CN108819948B - 基于逆向强化学习的驾驶员行为建模方法 - Google Patents
基于逆向强化学习的驾驶员行为建模方法 Download PDFInfo
- Publication number
- CN108819948B CN108819948B CN201810660203.1A CN201810660203A CN108819948B CN 108819948 B CN108819948 B CN 108819948B CN 201810660203 A CN201810660203 A CN 201810660203A CN 108819948 B CN108819948 B CN 108819948B
- Authority
- CN
- China
- Prior art keywords
- driving
- state
- neural network
- strategy
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 230000006399 behavior Effects 0.000 title claims abstract description 31
- 230000002787 reinforcement Effects 0.000 title claims abstract description 26
- 230000006870 function Effects 0.000 claims abstract description 125
- 238000010276 construction Methods 0.000 claims abstract description 7
- 238000013528 artificial neural network Methods 0.000 claims description 64
- 230000009471 action Effects 0.000 claims description 32
- 238000012549 training Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 17
- 238000013527 convolutional neural network Methods 0.000 claims description 15
- 238000011176 pooling Methods 0.000 claims description 12
- 230000007613 environmental effect Effects 0.000 claims description 10
- 238000005457 optimization Methods 0.000 claims description 10
- 230000004913 activation Effects 0.000 claims description 9
- 238000011478 gradient descent method Methods 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 8
- 210000002569 neuron Anatomy 0.000 claims description 6
- 238000005286 illumination Methods 0.000 claims description 3
- 230000000875 corresponding effect Effects 0.000 abstract description 45
- 238000009826 distribution Methods 0.000 description 13
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/08—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
- B60W40/09—Driving style or behaviour
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0028—Mathematical models, e.g. for simulation
- B60W2050/0029—Mathematical model of the driver
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Feedback Control In General (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810660203.1A CN108819948B (zh) | 2018-06-25 | 2018-06-25 | 基于逆向强化学习的驾驶员行为建模方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810660203.1A CN108819948B (zh) | 2018-06-25 | 2018-06-25 | 基于逆向强化学习的驾驶员行为建模方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108819948A CN108819948A (zh) | 2018-11-16 |
CN108819948B true CN108819948B (zh) | 2020-05-19 |
Family
ID=64138475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810660203.1A Active CN108819948B (zh) | 2018-06-25 | 2018-06-25 | 基于逆向强化学习的驾驶员行为建模方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108819948B (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109839937B (zh) * | 2019-03-12 | 2023-04-07 | 百度在线网络技术(北京)有限公司 | 确定车辆自动驾驶规划策略的方法、装置、计算机设备 |
CN110083165B (zh) * | 2019-05-21 | 2022-03-08 | 大连大学 | 一种机器人在复杂狭窄环境下路径规划方法 |
CN110321811B (zh) * | 2019-06-17 | 2023-05-02 | 中国工程物理研究院电子工程研究所 | 深度逆强化学习的无人机航拍视频中的目标检测方法 |
CN110497914B (zh) * | 2019-08-26 | 2020-10-30 | 格物汽车科技(苏州)有限公司 | 自动驾驶的驾驶员行为模型开发方法、设备和存储介质 |
CN110568760B (zh) * | 2019-10-08 | 2021-07-02 | 吉林大学 | 适用于换道及车道保持的参数化学习决策控制系统及方法 |
CN111310915B (zh) * | 2020-01-21 | 2023-09-01 | 浙江工业大学 | 一种面向强化学习的数据异常检测防御方法 |
CN111415198B (zh) * | 2020-03-19 | 2023-04-28 | 桂林电子科技大学 | 一种基于逆向强化学习的游客行为偏好建模方法 |
US11656627B2 (en) * | 2020-03-23 | 2023-05-23 | Baidu Usa Llc | Open space path planning using inverse reinforcement learning |
CN111731326B (zh) * | 2020-07-02 | 2022-06-21 | 知行汽车科技(苏州)有限公司 | 避障策略确定方法、装置及存储介质 |
CN112046489B (zh) * | 2020-08-31 | 2021-03-16 | 吉林大学 | 一种基于因子分析和机器学习的驾驶风格辨识算法 |
CN112373482B (zh) * | 2020-11-23 | 2021-11-05 | 浙江天行健智能科技有限公司 | 一种基于驾驶模拟器的驾驶习惯建模方法 |
CN113110478A (zh) * | 2021-04-27 | 2021-07-13 | 广东工业大学 | 一种多机器人运动规划的方法、系统及存储介质 |
CN114261400B (zh) * | 2022-01-07 | 2024-06-14 | 京东鲲鹏(江苏)科技有限公司 | 一种自动驾驶决策方法、装置、设备和存储介质 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103381826B (zh) * | 2013-07-31 | 2016-03-09 | 中国人民解放军国防科学技术大学 | 基于近似策略迭代的自适应巡航控制方法 |
CN105955930A (zh) * | 2016-05-06 | 2016-09-21 | 天津科技大学 | 引导型策略搜索强化学习算法 |
CN107168303A (zh) * | 2017-03-16 | 2017-09-15 | 中国科学院深圳先进技术研究院 | 一种汽车的自动驾驶方法及装置 |
CN107229973B (zh) * | 2017-05-12 | 2021-11-19 | 中国科学院深圳先进技术研究院 | 一种用于车辆自动驾驶的策略网络模型的生成方法及装置 |
CN107203134B (zh) * | 2017-06-02 | 2020-08-18 | 浙江零跑科技有限公司 | 一种基于深度卷积神经网络的前车跟随方法 |
CN107679557B (zh) * | 2017-09-19 | 2020-11-27 | 平安科技(深圳)有限公司 | 驾驶模型训练方法、驾驶人识别方法、装置、设备及介质 |
CN108108657B (zh) * | 2017-11-16 | 2020-10-30 | 浙江工业大学 | 基于多任务深度学习的修正局部敏感哈希车辆检索方法 |
-
2018
- 2018-06-25 CN CN201810660203.1A patent/CN108819948B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN108819948A (zh) | 2018-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108819948B (zh) | 基于逆向强化学习的驾驶员行为建模方法 | |
CN108791302B (zh) | 驾驶员行为建模系统 | |
CN108920805B (zh) | 具有状态特征提取功能的驾驶员行为建模系统 | |
US11062617B2 (en) | Training system for autonomous driving control policy | |
CN111079561B (zh) | 一种基于虚拟训练的机器人智能抓取方法 | |
CN109131348B (zh) | 一种基于生成式对抗网络的智能车驾驶决策方法 | |
CN110874578B (zh) | 一种基于强化学习的无人机视角车辆识别追踪方法 | |
US20180157972A1 (en) | Partially shared neural networks for multiple tasks | |
CN108891421B (zh) | 一种构建驾驶策略的方法 | |
CN111246091B (zh) | 一种动态自动曝光控制方法和装置及电子设备 | |
CN110991027A (zh) | 一种基于虚拟场景训练的机器人模仿学习方法 | |
CN110281949B (zh) | 一种自动驾驶统一分层决策方法 | |
CN112550314B (zh) | 适用于无人驾驶的嵌入优化式控制方法及其驾驶控制模块和自动驾驶控制系统 | |
CN108944940B (zh) | 基于神经网络的驾驶员行为建模方法 | |
CN114162146B (zh) | 行驶策略模型训练方法以及自动驾驶的控制方法 | |
Farag | Cloning safe driving behavior for self-driving cars using convolutional neural networks | |
Babiker et al. | Convolutional neural network for a self-driving car in a virtual environment | |
Farag | Safe-driving cloning by deep learning for autonomous cars | |
CN113869170B (zh) | 一种基于图划分卷积神经网络的行人轨迹预测方法 | |
CN115376103A (zh) | 一种基于时空图注意力网络的行人轨迹预测方法 | |
CN117406762A (zh) | 一种基于分段式强化学习的无人机远程控制算法 | |
Zhong et al. | Behavior prediction for unmanned driving based on dual fusions of feature and decision | |
CN117709602B (zh) | 一种基于社会价值取向的城市智能车辆拟人化决策方法 | |
Meftah et al. | A virtual simulation environment using deep learning for autonomous vehicles obstacle avoidance | |
CN112947466B (zh) | 一种面向自动驾驶的平行规划方法、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20181116 Assignee: Dalian Big Data Industry Development Research Institute Co.,Ltd. Assignor: DALIAN University Contract record no.: X2023210000224 Denomination of invention: A Driver Behavior Modeling Method Based on Reverse Reinforcement Learning Granted publication date: 20200519 License type: Common License Record date: 20231129 |
|
OL01 | Intention to license declared | ||
OL01 | Intention to license declared | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20181116 Assignee: Dalian Hengxing Information Technology Co.,Ltd. Assignor: DALIAN University Contract record no.: X2024210000035 Denomination of invention: Driver behavior modeling method based on reverse reinforcement learning Granted publication date: 20200519 License type: Common License Record date: 20240702 |