilled water Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 239000008236 heating water Substances 0.000 claims description 5
- 239000001630 malic acid Substances 0.000 claims description 5
- 235000011090 malic acid Nutrition 0.000 claims description 5
- 239000005720 sucrose Substances 0.000 claims description 5
- 239000011975 tartaric acid Substances 0.000 claims description 5
- 235000002906 tartaric acid Nutrition 0.000 claims description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 4
- 239000008103 glucose Substances 0.000 claims description 4
- 235000001727 glucose Nutrition 0.000 claims description 4
- 239000004570 mortar (masonry) Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 2
- 238000007605 air drying Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 23
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 7
- 239000003863 metallic catalyst Substances 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 13
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 7
- 229910000033 sodium borohydride Inorganic materials 0.000 description 7
- 239000012279 sodium borohydride Substances 0.000 description 7
- 230000009467 reduction Effects 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000002336 sorption--desorption measurement Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 230000000802 nitrating effect Effects 0.000 description 3
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- -1 nickel Salt Chemical class 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000004153 renaturation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- DNDPLEAVNVOOQZ-UHFFFAOYSA-N 2,3,4,5,6-pentachloropyridine Chemical compound ClC1=NC(Cl)=C(Cl)C(Cl)=C1Cl DNDPLEAVNVOOQZ-UHFFFAOYSA-N 0.000 description 1
- OEHNVKBOQOXOJN-UHFFFAOYSA-N 2-(4-nitrophenyl)phenol Chemical compound OC1=CC=CC=C1C1=CC=C([N+]([O-])=O)C=C1 OEHNVKBOQOXOJN-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- LHQWDZSUXOBDOJ-UHFFFAOYSA-N calcium;cyanamide Chemical compound [Ca].NC#N LHQWDZSUXOBDOJ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000000413 hydrolysate Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C213/00—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C213/02—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/01—Crystal-structural characteristics depicted by a TEM-image
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
- C01P2006/17—Pore diameter distribution
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
A kind of preparation method of nitrogen-doped graphene, lime nitrogen, carbon source and deionized water after metering is separately added into beaker, controlling bath temperature is 60~80 DEG C, stirring, adjusting reaction mass pH is 9~12, reaction mass is uniformly spread out in enamel tray after 3~5h of reaction, material is ground after dry and uniformly obtains solid powder;Solid powder is transferred in porcelain boat; it places it in tube furnace and is pyrolyzed; lead to nitrogen protection in furnace, tube furnace is warming up to 540~580 DEG C with 1~3 DEG C/min, keeps the temperature 2~3h; 750~950 DEG C are warming up to again with 3~8 DEG C/min; 1~2h is kept the temperature, room temperature is then naturally cooled to, impregnates product with dilute hydrochloric acid; it is repeatedly washed with water to neutrality, obtains nitrogen-doped graphene after dry.This method can reduce production cost and simplify production technology using cheap lime nitrogen as raw material, and without using metallic catalyst in preparation process.
Description
Technical field
The invention belongs to the preparation of carbon material and applied technical fields, and in particular to a kind of preparation side of nitrogen-doped graphene
Method.
Background technique
The two-dimension periodic honeycomb lattice structure that graphene is made of carbon hexatomic ring has high conductivity, highly thermally conductive property
And the advantages that high mechanical strength, composite material also show excellent performance.However, since graphene does not have band gap,
Electric conductivity cannot be controlled completely as traditional semiconductor, and graphene surface is smooth, inert, with other media
Interaction it is weaker, in addition, there is stronger active force between graphene film, be easy aggregation, cause graphene be not easy and other
Material it is compound, to hinder its application.At present mainly by into graphene nitrogen doped change the electricity of graphene
Minor structure and the metallic active sites for increasing graphene surface absorption increase to improve the electric conductivity and stability of graphene
The interaction of strong graphene and metallic, and then expand its application range.
The currently used method for preparing nitrogen-doped graphene mainly has:(1) chemical vapour deposition technique (CVD), the method are
It reacts gaseous precursor on matrix, forms film.Cui P, Choi J-H etc. is using penta chloropyridine as presoma, on copper surface
Prepare nitrogen-doped graphene (Cui P, Choi J-H, Zeng C, Li Z, Wang J, Zhang Z.J.Am.Chem.Soc.,
2017,139:7196-7202.), this method needs to use metallic catalyst, separating metallic catalyst and nitrogen-doped graphene ratio
More difficult, technique is more complex;(2) graphene oxide nitriding, the method are using graphene oxide as raw material, using nitrogen substance as nitrogen
Source, the nitrating under high temperature or hydrothermal condition.Tang P, GaoY J etc. is using graphene oxide as raw material, using acetonitrile or ammonium hydroxide as nitrogen
Source carries out nitrating at high temperature, obtains N doping graphene oxide (Tang P, Gao Y J, Yang J H, Li W J, Zhao
H Z,Ma D.Chin.J.Catal.,2014,35(6):922~928.);The patent of Publication No. CN104465113 discloses
The method that hydro-thermal method prepares nitrogen-doped graphene, the method be using graphene oxide as raw material, after being mixed with urea and sulfuric acid,
180 DEG C of hydro-thermal reaction 2h, obtain nitrogen-doped graphene.Since graphene oxide is not easy to obtain, higher cost, the method is limited
System;(3) nitrogenous precursor transformation approach, the method are by nitrogen substance and transition metal compound catalyst (such as molysite, cobalt salt, nickel
Salt) mixing after, react at high temperature, remove metallic compound after obtain nitrogen-doped graphene.Wang C, Kang J etc. is by grape
Sugar, iron chloride and urea are dissolved in water, and after 80 DEG C of dryings for 24 hours, are pyrolyzed at 700 DEG C, are removed de-iron with hydrochloric acid and are obtained nitrogen and mix
Miscellaneous graphene (Wang C, Kang J, Sun H, Ang H M, Tade M O, Wang S.Carbon, 2016,102:279~
287.), metallic catalyst used in the method can generate metal carbides, it is difficult to thoroughly remove, influence later period use.Due to upper
Stating method, there are problems, therefore, seek that a kind of simple process, raw material is easy to get, cost is relatively low, without using metallic catalyst
Preparation method have a very important significance.
Summary of the invention
The purpose of the present invention is to provide a kind of preparation methods of nitrogen-doped graphene, and this method is without using metal catalytic
Agent to save step of this difficulty of separating metallic catalyst and nitrogen-doped graphene, and can avoid in the fabrication process
Metal carbides are generated, technique is simplified;In addition, the present invention using cheap lime nitrogen as raw material, can reduce production cost.
To achieve the above object, a kind of preparation method of nitrogen-doped graphene, includes the following steps:
(1) lime nitrogen, carbon source and the deionized water after metering are separately added into beaker, heating water bath obtains while stirring
Reaction mass, control bath temperature are 60~80 DEG C, and the pH for being passed through into beaker carbon dioxide gas to reaction mass be 9~
12, reaction mass is uniformly spread out in enamel tray after reacting 3~5h, then does the air blast that enamel tray is placed in 45~55 DEG C
Material in enamel tray after drying, is finally transferred in mortar and grinds uniformly, obtain solid powder by dry 3.5~4.5h in dry case
End;The lime nitrogen, carbon source, the mass ratio between deionized water are (1~4):1:(2~20);
(2) solid powder that step (1) obtains is transferred in porcelain boat and is placed in tube furnace together and be pyrolyzed, tubular type
Lead to nitrogen protection in furnace, it is 540~580 DEG C that the first rate with 1~3 DEG C/min of tube furnace, which is warming up to furnace chamber temperature, heat preservation 2~
Then 3h is warming up to furnace chamber temperature with the rate of 3~8 DEG C/min as 750~950 DEG C, 1~2h is kept the temperature, then when in furnace chamber
Temperature takes out product after naturally cooling to room temperature, and product is immersed in dilute hydrochloric acid, uses distilled water again after washing and filtering
Washing obtains nitrogen-doped graphene after dry 3.5~4.5h under the conditions of product is finally placed in 75~85 DEG C to neutrality.
Preferably, bath temperature is 70 DEG C in step (1), and the pH for controlling reaction mass is 10, reacts 4h.
Preferably, tube furnace is first warming up to furnace chamber temperature with the rate of 2 DEG C/min as 550 DEG C in step (2), keeps the temperature
2.5h。
Preferably, tube furnace is warming up to furnace chamber temperature with the rate of 5 DEG C/min again as 850 DEG C in step (2), keeps the temperature
1.5h。
Preferably, lime nitrogen described in step (1) and the mass ratio of carbon source, deionized water are 2.5:1:10.
Preferably, the carbon source is one or more of citric acid, tartaric acid, malic acid, glucose, sucrose, fructose.
Preferably, enamel tray is placed in in 50 DEG C of air dry oven dry 4h in step (1);It is last in step (2)
Nitrogen-doped graphene is obtained after dry 4h under the conditions of product is placed in 80 DEG C.
The present invention using cheap lime nitrogen as nitrogen source, hydrolyzed, polymerize after obtain the mixture of dicyandiamide and calcium carbonate, it is double
Cyanamide, calcium carbonate and carbon source carry out high temperature pyrolysis, and dicyandiamide polymerization generates graphite phase carbon nitride in pyrolytic process, at the same carbon source with
Graphite phase carbon nitride and calcium carbonate are template in its surface carbonation.Continue to increase with temperature, pyrolytic reaction continue into
Row, graphite phase carbon nitride are further broken into small molecule nitrogenous compound, these compounds are as nitrogen dopant to carbonized product
Nitrating is carried out, nitrogen-doped graphene is finally obtained.
Compared with prior art, the present invention is to obtain nitrogen-doped graphene, technique letter by pyrolysismethod under high-temperature pressure
It is single, it is easy to industrialized production without using the instrument and equipment of complex and expensive;Raw material in the present invention is cheap and easy to get and without any
Specially treated, the hydrolysate of lime nitrogen are not only used as template, but also as nitrogen dopant, add during the preparation process without other
Enter metal and metallic compound, be effectively simplified production technology and reduce production cost;Preparation method obtains through the invention
Nitrogen-doped graphene and as the catalyst of sodium borohydride reduction p-nitrophenol, catalytic activity with higher, in dirt
There is potential utility value in terms of water process.
Detailed description of the invention
Fig. 1 is the transmission electron microscope picture of nitrogen-doped graphene prepared by the embodiment of the present invention two;
Fig. 2 is the x-ray diffraction pattern of nitrogen-doped graphene prepared by the embodiment of the present invention two;
Fig. 3 is the x-ray photoelectron spectroscopy figure of nitrogen-doped graphene prepared by the embodiment of the present invention two;
Fig. 4 is the pore size distribution curve of nitrogen-doped graphene prepared by the embodiment of the present invention two;
Fig. 5 is isothermal adsorption-desorption curve of nitrogen-doped graphene prepared by the embodiment of the present invention two;
Fig. 6 is the purple of the catalysis sodium borohydride reduction p-nitrophenol of nitrogen-doped graphene prepared by the embodiment of the present invention two
Outside-visible light spectrogram;
Fig. 7 is the weight of the catalysis sodium borohydride reduction p-nitrophenol of nitrogen-doped graphene prepared by the embodiment of the present invention two
Renaturation histogram.
Specific embodiment
Below in conjunction with drawings and examples, invention is further described in detail.
Embodiment one
A kind of preparation method of nitrogen-doped graphene, includes the following steps:
(1) lime nitrogen, carbon source and the deionized water after metering are added in beaker, heating water bath obtains instead while stirring
Material is answered, control bath temperature is 60 DEG C, and the pH for being passed through carbon dioxide gas to reaction mass into beaker is 9, reacts 5h
Reaction mass is uniformly spread out in enamel tray afterwards, then enamel tray is placed in in 45 DEG C of air dry oven dry 4.5h,
Material after finally will be dry in enamel tray, which is transferred to, grinds middle grinding uniformly, obtains solid powder;The lime nitrogen and carbon source,
The mass ratio of deionized water is 1:1:2;The carbon source is citric acid, tartaric acid, malic acid, glucose, sucrose, one in fructose
Kind is several;
(2) solid powder that step (1) obtains is transferred in porcelain boat and is placed in tube furnace together and be pyrolyzed, tubular type
Lead to nitrogen protection in furnace, tube furnace is first warming up to furnace chamber temperature with the rate of 1 DEG C/min as 540 DEG C, 3h is kept the temperature, then with 3
DEG C/to be warming up to furnace chamber temperature be 750 DEG C for the rate of min, 2h is kept the temperature, is then taken after furnace chamber temperature naturally cools to room temperature
Product is immersed in dilute hydrochloric acid by product out, is washed with distilled water to neutrality again after washing and filtering, is finally put product
Nitrogen-doped graphene is obtained after dry 4.5h under the conditions of being placed in 75 DEG C.
By carrying out transmission electron microscope, X-ray diffraction, x-ray photoelectron spectroscopy, pore-size distribution to the sample of preparation and waiting
The characterization such as warm adsorption-desorption curve, the results showed that the sample being prepared is nitrogen-doped graphene, and aperture is mainly micropore, than
Surface area is 181.5m2/ g, nitrogen content (atomic percent) are 10.89%.
Embodiment two
A kind of preparation method of nitrogen-doped graphene, includes the following steps:
(1) lime nitrogen, carbon source and the deionized water after metering are separately added into beaker, heating water bath obtains while stirring
To reaction mass, controlling bath temperature is 70 DEG C, and the pH for being passed through carbon dioxide gas to reaction mass into beaker is 10, instead
Reaction mass is uniformly spread out in enamel tray after answering 4h, is then placed in enamel tray in 50 DEG C of air dry oven dry
Material in enamel tray after drying is finally transferred in mortar and grinds uniformly, obtains solid powder by 4h;The lime nitrogen, carbon
Mass ratio between source, deionized water is 2.5:1:10;The carbon source be citric acid, tartaric acid, malic acid, glucose, sucrose,
One or more of fructose;
(2) solid powder that step (1) obtains is transferred in porcelain boat and is placed in tube furnace together and be pyrolyzed, tubular type
Lead to nitrogen protection in furnace, tube furnace is first warming up to furnace chamber temperature with the rate of 2 DEG C/min as 550 DEG C, keeps the temperature 2.5h, then with
It is 850 DEG C that the rate of 5 DEG C/min, which is warming up to furnace chamber temperature, keeps the temperature 1.5h, then when furnace chamber temperature naturally cools to room temperature
After take out product, product is immersed in dilute hydrochloric acid, is washed with distilled water to neutrality again after washing and filtering, finally will produce
Object obtains nitrogen-doped graphene after dry 4h under the conditions of being placed in 80 DEG C.
Transmission electron microscope picture, x-ray diffraction pattern, the X-ray photoelectricity of the preparation-obtained nitrogen-doped graphene of above-mentioned steps
Sub- energy spectrum diagram, pore size distribution curve and isothermal adsorption-desorption curve are distinguished as shown in Figure 1, Figure 2, shown in Fig. 3, Fig. 4 and Fig. 5.
From figure 1 it appears that showing that the sample that the present embodiment is prepared is by transparent and with crisp flake
Material is random to be accumulated, and shows that product is graphene.
From figure 2 it can be seen that at 26 ° and 43 ° or so there are two diffraction maximum in figure, respectively correspond graphite (002) and
(100) crystal face shows that the sample that the present embodiment is prepared is graphited carbon material, and the diffraction maximum at 26 ° is more sharp, shows
The sample degree of graphitization that the present embodiment is prepared is higher.
From figure 3, it can be seen that can be three peaks of appearance, the respectively 1s of C, N and O at 285,400 and 530eV in combination
Peak shows that nitrogen is successfully entrained in the sample that the present embodiment is prepared, and the content that can calculate nitrogen according to peak area in figure is (former
Sub- percentage) it is 8.25%.
From fig. 4, it can be seen that the sample that the present embodiment is prepared, based on micropore, most of aperture is less than 3nm.
The BET specific surface area that the sample that the present embodiment is prepared can be calculated from Fig. 5 is 166.0m2/g。
For the catalytic performance for further verifying nitrogen-doped graphene manufactured in the present embodiment, the present embodiment is prepared
Nitrogen-doped graphene is used to be catalyzed the reaction of sodium borohydride reduction p-nitrophenol, tests its catalytic activity and repeatability.Specifically
Verification process is as follows:
It takes the p-nitrophenyl phenol solution of 5mL 40mmol/L to be put into beaker, is diluted with water to 100mL, then add into beaker
Enter 0.32g sodium borohydride, starting magnetic agitation dissolves sodium borohydride, and control bath temperature is 30 DEG C, then adds into beaker
Enter nitrogen-doped graphene prepared by 0.01g the present embodiment, immediately sampling and timing, then every 1min sample, with it is ultraviolet-can
See that spectrophotometer scans sample.Since absorbance of the p-nitrophenol product at 400nm in alkaline solution and its concentration are in
Direct ratio, therefore reaction process is monitored by the variation of monitoring sample absorbance at 400nm.After the reaction was completed, it is centrifugated
Catalyst is reused, test repeatability after being washed with deionized 3 times.
Fig. 6 is the UV-visible spectrum of the catalysis reduction p-nitrophenol of nitrogen-doped graphene prepared by the present embodiment,
It can be seen from the figure that the absorbance at 400nm is gradually reduced with the progress of reaction, i.e., the concentration of p-nitrophenol is gradually
Reduce, 5min fundamental reaction is complete, and catalytic effect is significant.
Fig. 7 is weight of the nitrogen-doped graphene as catalyst sodium borohydride reduction p-nitrophenol prepared by the present embodiment
Renaturation histogram decreased significantly for 9th time from figure it is found that preceding 10 activity changes are little, show the catalytic activity of the material compared with
Stablize;After first 10 times each uses, catalytic activity has to be declined by a small margin, mainly due in separation process the material damage on a small quantity
It becomes homeless cause.
Embodiment three
A kind of preparation method of nitrogen-doped graphene, includes the following steps:
(1) lime nitrogen, carbon source and the deionized water after metering are separately added into beaker, heating water bath obtains while stirring
To reaction mass, controlling bath temperature is 80 DEG C, and the pH for being passed through carbon dioxide gas to reaction mass into beaker is 12, instead
Reaction mass is uniformly spread out in enamel tray after answering 3h, is then placed in enamel tray in 55 DEG C of air dry oven dry
Material in enamel tray after drying is finally transferred in mortar and grinds uniformly, obtains solid powder by 3.5h;The lime nitrogen,
Mass ratio between carbon source, deionized water is (1~4):1:(2~20);The carbon source is citric acid, tartaric acid, malic acid, Portugal
One or more of grape sugar, sucrose, fructose;
(2) solid powder that step (1) obtains is transferred in porcelain boat and is placed in tube furnace together and be pyrolyzed, tubular type
Lead to nitrogen protection in furnace, tube furnace is first warming up to furnace chamber temperature with the rate of 3 DEG C/min as 580 DEG C, 2h is kept the temperature, then with 8
DEG C/to be warming up to furnace chamber temperature be 950 DEG C for the rate of min, 1h is kept the temperature, is then taken after furnace chamber temperature naturally cools to room temperature
Product is immersed in dilute hydrochloric acid by product out, is washed with distilled water to neutrality again after washing and filtering, is finally put product
Nitrogen-doped graphene is obtained after dry 3.5h under the conditions of being placed in 85 DEG C.
By carrying out transmission electron microscope, X-ray diffraction, x-ray photoelectron spectroscopy, pore-size distribution to the sample of preparation and waiting
The characterization such as warm adsorption-desorption curve, the results showed that the sample being prepared is nitrogen-doped graphene, and aperture is mainly micropore, than
Surface area is 134.5m2/ g, nitrogen content (atomic percent) are 7.82%.
Claims (7)
1. a kind of preparation method of nitrogen-doped graphene, which is characterized in that include the following steps:
(1) lime nitrogen, carbon source and the deionized water after metering are separately added into beaker, heating water bath is reacted while stirring
Material, control bath temperature are 60~80 DEG C, and the pH for being passed through carbon dioxide gas to reaction mass into beaker is 9~12,
Reaction mass is uniformly spread out in enamel tray after 3~5h of reaction, then enamel tray is placed in 45~55 DEG C of forced air drying
Material in enamel tray after drying, is finally transferred in mortar and grinds uniformly, obtain solid powder by dry 3.5~4.5h in case
End;The lime nitrogen, carbon source, the mass ratio between deionized water are (1~4):1:(2~20);
(2) solid powder that step (1) obtains is transferred in porcelain boat and is placed in tube furnace together and be pyrolyzed, in tube furnace
Logical nitrogen protection, tube furnace are first warming up to furnace chamber temperature with the rate of 1~3 DEG C/min as 540~580 DEG C, keep the temperature 2~3h,
Then furnace chamber temperature is warming up to as 750~950 DEG C with the rate of 3~8 DEG C/min, keeps the temperature 1~2h, then works as furnace chamber temperature
Product is taken out after naturally cooling to room temperature, product is immersed in dilute hydrochloric acid, is washed with distilled water again after washing and filtering
To neutrality, nitrogen-doped graphene is obtained after dry 3.5~4.5h under the conditions of product is finally placed in 75~85 DEG C.
2. a kind of preparation method of nitrogen-doped graphene according to claim 1, which is characterized in that water-bath in step (1)
Temperature is 70 DEG C, and the pH for controlling reaction mass is 10, reacts 4h.
3. a kind of preparation method of nitrogen-doped graphene according to claim 1 or 2, which is characterized in that pipe in step (2)
Formula furnace is first warming up to furnace chamber temperature with the rate of 2 DEG C/min as 550 DEG C, keeps the temperature 2.5h.
4. a kind of preparation method of nitrogen-doped graphene according to claim 1 or 2, which is characterized in that pipe in step (2)
Formula furnace is warming up to furnace chamber temperature with the rate of 5 DEG C/min again as 850 DEG C, keeps the temperature 1.5h.
5. a kind of preparation method of nitrogen-doped graphene according to claim 1 or 2, which is characterized in that institute in step (1)
Stating lime nitrogen, carbon source, the mass ratio between deionized water is 2.5:1:10.
6. a kind of preparation method of nitrogen-doped graphene according to claim 1 or 2, which is characterized in that the carbon source is
One or more of citric acid, tartaric acid, malic acid, glucose, sucrose, fructose.
7. a kind of preparation method of nitrogen-doped graphene according to claim 1 or 2, which is characterized in that will in step (1)
Enamel tray is placed in 50 DEG C of air dry oven dry 4h;It is dry under the conditions of product is finally placed in 80 DEG C in step (2)
Nitrogen-doped graphene is obtained after 4h.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811004564.7A CN108821266B (en) | 2018-08-30 | 2018-08-30 | Preparation method of nitrogen-doped graphene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811004564.7A CN108821266B (en) | 2018-08-30 | 2018-08-30 | Preparation method of nitrogen-doped graphene |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108821266A true CN108821266A (en) | 2018-11-16 |
CN108821266B CN108821266B (en) | 2020-01-17 |
Family
ID=64150157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811004564.7A Expired - Fee Related CN108821266B (en) | 2018-08-30 | 2018-08-30 | Preparation method of nitrogen-doped graphene |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108821266B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109626364A (en) * | 2019-01-29 | 2019-04-16 | 东北大学 | A kind of preparation method of nitrogen sulphur codope three-dimensional grapheme |
CN110560122A (en) * | 2019-08-16 | 2019-12-13 | 徐州工程学院 | Porous carbon nitride material, and preparation method and application thereof |
CN114522686A (en) * | 2021-09-07 | 2022-05-24 | 盐城工学院 | Cu/Cu prepared by loading metal-organic framework on corncob2O/C composite material and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015066691A1 (en) * | 2013-11-04 | 2015-05-07 | University Of Florida Research Foundation, Inc. | Slow-release fertilizer compositions with graphene oxide films and methods of making slow-release fertilizer compositions |
CN105032469A (en) * | 2015-08-11 | 2015-11-11 | 中国人民解放军国防科学技术大学 | Biomass base nitrogen-doped graphene/carbon fiber electrocatalyst and preparation method thereof |
CN105417532A (en) * | 2015-12-22 | 2016-03-23 | 北京理工大学 | One-step preparation method for high nitrogen doped graphene |
-
2018
- 2018-08-30 CN CN201811004564.7A patent/CN108821266B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015066691A1 (en) * | 2013-11-04 | 2015-05-07 | University Of Florida Research Foundation, Inc. | Slow-release fertilizer compositions with graphene oxide films and methods of making slow-release fertilizer compositions |
CN105032469A (en) * | 2015-08-11 | 2015-11-11 | 中国人民解放军国防科学技术大学 | Biomass base nitrogen-doped graphene/carbon fiber electrocatalyst and preparation method thereof |
CN105417532A (en) * | 2015-12-22 | 2016-03-23 | 北京理工大学 | One-step preparation method for high nitrogen doped graphene |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109626364A (en) * | 2019-01-29 | 2019-04-16 | 东北大学 | A kind of preparation method of nitrogen sulphur codope three-dimensional grapheme |
CN110560122A (en) * | 2019-08-16 | 2019-12-13 | 徐州工程学院 | Porous carbon nitride material, and preparation method and application thereof |
CN114522686A (en) * | 2021-09-07 | 2022-05-24 | 盐城工学院 | Cu/Cu prepared by loading metal-organic framework on corncob2O/C composite material and application thereof |
CN114522686B (en) * | 2021-09-07 | 2023-11-21 | 盐城工学院 | Cu/Cu prepared by corncob loaded metal-organic framework 2 O/C composite material and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108821266B (en) | 2020-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105271203B (en) | porous co-doped graphene and preparation method thereof | |
CN108821266A (en) | A kind of preparation method of nitrogen-doped graphene | |
CN108295881B (en) | Co4N/N-doped carbon hollow nano cage composite material and preparation method and application thereof | |
CN109304475A (en) | Carbon-coating nickel composite material and preparation method | |
CN108097255B (en) | Porous carbon frame nickel-based catalyst for carbon dioxide reforming reaction and preparation method and use method thereof | |
CN110026226B (en) | Graphite-phase carbon nitride nanosheet porous material and preparation method and application thereof | |
CN109746017B (en) | Preparation method of P-doped solvent thermal graphite phase carbon nitride photocatalyst | |
CN110124723A (en) | ZnO/g-C3N4Composite photo-catalyst and its preparation method and application | |
CN109772404B (en) | Preparation method of carbon nitride fluffy microspheres with high catalytic activity | |
CN113764688A (en) | Three-dimensional carbon structure supported GaN catalyst and preparation method thereof | |
CN111468131B (en) | LaCoO with high catalytic oxidation activity3Method for synthesizing catalyst | |
CN107029694B (en) | Doped carbon material and preparation method thereof | |
CN109364977A (en) | Sulfur doping graphite phase carbon nitride nanosheet photocatalyst and the preparation method and application thereof | |
CN113318764A (en) | Preparation method and application of nitrogen defect/boron doped tubular carbon nitride photocatalyst | |
CN107188177A (en) | A kind of nano vanadium carbide raw powder's production technology and product | |
CN109665525B (en) | Preparation method of dumbbell-shaped iron-nitrogen double-doped porous carbon | |
CN113198505A (en) | Sodium bismuth titanate/graphite phase carbon nitride heterojunction piezoelectric photocatalyst and preparation method thereof | |
CN111974436B (en) | Graphite-phase carbon nitride and preparation method thereof, and method for producing hydrogen by photocatalytic water | |
CN107824208B (en) | Preparation method of nickel-containing methanation catalyst | |
CN107282083B (en) | Silicon-zinc-doped graphite-phase carbon nitride nano material and application thereof in photocatalytic reduction | |
CN105060272B (en) | A kind of using artemia chorion as carbon source low temperature under prepare the method for CNT | |
CN106602080B (en) | It is a kind of based on cetyl trimethylammonium bromide be carbon material pore creating material three-dimensional porous Fe-N-C catalyst and preparation method | |
CN106904595A (en) | A kind of preparation method of the hollow carbon nanomaterial of nitrating | |
CN110902672B (en) | Photothermal effect multi-stage structure microspherical graphene aerogel and preparation method thereof | |
CN108862250A (en) | A kind of preparation method of nitrogen-doped graphene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 221000 Lishui Road, Xincheng District, Xuzhou City, Jiangsu Province Applicant after: XUZHOU University OF TECHNOLOGY Address before: 221018 Lishui Road, Yunlong District, Xuzhou, Jiangsu 2 Applicant before: XUZHOU University OF TECHNOLOGY |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200117 |
|
CF01 | Termination of patent right due to non-payment of annual fee |