CN108818536A - A kind of online offset correction method and device of Robotic Hand-Eye Calibration - Google Patents
A kind of online offset correction method and device of Robotic Hand-Eye Calibration Download PDFInfo
- Publication number
- CN108818536A CN108818536A CN201810765981.7A CN201810765981A CN108818536A CN 108818536 A CN108818536 A CN 108818536A CN 201810765981 A CN201810765981 A CN 201810765981A CN 108818536 A CN108818536 A CN 108818536A
- Authority
- CN
- China
- Prior art keywords
- coordinate system
- calibration
- robot
- camera
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1692—Calibration of manipulator
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
本发明涉及一种机器人手眼标定的在线偏移修正方法及装置,该方法包括:获取标定板上九个圆的圆心在相机坐标系和基坐标系的坐标值,建立标定板上每个圆的圆心从相机坐标系到机器人基坐标系的变换方程,通过每个圆的偏移坐标,采用最小二乘法计算出相机坐标系相对于机器人基坐标系的齐次变换矩阵;依据标定的相机坐标系相对基坐标系的位姿值,利用向量二范数公式对标定板上九个圆的偏移修正标定结果的误差,分析评价其精度。本发明针对机器人手眼标定过程的偏移进行了修正,可实现生产线上灵活、精确、快速调整,能实现高重复度且精准的抓取操作,可应用于SCARA机器人手眼装置的操作中,简单高效精确度高。
The invention relates to an online offset correction method and device for robot hand-eye calibration. The method includes: obtaining the coordinate values of the centers of nine circles on the calibration board in the camera coordinate system and the base coordinate system, and establishing the coordinates of each circle on the calibration board. The transformation equation of the center of the circle from the camera coordinate system to the robot base coordinate system, through the offset coordinates of each circle, using the least squares method to calculate the homogeneous transformation matrix of the camera coordinate system relative to the robot base coordinate system; according to the calibrated camera coordinate system Relative to the pose value of the base coordinate system, the error of the calibration result is corrected for the offset of the nine circles on the calibration board using the vector two-norm formula, and its accuracy is analyzed and evaluated. The invention corrects the offset of the robot's hand-eye calibration process, can realize flexible, accurate and fast adjustment on the production line, can realize high repeatability and precise grasping operation, and can be applied to the operation of the SCARA robot's hand-eye device, which is simple and efficient High precision.
Description
技术领域technical field
本发明属于机器视觉技术领域,更具体地涉及一种机器人手眼标定的在线偏移修正方法及装置。The invention belongs to the technical field of machine vision, and more specifically relates to an online offset correction method and device for robot hand-eye calibration.
背景技术Background technique
随着人工智能技术的发展,机器人的应用越来越广泛。例如:四轴SCARA工业机器人被广泛地应用于生产线的抓取作业,其对机器人手眼标定精度的要求也越来越高。在目前的机器人手眼标定方法中,大多数情况会出现相机采集的图像标定点在机器人工作空间中,而实际自动化产线中会存在相机采集图像的标定点不在机器人工作空间中,标定点需要经过运动才能到达机器人的工作空间中的情况,即手眼标定存在偏移问题。另外,机器人实际安装过程存在基坐标系的偏转问题,同样也会降低机器人手眼标定的精度。With the development of artificial intelligence technology, the application of robots is becoming more and more extensive. For example, the four-axis SCARA industrial robot is widely used in the grasping operation of the production line, and its requirements for the accuracy of the robot's hand-eye calibration are getting higher and higher. In the current robot hand-eye calibration method, in most cases, the calibration point of the image captured by the camera is in the robot workspace, but in the actual automated production line, the calibration point of the image captured by the camera is not in the robot workspace, and the calibration point needs to pass through The movement can only reach the situation in the workspace of the robot, that is, there is an offset problem in the hand-eye calibration. In addition, there is a problem of deflection of the base coordinate system in the actual installation process of the robot, which will also reduce the accuracy of the robot's hand-eye calibration.
发明内容Contents of the invention
本发明针对现有技术中存在的问题,提出了一种机器人手眼标定的在线偏移修正方法及装置。The invention aims at the problems existing in the prior art, and proposes an online offset correction method and device for robot hand-eye calibration.
其技术方案如下:本方法包括以下步骤;Its technical scheme is as follows: the method includes the following steps;
S1:数据获取阶段,获取标定板上九个圆的圆心在相机坐标系和基坐标系的坐标值,利用相机和图像处理算法获得其在相机坐标系的坐标值,从示教器中读取其相应在机器人基坐标系的坐标值。S1: In the data acquisition stage, obtain the coordinate values of the centers of the nine circles on the calibration board in the camera coordinate system and the base coordinate system, use the camera and image processing algorithms to obtain their coordinate values in the camera coordinate system, and read them from the teaching pendant It corresponds to the coordinate value in the robot base coordinate system.
S2:偏移修正阶段,建立标定板上每个圆的圆心从相机坐标系到机器人基坐标系的变换方程,通过每个圆的偏移坐标,采用最小二乘法计算出相机坐标系相对于机器人基坐标系的齐次变换矩阵。S2: In the offset correction stage, establish the transformation equation of the center of each circle on the calibration board from the camera coordinate system to the robot base coordinate system, and use the least squares method to calculate the relative distance between the camera coordinate system and the robot based on the offset coordinates of each circle. The homogeneous transformation matrix of the base coordinate system.
S3:精度检验阶段,检验该标定方法的精度,依据标定的相机坐标系相对基坐标系的位姿值,利用向量二范数公式对标定板上九个圆的偏移修正标定结果的误差,分析评价其精度。S3: In the accuracy inspection stage, the accuracy of the calibration method is inspected. According to the pose value of the calibrated camera coordinate system relative to the base coordinate system, the error of the calibration result is corrected for the offset of the nine circles on the calibration board by using the vector two-norm formula. Analyze and evaluate its accuracy.
优选地,S1数据获取包括以下步骤:Preferably, S1 data acquisition includes the following steps:
S1.1:启动传动带,带动标定板在传送带上运行。S1.1: Start the transmission belt, and drive the calibration plate to run on the conveyor belt.
S1.2:当标定板运动到相机下方的P点时,相机采集标定板的图像;并将图像传至图像处理器,图像处理器利用图像处理算法获得标定板上九个圆的圆心在相机坐标系OlXlYl的坐标值。S1.2: When the calibration board moves to the point P under the camera, the camera collects the image of the calibration board; and transmits the image to the image processor, and the image processor uses the image processing algorithm to obtain the center of the nine circles on the calibration board in the camera The coordinate values of the coordinate system O l X l Y l .
S1.3:当标定板随传送带运动到工业机器人工作空间的P’点时,从与工业机器人电连接的示教器中读取标定板上九个圆的圆心在机器人基坐标系ObXbYb的坐标值。S1.3: When the calibration board moves to the point P' in the working space of the industrial robot with the conveyor belt, read the centers of the nine circles on the calibration board from the teaching device electrically connected to the industrial robot in the robot base coordinate system O b X The coordinate value of b Y b .
优选地,S2偏移修正包括以下步骤:Preferably, the S2 offset correction includes the following steps:
S2.1:标定板在P点时,建立标定板上九个圆的圆心从相机坐标系OlXlYl到机器人基坐标系ObXbYb的变换方程,表示为第一公式:S2.1: When the calibration board is at point P, establish the transformation equation of the centers of the nine circles on the calibration board from the camera coordinate system O l X l Y l to the robot base coordinate system O b X b Y b , expressed as the first formula :
式中,为相机坐标系相对于机器人基坐标系的齐次变换矩阵,CPi为标定板上圆的圆心在相机坐标系的坐标值,BPi为标定板上圆的圆心在机器人基坐标系的坐标值。In the formula, is the homogeneous transformation matrix of the camera coordinate system relative to the robot base coordinate system, C P i is the coordinate value of the circle center on the calibration board in the camera coordinate system, B P i is the center of the circle on the calibration board in the robot base coordinate system coordinate value.
S2.2:标定板在P′点时,通过编码器读取从P点到P′点标定板平移的距离Δxb=|PP′|,通过下式计算出机器人安装位置的偏转角度θ,S2.2: When the calibration plate is at point P′, read the translational distance of the calibration plate from point P to point P′ through the encoder Δx b = |PP′|, and calculate the deflection angle θ of the robot installation position by the following formula,
其中,yk+1,yk分别为标定板水平方向(X轴)上相邻两个圆在机器人基坐标系Y方向的坐标值;Among them, y k+1 and y k are the coordinate values of two adjacent circles in the Y direction of the robot base coordinate system in the horizontal direction (X axis) of the calibration board;
进一步得到标定板在P点和P′点的偏移关系,表示为第二公式:Further obtain the offset relationship of the calibration plate at point P and point P', which is expressed as the second formula:
式中,X′b,Y′b分别为P′点在机器人基坐标系的X和Y方向坐标值;Xb,Yb分别为P点在机器人基坐标系的X和Y方向坐标值,In the formula, X′ b , Y′ b are the X and Y coordinate values of point P′ in the robot base coordinate system respectively; X b , Y b are the X and Y direction coordinate values of P point in the robot base coordinate system respectively,
根据上述第二公式以及标定板在P′点时与工业机器人电连接的示教器中读取的9个圆心坐标推导出标定板在P点时,每个圆的圆心在机器人基坐标系的坐标值。According to the above second formula and the 9 center coordinates read from the teaching pendant electrically connected to the industrial robot when the calibration board is at point P', it is deduced that when the calibration board is at point P, the center of each circle is at the center of the robot base coordinate system coordinate value.
S2.3:将步骤S2.2中根据机器人安装位置偏差推导出来P点时标定板的9个圆心在机器人基坐标系中的坐标值以及步骤S1.2利用图像处理算法获得标定板上九个圆的圆心在相机坐标系中的坐标值带入上述第一公式组成九个变换方程,对九个变换方程组成的方程组进行最小二乘法求解,得到相机坐标系相对于机器人基坐标系的变换矩阵 S2.3: In step S2.2, deduce the coordinate values of the nine centers of the calibration plate in the robot base coordinate system at point P based on the deviation of the robot’s installation position, and step S1.2 uses the image processing algorithm to obtain the nine points on the calibration plate The coordinate value of the center of the circle in the camera coordinate system is brought into the above first formula to form nine transformation equations, and the least square method is used to solve the equation group composed of nine transformation equations, and the transformation of the camera coordinate system relative to the robot base coordinate system is obtained matrix
优选地,S3精度检验包括以下步骤:Preferably, the S3 accuracy check comprises the following steps:
S3.1:根据计算得到的相机坐标系相对于机器人基坐标系的变换矩阵利用向量二范数公式对标定板上九个圆的偏移修正标定结果的误差。S3.1: According to the transformation matrix of the calculated camera coordinate system relative to the robot base coordinate system Using the vector two-norm formula The error of the calibration result is corrected for the offset of the nine circles on the calibration board.
S3.2:分析标定结果误差,评价机器人手眼标定在线偏移修正方法的精度。S3.2: Analyze the error of the calibration result, and evaluate the accuracy of the online offset correction method for robot hand-eye calibration.
同时,本发明提供了一种机器人手眼标定的在线偏移修正实现装置,所述装置包括传送带,所述传送带的一侧上方固定安装有支架,所述支架的顶端固定安装有相机,所述相机与图像处理器电连接,所述传送带的另一侧固定安装有工业机器人,所述工业机器人固定在机器人底座上,工业机器人的末端法兰盘上固定有标定顶尖,标定板放置在传送带上,可随传送带运动,所述工业机器人与示教器电连接。At the same time, the present invention provides a device for implementing online offset correction of robot hand-eye calibration. The device includes a conveyor belt, a bracket is fixedly installed on one side of the conveyor belt, and a camera is fixedly installed on the top of the bracket. The camera It is electrically connected with the image processor, the other side of the conveyor belt is fixedly installed with an industrial robot, the industrial robot is fixed on the robot base, the end flange of the industrial robot is fixed with a calibration tip, and the calibration plate is placed on the conveyor belt. It can move with the conveyor belt, and the industrial robot is electrically connected with the teaching pendant.
本发明产生的有益效果是:本发明在数据获取阶段利用相机和图像处理算法获得标定板圆心在相机坐标系的坐标值,从示教器中读取其相应在机器人基坐标系的坐标值,获取数据准确方便;在偏移修正阶段,建立标定板上每个圆的圆心从相机坐标系到机器人基坐标系的变换方程,通过每个圆的偏移坐标,采用最小二乘法计算出相机坐标系相对于机器人基坐标系的齐次变换矩阵,表达式简单且计算速度快;在精度检验阶段,依据标定的基坐标系相对相机坐标系的位姿值,利用向量二范数公式检验该标定方法的精度,标定精度相对较高,基于该精度对机器人手眼标定过程中产生的偏移进行在线修正,可实现生产线上灵活、精确、快速调整,能实现高重复度且精准的抓取操作,可应用于SCARA机器人手眼装置的操作中,简单高效精确度高。The beneficial effects produced by the present invention are: the present invention utilizes the camera and image processing algorithm to obtain the coordinate value of the center of the calibration plate in the camera coordinate system in the data acquisition stage, and reads its corresponding coordinate value in the robot base coordinate system from the teaching pendant, Accurate and convenient data acquisition; in the offset correction stage, the transformation equation of the center of each circle on the calibration board from the camera coordinate system to the robot base coordinate system is established, and the camera coordinates are calculated by the least square method through the offset coordinates of each circle system relative to the robot base coordinate system, the expression is simple and the calculation speed is fast; in the accuracy inspection stage, according to the pose value of the calibrated base coordinate system relative to the camera coordinate system, the calibration is checked by using the vector two-norm formula The accuracy of the method and the calibration accuracy are relatively high. Based on this accuracy, the online correction of the offset generated during the robot's hand-eye calibration process can realize flexible, accurate, and fast adjustments on the production line, and can achieve high repeatability and precise grasping operations. It can be applied to the operation of the SCARA robot hand-eye device, which is simple, efficient and highly accurate.
附图说明Description of drawings
图1是本发明实施例的机器人手眼标定的在线偏移修正方法流程图;Fig. 1 is a flowchart of an online offset correction method for robot hand-eye calibration according to an embodiment of the present invention;
图2是本发明实施例的机器人手眼标定的在线偏移修正方法的装置结构图;2 is a device structure diagram of an online offset correction method for robot hand-eye calibration according to an embodiment of the present invention;
附图中,各附图标记所代表的部件列表如下:In the accompanying drawings, the parts list represented by each reference sign is as follows:
1、标定板,2、相机,3、支架,4、标定顶尖,5、工业机器人,6、机器人底座,7、传送带。1. Calibration board, 2. Camera, 3. Bracket, 4. Calibration tip, 5. Industrial robot, 6. Robot base, 7. Conveyor belt.
具体实施方式Detailed ways
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。The principles and features of the present invention are described below in conjunction with the accompanying drawings, and the examples given are only used to explain the present invention, and are not intended to limit the scope of the present invention.
如图1所示,一种机器人手眼标定的在线偏移修正方法,包括数据获取、偏移修正、精度检验三个阶段。具体如下:As shown in Figure 1, an online offset correction method for robot hand-eye calibration includes three stages: data acquisition, offset correction, and accuracy inspection. details as follows:
S1:数据获取阶段,获取标定板上九个圆的圆心在相机坐标系和基坐标系的坐标值,利用相机和图像处理算法获得其在相机坐标系的坐标值,从示教器中读取其相应在机器人基坐标系的坐标值。S1: In the data acquisition stage, obtain the coordinate values of the centers of the nine circles on the calibration board in the camera coordinate system and the base coordinate system, use the camera and image processing algorithms to obtain their coordinate values in the camera coordinate system, and read them from the teaching pendant It corresponds to the coordinate value in the robot base coordinate system.
S2:偏移修正阶段,建立标定板上每个圆的圆心从相机坐标系到机器人基坐标系的变换方程,通过每个圆的偏移坐标,采用最小二乘法计算出相机坐标系相对于机器人基坐标系的齐次变换矩阵。S2: In the offset correction stage, establish the transformation equation of the center of each circle on the calibration board from the camera coordinate system to the robot base coordinate system, and use the least squares method to calculate the relative distance between the camera coordinate system and the robot based on the offset coordinates of each circle. The homogeneous transformation matrix of the base coordinate system.
S3:精度检验阶段,检验该标定方法的精度,依据标定的相机坐标系相对基坐标系的位姿值,利用向量二范数公式对标定板上九个圆的偏移修正标定结果的误差,分析评价其精度。S3: In the accuracy inspection stage, the accuracy of the calibration method is inspected. According to the pose value of the calibrated camera coordinate system relative to the base coordinate system, the error of the calibration result is corrected for the offset of the nine circles on the calibration board by using the vector two-norm formula. Analyze and evaluate its accuracy.
本发明中,S1数据获取包括以下步骤:In the present invention, S1 data acquisition comprises the following steps:
S1.1:启动传动带,带动标定板在传送带上运行。S1.1: Start the transmission belt, and drive the calibration plate to run on the conveyor belt.
S1.2:当标定板运动到相机下方的P点时,相机采集标定板的图像;并将图像传至图像处理器,图像处理器利用图像处理算法获得标定板上九个圆的圆心在相机坐标系OlXlYl的坐标值。S1.2: When the calibration board moves to the point P under the camera, the camera collects the image of the calibration board; and transmits the image to the image processor, and the image processor uses the image processing algorithm to obtain the center of the nine circles on the calibration board in the camera The coordinate values of the coordinate system O l X l Y l .
S1.3:当标定板随传送带运动到工业机器人工作空间的P’点时,从与工业机器人电连接的示教器中读取标定板上九个圆的圆心在机器人基坐标系ObXbYb的坐标值。S1.3: When the calibration board moves to the point P' in the working space of the industrial robot with the conveyor belt, read the centers of the nine circles on the calibration board from the teaching device electrically connected to the industrial robot in the robot base coordinate system O b X The coordinate value of b Y b .
本发明中,S2偏移修正包括以下步骤:In the present invention, S2 offset correction includes the following steps:
S2.1:标定板在P点时,建立标定板上九个圆的圆心从相机坐标系OlXlYl到机器人基坐标系ObXbYb的变换方程:S2.1: When the calibration board is at point P, establish the transformation equation of the centers of the nine circles on the calibration board from the camera coordinate system O l X l Y l to the robot base coordinate system O b X b Y b :
式中,为相机坐标系相对于机器人基坐标系的齐次变换矩阵,CPi为标定板上圆的圆心在相机坐标系的坐标值,BPi为标定板上圆的圆心在机器人基坐标系的坐标值。In the formula, is the homogeneous transformation matrix of the camera coordinate system relative to the robot base coordinate system, C P i is the coordinate value of the circle center on the calibration board in the camera coordinate system, B P i is the center of the circle on the calibration board in the robot base coordinate system coordinate value.
S2.2:标定板在P′点时,通过编码器读取从P点到P′点标定板平移的距离Δxb=|PP′|,通过下式计算出机器人安装位置的偏转角度θ,S2.2: When the calibration plate is at point P′, read the translational distance of the calibration plate from point P to point P′ through the encoder Δx b = |PP′|, and calculate the deflection angle θ of the robot installation position by the following formula,
其中,yk+1,yk分别为标定板水平方向(X轴)上相邻两个圆在机器人基坐标系Y方向的坐标值;Among them, y k+1 and y k are the coordinate values of two adjacent circles in the Y direction of the robot base coordinate system in the horizontal direction (X axis) of the calibration board;
进一步得到标定板在P点和P′点的偏移关系为如下第一公式:Further, the offset relationship of the calibration plate at point P and point P' is obtained as the following first formula:
式中,X′b,Y′b分别为P′点在机器人基坐标系的X和Y方向坐标值;Xb,Yb分别为P点在机器人基坐标系的X和Y方向坐标值,In the formula, X′ b , Y′ b are the X and Y coordinate values of point P′ in the robot base coordinate system respectively; X b , Y b are the X and Y direction coordinate values of P point in the robot base coordinate system respectively,
根据上述第一公式以及标定板在P′点时与工业机器人电连接的示教器中读取的9个圆心坐标推导出标定板在P点时,每个圆的圆心在机器人基坐标系的坐标值。According to the first formula above and the nine center coordinates read from the teaching pendant that is electrically connected to the industrial robot when the calibration board is at point P', it is deduced that when the calibration board is at point P, the center of each circle is at the center of the robot base coordinate system. coordinate value.
S2.3:将步骤S2.2中根据机器人安装位置偏差推导出来P点时标定板的9个圆心在机器人基坐标系中的坐标值以及步骤S1.2利用图像处理算法获得标定板上九个圆的圆心在相机坐标系中的坐标值带入上述第一公式组成九个变换方程,对九个变换方程组成的方程组进行最小二乘法求解,得到相机坐标系相对于机器人基坐标系的变换矩阵 S2.3: In step S2.2, deduce the coordinate values of the nine centers of the calibration plate in the robot base coordinate system at point P based on the deviation of the robot’s installation position, and step S1.2 uses the image processing algorithm to obtain the nine points on the calibration plate The coordinate value of the center of the circle in the camera coordinate system is brought into the above first formula to form nine transformation equations, and the least square method is used to solve the equation group composed of nine transformation equations, and the transformation of the camera coordinate system relative to the robot base coordinate system is obtained matrix
本发明中,S3精度检验包括以下步骤:Among the present invention, S3 accuracy inspection comprises the following steps:
S3.1:根据计算得到的相机坐标系相对于机器人基坐标系的变换矩阵利用向量二范数公式对标定板上九个圆的偏移修正标定结果的误差。S3.1: According to the transformation matrix of the calculated camera coordinate system relative to the robot base coordinate system Using the vector two-norm formula The error of the calibration result is corrected for the offset of the nine circles on the calibration board.
S3.2:分析标定结果误差,评价机器人手眼标定在线偏移修正方法的精度。S3.2: Analyze the error of the calibration result, and evaluate the accuracy of the online offset correction method for robot hand-eye calibration.
如图2所示,其提供了一种机器人手眼标定的在线偏移修正方法的实现装置,所述装置包括传送带7,所述传送带7的一侧上方固定安装有支架3,所述支架3的顶端固定安装有相机2,所述相机2与图像处理器电连接,所述传送带7的另一侧固定安装有工业机器人5,所述工业机器人5固定在机器人底座6上,工业机器人2的末端法兰盘上固定有标定顶尖4,标定板1放置在传送带7上,可随传送带运动,所述工业机器人5与示教器电连接。As shown in Figure 2, it provides a device for realizing the online offset correction method of robot hand-eye calibration, the device includes a conveyor belt 7, a bracket 3 is fixedly installed on one side of the conveyor belt 7, and the bracket 3 A camera 2 is fixedly installed on the top, and the camera 2 is electrically connected to the image processor. An industrial robot 5 is fixedly installed on the other side of the conveyor belt 7. The industrial robot 5 is fixed on the robot base 6. The end of the industrial robot 2 A calibration center 4 is fixed on the flange. The calibration plate 1 is placed on the conveyor belt 7 and can move with the conveyor belt. The industrial robot 5 is electrically connected to the teaching pendant.
下面选用四自由度SCARA工业机器人,有9个标定圆且相邻圆的圆心在X和Y方向的间距分别为55mm和40mm的标定板为例来说明本发明的效果。Select the four-degree-of-freedom SCARA industrial robot below as an example to illustrate the effect of the present invention. There are 9 calibration circles and the spacing between the centers of adjacent circles in the X and Y directions is 55mm and 40mm respectively as an example.
启动传动带7,使传动带7带动标定板1运动,当标定板1运动至相机2下方的P点时,相机2采集标定板1的图像;并将采集到的图像传送至图像处理器,图像处理器利用OpenCV库函数对相机2采集的标定板图像进行圆心检测计算获得标定板上九个圆的圆心在相机坐标系OlXlYl的坐标值;当标定板1运动到工业机器人5工作空间的P’点时,从与工业机器人5电连接示教器中读取标定板上九个圆的圆心在机器人基坐标系ObXbYb的坐标值。Start the transmission belt 7, so that the transmission belt 7 drives the calibration plate 1 to move, and when the calibration plate 1 moves to the P point below the camera 2, the camera 2 collects the image of the calibration plate 1; and the collected image is sent to the image processor for image processing. The device uses the OpenCV library function to detect and calculate the center of the calibration plate image collected by the camera 2 to obtain the coordinate values of the centers of the nine circles on the calibration plate in the camera coordinate system O l X l Y l ; when the calibration plate 1 moves to the industrial robot 5 to work When point P' in space, read the coordinate values of the centers of the nine circles on the calibration board in the robot base coordinate system O b X b Y b from the teaching pendant electrically connected to the industrial robot 5 .
计算上述标定板中9个圆的圆心坐标从相机坐标系到机器人基坐标系的变换方程。计算过程主要通过建立标定板上每个圆的圆心从相机坐标系到机器人基坐标系的变换方程,通过每个圆的偏移坐标,采用最小二乘法通过编写C++程序计算出相机坐标系相对于机器人基坐标系的齐次变换矩阵 依据标定的基坐标系相对相机坐标系的位姿值,利用向量二范数公式检验该标定方法的精度为0.38mm。Calculate the transformation equation of the center coordinates of the 9 circles in the above calibration board from the camera coordinate system to the robot base coordinate system. The calculation process is mainly by establishing the transformation equation of the center of each circle on the calibration board from the camera coordinate system to the robot base coordinate system, through the offset coordinates of each circle, and using the least squares method to calculate the relative position of the camera coordinate system by writing a C++ program. The homogeneous transformation matrix of the robot base coordinate system According to the pose value of the calibrated base coordinate system relative to the camera coordinate system, use the vector two-norm formula The accuracy of this calibration method was verified to be 0.38 mm.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810765981.7A CN108818536B (en) | 2018-07-12 | 2018-07-12 | An online offset correction method and device for robot hand-eye calibration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810765981.7A CN108818536B (en) | 2018-07-12 | 2018-07-12 | An online offset correction method and device for robot hand-eye calibration |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108818536A true CN108818536A (en) | 2018-11-16 |
CN108818536B CN108818536B (en) | 2021-05-14 |
Family
ID=64137064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810765981.7A Active CN108818536B (en) | 2018-07-12 | 2018-07-12 | An online offset correction method and device for robot hand-eye calibration |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108818536B (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109571477A (en) * | 2018-12-17 | 2019-04-05 | 西安工程大学 | A kind of improved robot vision and conveyer belt composite calibration method |
CN109760107A (en) * | 2019-01-22 | 2019-05-17 | 广东工业大学 | A method for evaluating robot positioning accuracy based on monocular vision |
CN110000790A (en) * | 2019-04-19 | 2019-07-12 | 深圳科瑞技术股份有限公司 | A kind of scaling method of SCARA robot eye-to-hand hand-eye system |
CN110148187A (en) * | 2019-06-04 | 2019-08-20 | 郑州大学 | A kind of the high-precision hand and eye calibrating method and system of SCARA manipulator Eye-in-Hand |
CN110238845A (en) * | 2019-05-22 | 2019-09-17 | 湖南视比特机器人有限公司 | Optimal Calibration point chooses and the automatic hand and eye calibrating method and device of error measurement |
CN110281238A (en) * | 2019-06-17 | 2019-09-27 | 深圳视觉龙智能传感器有限公司 | Assembly line multi-robot scaling method, device, computer equipment and storage medium |
CN110328666A (en) * | 2019-07-16 | 2019-10-15 | 汕头大学 | Identifying system and material mechanism for picking |
CN110335310A (en) * | 2019-07-09 | 2019-10-15 | 中国大恒(集团)有限公司北京图像视觉技术分公司 | A kind of scaling method under the non-common visual field |
CN110497386A (en) * | 2019-08-26 | 2019-11-26 | 中科新松有限公司 | A kind of cooperation Robot Hand-eye relationship automatic calibration device and method |
CN110517208A (en) * | 2019-08-19 | 2019-11-29 | 东莞弓叶互联科技有限公司 | Coordinate system correlations method and system |
CN110653823A (en) * | 2019-10-12 | 2020-01-07 | 四川长虹电器股份有限公司 | Hand-eye calibration result visualization method based on data inversion |
CN110936355A (en) * | 2019-11-25 | 2020-03-31 | 广州微林软件有限公司 | Mechanical arm guiding system and method based on visual speed measurement positioning |
CN111157004A (en) * | 2019-12-31 | 2020-05-15 | 上海新时达机器人有限公司 | Tool calibration method of four-axis robot with downward flange |
CN111452043A (en) * | 2020-03-27 | 2020-07-28 | 陕西丝路机器人智能制造研究院有限公司 | Method for calibrating hands and eyes of robot and industrial camera |
CN111823230A (en) * | 2020-06-19 | 2020-10-27 | 山东科技大学 | A non-fixed hand-eye relationship calibration method based on Scara robot |
CN112456128A (en) * | 2020-12-04 | 2021-03-09 | 深圳市宏申工业智能有限公司 | Automatic loading and unloading method and system on production line based on machine vision |
CN112936265A (en) * | 2021-01-29 | 2021-06-11 | 山东莱钢永锋钢铁有限公司 | System for remotely regulating ABB mechanical arm |
CN113146633A (en) * | 2021-04-23 | 2021-07-23 | 无锡信捷电气股份有限公司 | High-precision hand-eye calibration method based on automatic box pasting system |
CN113192123A (en) * | 2020-01-14 | 2021-07-30 | 杭州海康威视数字技术股份有限公司 | Image processing method, device and equipment |
CN113237434A (en) * | 2021-04-25 | 2021-08-10 | 湖南大学 | Stepped calibrator-based eye-in-hand calibration method for laser profile sensor |
CN113400298A (en) * | 2021-05-10 | 2021-09-17 | 埃夫特智能装备股份有限公司 | Public-view-free multi-camera positioning large workpiece and industrial robot position compensation method |
CN113977576A (en) * | 2021-10-18 | 2022-01-28 | 深圳回收宝科技有限公司 | Automatic calibration system and automatic calibration method |
CN114310901A (en) * | 2022-01-14 | 2022-04-12 | 北京京东乾石科技有限公司 | Coordinate system calibration method, apparatus, system and medium for robot |
CN114612567A (en) * | 2020-12-08 | 2022-06-10 | 北京极智嘉科技股份有限公司 | Camera calibration method and device, computer equipment and computer storage medium |
CN115519533A (en) * | 2021-06-24 | 2022-12-27 | 广东博智林机器人有限公司 | Robot eye calibration method and device, robot and storage medium |
CN115741666A (en) * | 2022-08-31 | 2023-03-07 | 深圳前海瑞集科技有限公司 | Robot hand-eye calibration method, robot and robot operation method |
CN115903791A (en) * | 2022-10-28 | 2023-04-04 | 珠海格力电器股份有限公司 | Calibration and calibration method and system for robot conveyor belt and storage medium |
CN116038721A (en) * | 2023-04-03 | 2023-05-02 | 广东工业大学 | Hand-eye calibration method and system without kinematic participation |
WO2023097647A1 (en) * | 2021-12-03 | 2023-06-08 | 宁德时代新能源科技股份有限公司 | Ccd camera calibration system, method and apparatus, computing device, and storage medium |
CN116968025A (en) * | 2023-08-01 | 2023-10-31 | 上海昇视唯盛科技有限公司 | A robot calibration method, device, electronic equipment and medium |
US11992959B1 (en) | 2023-04-03 | 2024-05-28 | Guangdong University Of Technology | Kinematics-free hand-eye calibration method and system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06238584A (en) * | 1992-12-21 | 1994-08-30 | Matsushita Electric Works Ltd | Supply of part and device therefor |
JP2013097514A (en) * | 2011-10-31 | 2013-05-20 | Omron Corp | Image processor and image processing program |
CN106767393A (en) * | 2015-11-20 | 2017-05-31 | 沈阳新松机器人自动化股份有限公司 | The hand and eye calibrating apparatus and method of robot |
CN107053177A (en) * | 2017-04-13 | 2017-08-18 | 北京邮电大学 | The improved hand and eye calibrating algorithm based on screening and least square method |
CN108122257A (en) * | 2016-11-28 | 2018-06-05 | 沈阳新松机器人自动化股份有限公司 | A kind of Robotic Hand-Eye Calibration method and device |
WO2018128355A1 (en) * | 2017-01-04 | 2018-07-12 | Samsung Electronics Co., Ltd. | Robot and electronic device for performing hand-eye calibration |
-
2018
- 2018-07-12 CN CN201810765981.7A patent/CN108818536B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06238584A (en) * | 1992-12-21 | 1994-08-30 | Matsushita Electric Works Ltd | Supply of part and device therefor |
JP2013097514A (en) * | 2011-10-31 | 2013-05-20 | Omron Corp | Image processor and image processing program |
CN106767393A (en) * | 2015-11-20 | 2017-05-31 | 沈阳新松机器人自动化股份有限公司 | The hand and eye calibrating apparatus and method of robot |
CN108122257A (en) * | 2016-11-28 | 2018-06-05 | 沈阳新松机器人自动化股份有限公司 | A kind of Robotic Hand-Eye Calibration method and device |
WO2018128355A1 (en) * | 2017-01-04 | 2018-07-12 | Samsung Electronics Co., Ltd. | Robot and electronic device for performing hand-eye calibration |
CN107053177A (en) * | 2017-04-13 | 2017-08-18 | 北京邮电大学 | The improved hand and eye calibrating algorithm based on screening and least square method |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109571477A (en) * | 2018-12-17 | 2019-04-05 | 西安工程大学 | A kind of improved robot vision and conveyer belt composite calibration method |
CN109760107A (en) * | 2019-01-22 | 2019-05-17 | 广东工业大学 | A method for evaluating robot positioning accuracy based on monocular vision |
CN109760107B (en) * | 2019-01-22 | 2022-04-12 | 九天创新(广东)智能科技有限公司 | Monocular vision-based robot positioning accuracy evaluation method |
CN110000790B (en) * | 2019-04-19 | 2021-11-16 | 深圳市科瑞软件技术有限公司 | Calibration method of eye-to-hand system of SCARA robot |
CN110000790A (en) * | 2019-04-19 | 2019-07-12 | 深圳科瑞技术股份有限公司 | A kind of scaling method of SCARA robot eye-to-hand hand-eye system |
CN110238845A (en) * | 2019-05-22 | 2019-09-17 | 湖南视比特机器人有限公司 | Optimal Calibration point chooses and the automatic hand and eye calibrating method and device of error measurement |
CN110148187A (en) * | 2019-06-04 | 2019-08-20 | 郑州大学 | A kind of the high-precision hand and eye calibrating method and system of SCARA manipulator Eye-in-Hand |
CN110281238A (en) * | 2019-06-17 | 2019-09-27 | 深圳视觉龙智能传感器有限公司 | Assembly line multi-robot scaling method, device, computer equipment and storage medium |
CN110281238B (en) * | 2019-06-17 | 2022-05-17 | 深圳视觉龙智能传感器有限公司 | Assembly line multi-manipulator calibration method and device, computer equipment and storage medium |
CN110335310A (en) * | 2019-07-09 | 2019-10-15 | 中国大恒(集团)有限公司北京图像视觉技术分公司 | A kind of scaling method under the non-common visual field |
CN110335310B (en) * | 2019-07-09 | 2021-07-02 | 中国大恒(集团)有限公司北京图像视觉技术分公司 | Calibration method under non-common vision field |
CN110328666A (en) * | 2019-07-16 | 2019-10-15 | 汕头大学 | Identifying system and material mechanism for picking |
CN110517208A (en) * | 2019-08-19 | 2019-11-29 | 东莞弓叶互联科技有限公司 | Coordinate system correlations method and system |
CN110517208B (en) * | 2019-08-19 | 2023-06-16 | 广东弓叶科技有限公司 | Coordinate system association method and system |
CN110497386A (en) * | 2019-08-26 | 2019-11-26 | 中科新松有限公司 | A kind of cooperation Robot Hand-eye relationship automatic calibration device and method |
CN110497386B (en) * | 2019-08-26 | 2021-03-30 | 中科新松有限公司 | Automatic calibration method for hand-eye relationship of cooperative robot |
CN110653823A (en) * | 2019-10-12 | 2020-01-07 | 四川长虹电器股份有限公司 | Hand-eye calibration result visualization method based on data inversion |
CN110936355B (en) * | 2019-11-25 | 2021-06-22 | 广州微林软件有限公司 | Mechanical arm guiding system and method based on visual speed measurement positioning |
CN110936355A (en) * | 2019-11-25 | 2020-03-31 | 广州微林软件有限公司 | Mechanical arm guiding system and method based on visual speed measurement positioning |
CN111157004B (en) * | 2019-12-31 | 2024-03-19 | 上海新时达机器人有限公司 | Tool calibration method for flange downward four-axis robot |
CN111157004A (en) * | 2019-12-31 | 2020-05-15 | 上海新时达机器人有限公司 | Tool calibration method of four-axis robot with downward flange |
CN113192123B (en) * | 2020-01-14 | 2024-05-24 | 杭州海康威视数字技术股份有限公司 | Image processing method, device and equipment |
CN113192123A (en) * | 2020-01-14 | 2021-07-30 | 杭州海康威视数字技术股份有限公司 | Image processing method, device and equipment |
CN111452043B (en) * | 2020-03-27 | 2023-02-17 | 陕西丝路机器人智能制造研究院有限公司 | Method for calibrating hands and eyes of robot and industrial camera |
CN111452043A (en) * | 2020-03-27 | 2020-07-28 | 陕西丝路机器人智能制造研究院有限公司 | Method for calibrating hands and eyes of robot and industrial camera |
CN111823230A (en) * | 2020-06-19 | 2020-10-27 | 山东科技大学 | A non-fixed hand-eye relationship calibration method based on Scara robot |
CN111823230B (en) * | 2020-06-19 | 2022-01-07 | 山东科技大学 | Non-fixed hand-eye relationship calibration method based on Scara robot |
CN112456128B (en) * | 2020-12-04 | 2021-11-05 | 深圳市宏申工业智能有限公司 | Automatic loading and unloading method and system on production line based on machine vision |
CN112456128A (en) * | 2020-12-04 | 2021-03-09 | 深圳市宏申工业智能有限公司 | Automatic loading and unloading method and system on production line based on machine vision |
CN114612567A (en) * | 2020-12-08 | 2022-06-10 | 北京极智嘉科技股份有限公司 | Camera calibration method and device, computer equipment and computer storage medium |
CN112936265A (en) * | 2021-01-29 | 2021-06-11 | 山东莱钢永锋钢铁有限公司 | System for remotely regulating ABB mechanical arm |
CN113146633B (en) * | 2021-04-23 | 2023-12-19 | 无锡信捷电气股份有限公司 | High-precision hand-eye calibration method based on automatic box pasting system |
CN113146633A (en) * | 2021-04-23 | 2021-07-23 | 无锡信捷电气股份有限公司 | High-precision hand-eye calibration method based on automatic box pasting system |
CN113237434A (en) * | 2021-04-25 | 2021-08-10 | 湖南大学 | Stepped calibrator-based eye-in-hand calibration method for laser profile sensor |
CN113237434B (en) * | 2021-04-25 | 2022-04-01 | 湖南大学 | An eye-in-hand calibration method of laser profile sensor based on stepped calibration object |
CN113400298A (en) * | 2021-05-10 | 2021-09-17 | 埃夫特智能装备股份有限公司 | Public-view-free multi-camera positioning large workpiece and industrial robot position compensation method |
CN113400298B (en) * | 2021-05-10 | 2022-04-08 | 埃夫特智能装备股份有限公司 | A multi-camera positioning large workpiece and industrial robot position compensation method without public view |
CN115519533A (en) * | 2021-06-24 | 2022-12-27 | 广东博智林机器人有限公司 | Robot eye calibration method and device, robot and storage medium |
CN115519533B (en) * | 2021-06-24 | 2024-12-27 | 广东博智林机器人有限公司 | Robot hand-eye calibration method, device, robot and storage medium |
CN113977576A (en) * | 2021-10-18 | 2022-01-28 | 深圳回收宝科技有限公司 | Automatic calibration system and automatic calibration method |
WO2023097647A1 (en) * | 2021-12-03 | 2023-06-08 | 宁德时代新能源科技股份有限公司 | Ccd camera calibration system, method and apparatus, computing device, and storage medium |
CN114310901B (en) * | 2022-01-14 | 2023-09-26 | 北京京东乾石科技有限公司 | Coordinate system calibration method, device, system and medium for robot |
CN114310901A (en) * | 2022-01-14 | 2022-04-12 | 北京京东乾石科技有限公司 | Coordinate system calibration method, apparatus, system and medium for robot |
CN115741666A (en) * | 2022-08-31 | 2023-03-07 | 深圳前海瑞集科技有限公司 | Robot hand-eye calibration method, robot and robot operation method |
CN115903791A (en) * | 2022-10-28 | 2023-04-04 | 珠海格力电器股份有限公司 | Calibration and calibration method and system for robot conveyor belt and storage medium |
CN116038721A (en) * | 2023-04-03 | 2023-05-02 | 广东工业大学 | Hand-eye calibration method and system without kinematic participation |
US11992959B1 (en) | 2023-04-03 | 2024-05-28 | Guangdong University Of Technology | Kinematics-free hand-eye calibration method and system |
WO2024207703A1 (en) * | 2023-04-03 | 2024-10-10 | 广东工业大学 | Hand-eye calibration method and system without kinematics involvement |
CN116038721B (en) * | 2023-04-03 | 2023-07-18 | 广东工业大学 | Hand-eye calibration method and system without kinematic participation |
CN116968025A (en) * | 2023-08-01 | 2023-10-31 | 上海昇视唯盛科技有限公司 | A robot calibration method, device, electronic equipment and medium |
Also Published As
Publication number | Publication date |
---|---|
CN108818536B (en) | 2021-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108818536A (en) | A kind of online offset correction method and device of Robotic Hand-Eye Calibration | |
JP6770605B2 (en) | Vision system for training the assembly system by virtual assembly of the object | |
US10857673B2 (en) | Device, method, program and recording medium, for simulation of article arraying operation performed by robot | |
CN110014426B (en) | Method for grabbing symmetrically-shaped workpieces at high precision by using low-precision depth camera | |
CN106272424B (en) | A kind of industrial robot grasping means based on monocular camera and three-dimensional force sensor | |
CN109781164B (en) | Static calibration method of line laser sensor | |
JP7027299B2 (en) | Calibration and operation of vision-based operation system | |
JP6900290B2 (en) | Robot system | |
EP4101604A1 (en) | System and method for improving accuracy of 3d eye-to-hand coordination of a robotic system | |
CN113146620A (en) | Binocular vision-based double-arm cooperative robot system and control method | |
CN107214692A (en) | The automatic calibration method of robot system | |
CN110148187A (en) | A kind of the high-precision hand and eye calibrating method and system of SCARA manipulator Eye-in-Hand | |
CN110722558B (en) | Origin correction method and device for robot, controller and storage medium | |
CN113510708B (en) | An automatic calibration system for contact-type industrial robots based on binocular vision | |
CN105865341B (en) | Industrial robot spatial pose repetitive positioning accuracy measuring device and method | |
CN103029131A (en) | Mechanical arm motion control system and mechanical arm motion control method | |
US12194643B2 (en) | System and method for improving accuracy of 3D eye-to-hand coordination of a robotic system | |
CN113211431A (en) | Pose estimation method based on two-dimensional code correction robot system | |
CN104552341A (en) | Single-point multi-view meter-hanging posture error detecting method of mobile industrial robot | |
JP2012101306A (en) | Apparatus and method for calibration of robot | |
CN106355614A (en) | Mechanical system correcting and monitoring device | |
CN114643578A (en) | Calibration device and method for improving robot vision guide precision | |
CN115078961A (en) | Desktop-level circuit board detection device and method based on visual feedback mechanical arm | |
CN117428777A (en) | A hand-eye calibration method for bag-unpacking robots | |
CN116038721A (en) | Hand-eye calibration method and system without kinematic participation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250421 Address after: Room 123, Building 11, No. 37 West Street, Yukou Town, Pinggu District, Beijing 101200 Patentee after: Beijing Kubote Technology Co.,Ltd. Country or region after: China Address before: 430073 unit 301, building E2, future science and Technology City, 999 Gaoxin Avenue, Donghu New Technology Development Zone, Wuhan City, Hubei Province Patentee before: WUHAN COBOT TECHNOLOGY Co.,Ltd. Country or region before: China |