CN108805029B - A ground-based cloud image recognition method based on significant dual activation coding - Google Patents
A ground-based cloud image recognition method based on significant dual activation coding Download PDFInfo
- Publication number
- CN108805029B CN108805029B CN201810433104.XA CN201810433104A CN108805029B CN 108805029 B CN108805029 B CN 108805029B CN 201810433104 A CN201810433104 A CN 201810433104A CN 108805029 B CN108805029 B CN 108805029B
- Authority
- CN
- China
- Prior art keywords
- activation
- image
- feature vector
- convolution
- significant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004913 activation Effects 0.000 title claims abstract description 97
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000009977 dual effect Effects 0.000 title claims abstract description 15
- 239000013598 vector Substances 0.000 claims abstract description 74
- 238000012549 training Methods 0.000 claims abstract description 35
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 28
- 238000012360 testing method Methods 0.000 claims abstract description 10
- 230000004044 response Effects 0.000 claims description 18
- 238000007781 pre-processing Methods 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 235000009508 confectionery Nutrition 0.000 claims 1
- 239000004576 sand Substances 0.000 claims 1
- 238000000605 extraction Methods 0.000 description 4
- 238000003909 pattern recognition Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Astronomy & Astrophysics (AREA)
- Remote Sensing (AREA)
- Image Analysis (AREA)
Abstract
本发明实施例公开了一种基于显著对偶激活编码的地基云图识别方法,包括:将训练地基云图输入卷积神经网络,得到卷积激活图;利用浅层卷积激活图得到显著性图像局部区域,对其特征提取得到显著特征向量;获取深层卷积激活图对应的图像区域,学习对应的权重;基于显著特征向量和权重,得到训练地基云图权重显著特征向量集合,对其进行显著对偶激活编码,得到权重显著特征向量;获取测试地基云图的权重显著特征向量,对其进行分类得到识别结果。本发明利用卷积神经网络浅层和深层卷积激活图进行特征提取,挖掘显著结构和纹理信息和包含高语义信息的特征,进一步通过显著对偶激活编码,得到最具代表性的特征表示地基云图,提高了地基云图分类正确率。
The embodiment of the present invention discloses a ground-based cloud image recognition method based on salient dual activation coding, which includes: inputting a training ground-based cloud image into a convolutional neural network to obtain a convolution activation map; using a shallow convolution activation map to obtain a local area of a saliency image , extract its features to obtain salient feature vectors; obtain the image area corresponding to the deep convolution activation map, and learn the corresponding weights; based on the salient feature vectors and weights, obtain a set of salient feature vectors for the weight of the training ground cloud image, and perform significant dual activation coding on them. , obtain the weighted salient feature vector; obtain the weighted salient feature vector of the test ground cloud image, and classify it to obtain the identification result. The invention uses the convolutional neural network shallow and deep convolutional activation maps to extract features, mines significant structure and texture information and features containing high semantic information, and further obtains the most representative feature representation ground-based cloud map through significant dual activation coding , which improves the accuracy of ground-based cloud image classification.
Description
技术领域technical field
本发明属于模式识别、人工智能技术领域,具体涉及一种基于显著对偶激活编码的地基云图识别方法。The invention belongs to the technical fields of pattern recognition and artificial intelligence, and in particular relates to a ground-based cloud image recognition method based on significant dual activation coding.
背景技术Background technique
在大气科学领域,云的生成、外形特征、云量的多少等反映着大气的运动,预示着未来天气变化的重要征兆之一,在天气预报预警中起着至关重要的作用。云观测的一种重要方式就是地基云观测,地基云图自动分类对气候气象研究等具有重要的意义。目前,国内外的专家已经开展了相关领域的研究工作。Isosalo等人采用局部纹理信息,比如局部二值模式(Local Binary Pattern,LBP)和局部边缘模式(Local Edge Patterns,LEP)进行高积云、卷云、层云、积云和晴空等5种天空类型的判断。Calbo等人抽取傅里叶变换图像信息和图像的统计信息来描述地基云图,进行高积云、卷云、层云、积云和晴空等5种天空类型的分类。Heinle等人同时采用光谱、纹理和颜色信息描述地基云图,进行地基云图分类。Xiao等人进一步以稠密采样的方式提取纹理、结构和颜色信息进行不同天空类型的分类。Wang等人基于旋转不变的LBP(Rotation Invariant LBP),提出稳定的LBPs(The Stable LBPs)分类不同的云类型。随着卷积神经网络(Convolutional Neural Networks,CNNs)在模式识别、图像处理等领域取得的巨大成果,CNNs也开始应用于地基云图分类,并且CNNs的分类效果优于基于手工特征(hand-craft features)的传统地基云图分类方法。Ye等人首次利用卷积神经网络(Convolutional Neural Networks,CNNs)进行地基云图分类,分类准确率明显提高。Zhang等人通过对卷积激活图上的局部特征进行编码,改善了交叉域地基云分类的性能。此外,Shi等人认为在地基云图的表示方面,深层卷积激活图上的特征优于传统的手工特征(hand-craft features)。以上基于CNNs的地基云图分类方法都是在单卷积层进行特征提取,不能获得较完备的地基云图信息。在地基云图的特征表示方面,这些方法通常使用最大池化(max pooling)、平均池化(average pooling)等对提取到的特征聚合成一个特征向量来表示地基云图,此种特征向量通常会缺少判别性。因此,在地基云图的特征表示方面,需要更进一步的创新方法来提高地基云图分类的准确率。In the field of atmospheric science, cloud formation, shape characteristics, and amount of cloud reflect the movement of the atmosphere, indicating one of the important signs of future weather changes, and playing a crucial role in weather forecasting and early warning. An important method of cloud observation is ground-based cloud observation. The automatic classification of ground-based cloud images is of great significance to climate and meteorological research. At present, domestic and foreign experts have carried out research work in related fields. Isosalo et al. used local texture information, such as Local Binary Patterns (LBP) and Local Edge Patterns (LEPs), for 5 sky types including Altocumulus, Cirrus, Stratus, Cumulus and Clear Sky. judge. Calbo et al. extracted the Fourier transform image information and the statistical information of the image to describe the ground-based cloud map, and classified five sky types including altocumulus, cirrus, stratus, cumulus and clear sky. Heinle et al. also used spectral, texture and color information to describe ground-based cloud images for ground-based cloud image classification. Xiao et al. further extracted texture, structure and color information in a dense sampling manner for classification of different sky types. Based on Rotation Invariant LBP (Rotation Invariant LBP), Wang et al. proposed Stable LBPs (The Stable LBPs) to classify different cloud types. With the great achievements of Convolutional Neural Networks (CNNs) in pattern recognition, image processing and other fields, CNNs have also begun to be applied to ground-based cloud image classification, and the classification effect of CNNs is better than that based on hand-craft features. ) of the traditional ground-based cloud image classification method. Ye et al. used Convolutional Neural Networks (CNNs) for ground-based cloud image classification for the first time, and the classification accuracy was significantly improved. Zhang et al. improved the performance of cross-domain ground-based cloud classification by encoding local features on convolutional activation maps. Furthermore, Shi et al. argue that features on deep convolutional activation maps outperform traditional hand-craft features in terms of ground-based cloud map representation. The above ground-based cloud image classification methods based on CNNs all perform feature extraction in a single convolution layer, and cannot obtain more complete ground-based cloud image information. In terms of feature representation of ground-based cloud images, these methods usually use max pooling, average pooling, etc. to aggregate the extracted features into a feature vector to represent ground-based cloud images. Such feature vectors are usually missing. discriminative. Therefore, in terms of feature representation of ground-based cloud images, further innovative methods are needed to improve the accuracy of ground-based cloud image classification.
发明内容SUMMARY OF THE INVENTION
本发明的目的是要解决地基云图分类问题,为此,本发明提供一种基于显著对偶激活编码的地基云图识别方法。The purpose of the present invention is to solve the problem of ground-based cloud image classification, and for this purpose, the present invention provides a ground-based cloud image identification method based on significant dual activation coding.
为了实现所述目的,本发明提出一种基于显著对偶激活编码的地基云图识别方法,所述方法包括以下步骤:In order to achieve the purpose, the present invention proposes a ground-based cloud image recognition method based on significant dual activation coding, the method comprising the following steps:
步骤S1,对多幅输入地基云图进行预处理,得到训练地基云图;Step S1, preprocessing multiple input ground-based cloud images to obtain training ground-based cloud images;
步骤S2,将所述训练地基云图输入到卷积神经网络中,得到卷积激活图;Step S2, inputting the training ground cloud image into a convolutional neural network to obtain a convolution activation map;
步骤S3,利用浅层卷积激活图,得到训练地基云图的显著性图像局部区域;Step S3, using the shallow convolution activation map to obtain the saliency image local area of the training ground cloud map;
步骤S4,对于每个显著性图像局部区域进行特征提取,得到相应的显著特征向量;Step S4, perform feature extraction for each saliency image local area to obtain a corresponding salient feature vector;
步骤S5,利用浅层的显著性图像局部区域,获取深层卷积激活图相对应的图像区域,并学习所述图像区域相对应的权重;Step S5, using the saliency image local area of the shallow layer, obtain the image area corresponding to the deep convolution activation map, and learn the corresponding weight of the image area;
步骤S6,基于所述显著特征向量和权重,得到所述训练地基云图对应的权重显著特征向量集合;Step S6, based on the significant feature vector and the weight, obtain the weighted significant feature vector set corresponding to the training ground cloud image;
步骤S7,对于所述权重显著特征向量集合进行显著对偶激活编码,得到训练地基云图对应的权重显著特征向量;Step S7, performing significant dual activation coding on the weight significant feature vector set to obtain the weight significant feature vector corresponding to the training ground cloud image;
步骤S8,获取测试地基云图的权重显著特征向量,基于所述权重显著特征向量对测试地基云图进行分类,得到地基云图识别结果。In step S8, the weighted salient feature vector of the test ground cloud image is obtained, and the test ground cloud image is classified based on the weighted salient feature vector to obtain the ground foundation cloud image identification result.
可选地,所述步骤S1包括以下步骤:Optionally, the step S1 includes the following steps:
步骤S11,将所述输入地基云图的大小归一化为H×W,得到训练地基云图,其中,H和W分别表示训练地基云图的高度和宽度;Step S11, normalize the size of the input ground cloud image to H×W to obtain a training ground cloud image, where H and W represent the height and width of the training ground cloud image, respectively;
步骤S12,获取每幅训练地基云图的类别标签。In step S12, the category label of each training ground cloud image is obtained.
可选地,所述步骤S2包括以下步骤:Optionally, the step S2 includes the following steps:
步骤S21,确定卷积神经网络,并对其进行初始化,将所述卷积神经网络末端的输出个数修改为地基云图的类别数目D;Step S21, determining the convolutional neural network, and initializing it, and modifying the number of outputs at the end of the convolutional neural network to the number D of categories of the ground-based cloud map;
步骤S22,将所述训练地基云图输入至初始化后的卷积神经网络中,得到卷积激活图。Step S22, inputting the training ground cloud image into the initialized convolutional neural network to obtain a convolution activation map.
可选地,所述步骤S3包括以下步骤:Optionally, the step S3 includes the following steps:
步骤S31,获取一预设浅层卷积层对应的一组浅层卷积激活图,该组浅层卷积激活图可以表示成一个张量,大小为Hs×Ws×Ns,其中,下标s表示浅层所在的层数,Hs和Ws分别表示该层卷积激活图的高度和宽度,Ns表示该层卷积激活图的数目;Step S31, obtaining a set of shallow convolution activation maps corresponding to a preset shallow convolution layer, the set of shallow convolution activation maps can be expressed as a tensor with a size of H s ×W s ×N s , where , the subscript s represents the number of layers where the shallow layer is located, H s and W s represent the height and width of the convolution activation map of this layer, respectively, and N s represents the number of convolution activation maps of this layer;
步骤S32,将所述浅层卷积层对应的所有卷积激活图上每个相同位置处的激活响应依次连接,得到一个Ns维的局部特征向量;Step S32, connecting the activation responses at each same position on all convolution activation maps corresponding to the shallow convolutional layers in turn to obtain an N s -dimensional local feature vector;
步骤S33,对所述浅层卷积层对应的所有卷积激活图利用滑动窗口进行稠密采样,基于所述局部特征向量获取每个滑动窗口的激活响应显著值Sk,其中,下标k表示第k个滑动窗口;Step S33, using a sliding window to densely sample all the convolution activation maps corresponding to the shallow convolutional layers, and obtain the activation response saliency value S k of each sliding window based on the local feature vector, where the subscript k represents The kth sliding window;
步骤S34,将所述激活响应显著值Sk进行降序排序,选择前K个激活响应显著值对应的滑动窗口作为显著性图像局部区域,得到K个所述训练地基云图的显著性图像局部区域。Step S34, sort the activation response saliency values S k in descending order, select the sliding windows corresponding to the first K activation response salient values as the saliency image local area, and obtain K saliency image local areas of the training ground cloud image.
可选地,所述滑动窗口的大小为a×a,稠密采样的步长为a/2。Optionally, the size of the sliding window is a×a, and the step size of dense sampling is a/2.
可选地,浅层卷积激活图上第k个滑动窗口的激活响应显著值Sk表示为:Optionally, the activation response saliency S k of the kth sliding window on the shallow convolution activation map is expressed as:
其中,PgP2表示向量的二范数,表示第i个位置处的局部特征向量,a2=a×a表示第k个滑动窗口内的局部特征向量数目,表示第k个滑动窗口的均值特征向量,即滑动窗口内所有局部特征向量的平均值,表示为:where PgP 2 represents the two-norm of the vector, represents the local feature vector at the ith position, a 2 =a×a represents the number of local feature vectors in the kth sliding window, Represents the mean eigenvector of the kth sliding window, that is, the average of all local eigenvectors in the sliding window, expressed as:
可选地,所述步骤S4中,每个所述显著性图像局部区域表示为显著特征向量mk。Optionally, in the step S4, each of the saliency image local regions is represented as a saliency feature vector m k .
可选地,所述步骤S5包括以下步骤:Optionally, the step S5 includes the following steps:
步骤S51,获取一预设深层卷积层对应的一组深层卷积激活图,该组深层卷积激活图可以表示成一个张量,大小为Hd×Wd×Nd,其中,下标d表示深层所在的层数,Hd和Wd分别表示该层卷积激活图的高度和宽度,Nd表示该层卷积激活图的数目;Step S51, obtain a set of deep convolution activation maps corresponding to a preset deep convolution layer, the set of deep convolution activation maps can be expressed as a tensor with a size of H d ×W d ×N d , where the subscript d represents the number of layers where the deep layer is located, H d and W d represent the height and width of the convolution activation map of this layer, respectively, and N d represents the number of convolution activation maps of this layer;
其中,所述深层卷积层可从所述卷积神经网络后半部分的卷积层中选择。Wherein, the deep convolutional layer can be selected from the convolutional layers in the second half of the convolutional neural network.
步骤S52,将所述深层卷积层对应的所有卷积激活图上每个相同位置处的激活响应依次连接,得到Nd维的局部特征向量;Step S52, connecting the activation responses at each same position on all convolution activation maps corresponding to the deep convolutional layers in turn to obtain an N d -dimensional local feature vector;
步骤S53,根据所述浅层卷积层对应的显著性图像局部区域,获取深层卷积激活图中相对应的K个大小为b×b的图像区域;Step S53, according to the saliency image local area corresponding to the shallow convolution layer, obtain K corresponding image areas of size b×b in the deep convolution activation map;
步骤S54,计算所述图像区域对应的权重,表示为:Step S54, calculating the weight corresponding to the image area, expressed as:
其中,表示第k个图像区域的权重,表示第j个位置处的局部特征向量,b2=b×b表示第k个图像区域的局部特征向量数目。in, represents the weight of the kth image region, represents the local feature vector at the jth position, and b 2 =b×b represents the number of local feature vectors in the kth image region.
可选地,所述步骤S6中,根据浅层卷积激活图的K个显著性图像局部区域的显著特征向量mk,和深层卷积激活图的K个图像区域的权重wk,得到每幅训练地基云图的权重显著特征向量集合χ:Optionally, in the step S6, according to the salient feature vectors m k of the K salient image local regions of the shallow convolution activation map, and the weights w k of the K image regions of the deep convolution activation map, each is obtained. The weighted salient feature vector set χ of the training ground-based cloud images:
χ={w1m1,w2m2,...,wKmK}。χ={w 1 m 1 , w 2 m 2 , . . . , w K m K }.
可选地,所述步骤S7中,所述权重显著特征向量表示为:Optionally, in the step S7, the weight significant feature vector is expressed as:
h=(ue m)((ue m)T(ue m))-1Ch=(ue m)((ue m) T (ue m)) -1 C
其中,e表示矩阵元素对应相乘,是一个元素均为c的常数向量。in, e represents the corresponding multiplication of matrix elements, is a constant vector with all elements c.
本发明的有益效果为:本发明利用卷积神经网络的浅层和深层卷积激活图进行特征提取,能够挖掘具有显著的结构和纹理信息和包含高语义信息的特征,进一步通过显著对偶激活编码,得到最具代表性的特征表示地基云图,从而提高地基云图分类的正确率。The beneficial effects of the present invention are as follows: the present invention utilizes the shallow and deep convolution activation maps of the convolutional neural network to perform feature extraction, can mine features with significant structure and texture information and contain high semantic information, and further encode through significant dual activation. , to obtain the most representative features representing the ground-based cloud map, thereby improving the accuracy of the ground-based cloud map classification.
需要说明的是,本发明得到了国家自然科学基金项目No.61501327、No.61711530240,天津市自然科学基金重点项目No.17JCZDJC30600,天津市应用基础与前沿技术研究计划青年基金项目No.15JCQNJC01700,天津师范大学“青年科研拔尖人才培育计划”No.135202RC1703,模式识别国家重点实验室开放课题基金No.201700001、No.201800002,中国国家留学基金No.201708120040、No.201708120039和天津市高等教育创新团队基金项目的资助。It should be noted that the present invention has obtained the National Natural Science Foundation of China Project No. 61501327, No. 61711530240, the Tianjin Natural Science Foundation Key Project No. 17JCZDJC30600, and the Tianjin Applied Basic and Frontier Technology Research Program Youth Fund Project No. 15JCQNJC01700, Tianjin Normal University "Youth Scientific Research Top Talents Cultivation Program" No.135202RC1703, State Key Laboratory of Pattern Recognition Open Project Fund No.201700001, No.201800002, China National Scholarship Fund No.201708120040, No.201708120039 and Tianjin Higher Education Innovation Team Fund project funding.
附图说明Description of drawings
图1是根据本发明一实施例提出的基于显著对偶激活编码的地基云图识别方法的流程图。FIG. 1 is a flowchart of a ground-based cloud image identification method based on salient dual activation coding proposed according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the specific embodiments and the accompanying drawings. It should be understood that these descriptions are exemplary only and are not intended to limit the scope of the invention. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts of the present invention.
图1是根据本发明一实施例提出的基于显著对偶激活编码的地基云图识别方法的流程图,下面以图1为例来说明本发明的一些具体实现流程。本发明的方法是一种基于显著对偶激活编码的地基云图识别方法,其具体步骤包括:FIG. 1 is a flowchart of a ground-based cloud image identification method based on significant dual activation coding proposed according to an embodiment of the present invention, and some specific implementation processes of the present invention are described below by taking FIG. 1 as an example. The method of the present invention is a ground-based cloud image identification method based on significant dual activation coding, and its specific steps include:
步骤S1,对多幅输入地基云图进行预处理,得到训练地基云图;Step S1, preprocessing multiple input ground-based cloud images to obtain training ground-based cloud images;
其中,对多幅输入地基云图进行预处理包括以下步骤:The preprocessing of multiple input ground-based cloud images includes the following steps:
步骤S11,将所述输入地基云图的大小归一化为H×W,得到训练地基云图,其中,H和W分别表示训练地基云图的高度和宽度;Step S11, normalize the size of the input ground cloud image to H×W to obtain a training ground cloud image, where H and W represent the height and width of the training ground cloud image, respectively;
在本发明一实施例中,H×W=224×224。In an embodiment of the present invention, H×W=224×224.
步骤S12,获取每幅训练地基云图的类别标签。In step S12, the category label of each training ground cloud image is obtained.
步骤S2,将所述训练地基云图输入到卷积神经网络中,得到卷积激活图;Step S2, inputting the training ground cloud image into a convolutional neural network to obtain a convolution activation map;
进一步地,所述步骤S2包括以下步骤:Further, the step S2 includes the following steps:
步骤S21,选择一个深度学习中典型的卷积神经网络进行初始化,将所述卷积神经网络末端的输出个数修改为地基云图的类别数目D;Step S21, select a typical convolutional neural network in deep learning to initialize, and modify the output number of the end of the convolutional neural network to the number of categories D of the ground-based cloud map;
在本发明一实施例中,所述卷积神经网络为VGG19,将对7类地基云图进行分类,故D=7。In an embodiment of the present invention, the convolutional neural network is VGG19, which will classify 7 types of ground-based cloud images, so D=7.
步骤S22,将所述训练地基云图输入至初始化后的卷积神经网络中,得到卷积激活图。Step S22, inputting the training ground cloud image into the initialized convolutional neural network to obtain a convolution activation map.
步骤S3,利用浅层卷积激活图,得到训练地基云图的显著性图像局部区域;Step S3, using the shallow convolution activation map to obtain the saliency image local area of the training ground cloud map;
进一步地,所述步骤S3包括以下步骤:Further, the step S3 includes the following steps:
步骤S31,获取一个预设浅层卷积层对应的一组浅层卷积激活图,该组浅层卷积激活图可以表示成一个张量,大小为Hs×Ws×Ns,其中,下标s表示浅层所在的层数,Hs和Ws分别表示该层卷积激活图的高度和宽度,Ns表示该层卷积激活图的数目;Step S31, obtaining a set of shallow convolution activation maps corresponding to a preset shallow convolution layer, the set of shallow convolution activation maps can be expressed as a tensor with a size of H s ×W s ×N s , where , the subscript s represents the number of layers where the shallow layer is located, H s and W s represent the height and width of the convolution activation map of this layer, respectively, and N s represents the number of convolution activation maps of this layer;
其中,所述浅层卷积层可从所述卷积神经网络前半部分的卷积层中选择。Wherein, the shallow convolutional layer can be selected from the convolutional layers in the first half of the convolutional neural network.
在本发明一实施例中,Hs×Ws×Ns=224×224×64。In an embodiment of the present invention, H s ×W s ×N s =224×224×64.
步骤S32,将所述浅层卷积层对应的所有卷积激活图上每个相同位置处的激活响应依次连接,得到一个Ns维的局部特征向量;Step S32, connecting the activation responses at each same position on all convolution activation maps corresponding to the shallow convolutional layers in turn to obtain an N s -dimensional local feature vector;
步骤S33,对所述浅层卷积层对应的所有卷积激活图利用滑动窗口进行稠密采样,基于所述局部特征向量获取每个滑动窗口的激活响应显著值Sk,其中,下标k表示第k个滑动窗口;Step S33, using a sliding window to densely sample all the convolution activation maps corresponding to the shallow convolutional layers, and obtain the activation response saliency value S k of each sliding window based on the local feature vector, where the subscript k represents The kth sliding window;
其中,所述滑动窗口的大小为a×a,稠密采样的步长为a/2。The size of the sliding window is a×a, and the step size of dense sampling is a/2.
其中,浅层卷积激活图上第k个滑动窗口的激活响应显著值Sk表示为:Among them, the activation response saliency value S k of the kth sliding window on the shallow convolution activation map is expressed as:
其中,PgP2表示向量的二范数,表示第i个位置处的局部特征向量,a2=a×a表示第k个滑动窗口内的局部特征向量数目,表示第k个滑动窗口的均值特征向量,即滑动窗口内所有局部特征向量的平均值,表示为:where PgP 2 represents the two-norm of the vector, represents the local feature vector at the ith position, a 2 =a×a represents the number of local feature vectors in the kth sliding window, Represents the mean eigenvector of the kth sliding window, that is, the average of all local eigenvectors in the sliding window, expressed as:
注意,mk也被称作为显著特征向量。Note that m k is also referred to as a salient feature vector.
在本发明一实施例中,a×a=12×12,步长取为6。In an embodiment of the present invention, a×a=12×12, and the step size is 6.
步骤S34,将所述激活响应显著值Sk进行降序排序,选择前K个激活响应显著值对应的滑动窗口作为显著性图像局部区域,得到K个所述训练地基云图的显著性图像局部区域;Step S34, sorting the activation response salient values S k in descending order, selecting the sliding windows corresponding to the first K activation response salient values as the saliency image local area, and obtaining K salient image local areas of the training ground cloud image;
在本发明一实施例中,K取为200。In an embodiment of the present invention, K is taken as 200.
步骤S4,对于每个显著性图像局部区域进行特征提取,得到相应的显著特征向量;Step S4, perform feature extraction for each saliency image local area to obtain a corresponding salient feature vector;
其中,每个所述显著性图像局部区域用显著特征向量mk表示。Wherein, each of the saliency image local regions is represented by a saliency feature vector m k .
步骤S5,利用浅层的显著性图像局部区域,获取深层卷积激活图相对应的图像区域,并学习所述图像区域相对应的权重;Step S5, using the saliency image local area of the shallow layer, obtain the image area corresponding to the deep convolution activation map, and learn the corresponding weight of the image area;
进一步地,所述步骤S5包括以下步骤:Further, the step S5 includes the following steps:
步骤S51,获取一个预设深层卷积层对应的一组深层卷积激活图,该组深层卷积激活图可以表示成一个张量,大小为Hd×Wd×Nd,其中,下标d表示深层所在的层数,Hd和Wd分别表示该层卷积激活图的高度和宽度,Nd表示该层卷积激活图的数目;Step S51 , obtain a set of deep convolution activation maps corresponding to a preset deep convolution layer, and the set of deep convolution activation maps can be expressed as a tensor with a size of H d ×W d ×N d , where the subscript d represents the number of layers where the deep layer is located, H d and W d represent the height and width of the convolution activation map of this layer, respectively, and N d represents the number of convolution activation maps of this layer;
其中,所述深层卷积层可从所述卷积神经网络后半部分的卷积层中选择。Wherein, the deep convolutional layer can be selected from the convolutional layers in the second half of the convolutional neural network.
在本发明一实施例中,Hd×Wd×Nd=56×56×256。In an embodiment of the present invention, H d ×W d ×N d =56×56×256.
步骤S52,将所述深层卷积层对应的所有卷积激活图上每个相同位置处的激活响应依次连接,得到一个Nd维的局部特征向量;Step S52, connecting the activation responses at each same position on all the convolution activation maps corresponding to the deep convolutional layers in turn to obtain an N d -dimensional local feature vector;
步骤S53,根据所述浅层卷积层对应的显著性图像局部区域,获取深层卷积激活图中相对应的K个大小为b×b的图像区域;Step S53, according to the saliency image local area corresponding to the shallow convolution layer, obtain K corresponding image areas of size b×b in the deep convolution activation map;
在本发明一实施例中,b×b=3×3。In an embodiment of the present invention, b×b=3×3.
步骤S54,计算所述图像区域对应的权重,表示为:Step S54, calculating the weight corresponding to the image area, expressed as:
其中,表示第k个图像区域的权重,表示第j个位置处的局部特征向量,b2=b×b表示第k个图像区域的局部特征向量数目。in, represents the weight of the kth image region, represents the local feature vector at the jth position, and b 2 =b×b represents the number of local feature vectors in the kth image region.
步骤S6,基于所述显著特征向量和权重,得到所述训练地基云图对应的权重显著特征向量集合;Step S6, based on the significant feature vector and the weight, obtain the weighted significant feature vector set corresponding to the training ground cloud image;
其中,根据浅层卷积激活图的K个显著性图像局部区域的显著特征向量mk,和深层卷积激活图的K个图像区域的权重wk,得到每幅训练地基云图的权重显著特征向量集合χ:Among them, according to the salient feature vector m k of the K saliency image local regions of the shallow convolution activation map, and the weight w k of the K image regions of the deep convolution activation map, the weighted salient features of each training ground cloud image are obtained. Set of vectors χ:
χ={w1m1,w2m2,...,wKmK}。χ={w 1 m 1 , w 2 m 2 , . . . , w K m K }.
步骤S7,对于所述权重显著特征向量集合进行显著对偶激活编码,得到训练地基云图对应的权重显著特征向量;Step S7, performing significant dual activation coding on the weight significant feature vector set to obtain the weight significant feature vector corresponding to the training ground cloud image;
进一步地,所述步骤S7包括以下步骤:Further, the step S7 includes the following steps:
步骤S71,利用下述目标函数学习一个特征向量作为图像的最终表示,即所述权重显著特征向量,基于:Step S71, utilize the following objective function to learn a feature vector As the final representation of the image, i.e. the weighted salient feature vector, based on:
(wkmk)Th=c,(k=1,2,...,K),(w k m k ) T h=c, (k=1,2,...,K),
其中,c表示一个常数。where c represents a constant.
那么目标函数可表示为:Then the objective function can be expressed as:
(ue m)Th=C,(ue m) Th = C,
其中,e表示矩阵元素对应相乘, 是一个元素均为c的常数向量。Among them, e represents the corresponding multiplication of matrix elements, is a constant vector with all elements c.
在本发明一实施例中,c取为1。In an embodiment of the present invention, c is taken as 1.
步骤S72,为得到最优的提出:Step S72, in order to obtain the optimal propose:
minP(ue m)Th-CP2,minP(ue m) Th -CP 2 ,
利用伪逆进行求解,得到极小范数解,即最优的h:Use the pseudo-inverse to solve, and get the minimal norm solution, that is, the optimal h:
h=(ue m)((ue m)T(ue m))-1C。h=(ue m)((ue m) T (ue m)) - 1C.
步骤S8,根据所述步骤S1-S7,获取测试地基云图的权重显著特征向量,基于所述测试地基云图的权重显著特征向量,对测试地基云图进行分类,得到地基云图识别结果。Step S8, according to the steps S1-S7, obtain the weight significant feature vector of the test ground cloud image, classify the test ground cloud image based on the weight significant feature vector of the test ground cloud image, and obtain the ground foundation cloud image identification result.
在本发明一实施例中,基于所述测试地基云图的权重显著特征向量,使用最近邻分类器对测试地基云图进行分类。In an embodiment of the present invention, based on the weighted salient feature vector of the test ground cloud image, a nearest neighbor classifier is used to classify the test ground cloud image.
以中国气象科学研究院采集的地基云图数据库为例,地基云图识别的正确率为91.24%,由此可见本发明方法的有效性。Taking the ground-based cloud image database collected by the Chinese Academy of Meteorological Sciences as an example, the correct rate of ground-based cloud image recognition is 91.24%, which shows the effectiveness of the method of the present invention.
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。It should be understood that the above-mentioned specific embodiments of the present invention are only used to illustrate or explain the principle of the present invention, but not to limit the present invention. Therefore, any modifications, equivalent replacements, improvements, etc. made without departing from the spirit and scope of the present invention should be included within the protection scope of the present invention. Furthermore, the appended claims of this invention are intended to cover all changes and modifications that fall within the scope and boundaries of the appended claims, or the equivalents of such scope and boundaries.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810433104.XA CN108805029B (en) | 2018-05-08 | 2018-05-08 | A ground-based cloud image recognition method based on significant dual activation coding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810433104.XA CN108805029B (en) | 2018-05-08 | 2018-05-08 | A ground-based cloud image recognition method based on significant dual activation coding |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108805029A CN108805029A (en) | 2018-11-13 |
CN108805029B true CN108805029B (en) | 2021-08-24 |
Family
ID=64091994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810433104.XA Active CN108805029B (en) | 2018-05-08 | 2018-05-08 | A ground-based cloud image recognition method based on significant dual activation coding |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108805029B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111310820A (en) * | 2020-02-11 | 2020-06-19 | 山西大学 | Ground-based meteorological cloud image classification method based on cross-validation deep CNN feature integration |
CN112232297B (en) * | 2020-11-09 | 2023-08-22 | 北京理工大学 | Remote Sensing Image Scene Classification Method Based on Deep Joint Convolution Activation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106295542A (en) * | 2016-08-03 | 2017-01-04 | 江苏大学 | A kind of road target extracting method of based on significance in night vision infrared image |
CN107274419A (en) * | 2017-07-10 | 2017-10-20 | 北京工业大学 | A kind of deep learning conspicuousness detection method based on global priori and local context |
CN107784308A (en) * | 2017-10-09 | 2018-03-09 | 哈尔滨工业大学 | Conspicuousness object detection method based on the multiple dimensioned full convolutional network of chain type |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2017248363A1 (en) * | 2016-04-08 | 2018-11-22 | Vizzario, Inc. | Methods and systems for obtaining, aggregating, and analyzing vision data to assess a person's vision performance |
-
2018
- 2018-05-08 CN CN201810433104.XA patent/CN108805029B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106295542A (en) * | 2016-08-03 | 2017-01-04 | 江苏大学 | A kind of road target extracting method of based on significance in night vision infrared image |
CN107274419A (en) * | 2017-07-10 | 2017-10-20 | 北京工业大学 | A kind of deep learning conspicuousness detection method based on global priori and local context |
CN107784308A (en) * | 2017-10-09 | 2018-03-09 | 哈尔滨工业大学 | Conspicuousness object detection method based on the multiple dimensioned full convolutional network of chain type |
Non-Patent Citations (4)
Title |
---|
Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection;Pingping Zhang;《2017 IEEE International Conference on Computer Vision》;20171225;第1-10页 * |
Deep Convolutional Activations-Based Features for Ground-Based Cloud Classification;Cunzhao Shi et al.;《IEEE GEOSCIENCE AND REMOTE SENSING LETTERS》;20170331;第816-820页 * |
用于图像检索的多区域交叉加权聚合深度卷积特征;董荣胜等;《计算机辅助设计与图形学学报》;20180430;第658-665页 * |
联合显著性和多层卷积神经网络的高分影像场景分类;何小飞等;《测绘学报》;20160930;第1073-1080页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108805029A (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Tropical cyclone intensity estimation from geostationary satellite imagery using deep convolutional neural networks | |
CN109034044B (en) | A Pedestrian Re-identification Method Based on Fusion Convolutional Neural Networks | |
Zhang et al. | Deconv R-CNN for small object detection on remote sensing images | |
CN107145830B (en) | Hyperspectral image classification method based on spatial information enhancing and deepness belief network | |
CN108229589B (en) | A ground-based cloud image classification method based on transfer learning | |
CN113723255B (en) | Hyperspectral image classification method and storage medium | |
CN107480620B (en) | Remote sensing image automatic target identification method based on heterogeneous feature fusion | |
CN112052772B (en) | A face occlusion detection method | |
CN105956612B (en) | Hyperspectral image classification method based on Active Learning and semi-supervised learning | |
CN109271895A (en) | Pedestrian's recognition methods again based on Analysis On Multi-scale Features study and Image Segmentation Methods Based on Features | |
CN111401426B (en) | A Few-Sample Hyperspectral Image Classification Method Based on Pseudo-Label Learning | |
CN110633708A (en) | Deep network significance detection method based on global model and local optimization | |
CN105334504B (en) | The radar target identification method of nonlinear discriminant projection model based on big border | |
Lan et al. | Defect detection from UAV images based on region-based CNNs | |
CN105528794A (en) | Moving object detection method based on Gaussian mixture model and superpixel segmentation | |
CN104182767B (en) | The hyperspectral image classification method that Active Learning and neighborhood information are combined | |
CN107392237B (en) | A cross-domain ground-based cloud image classification method based on migration visual information | |
CN108830243A (en) | Hyperspectral image classification method based on capsule network | |
CN108133186A (en) | A kind of plant leaf identification method based on deep learning | |
CN106408030A (en) | SAR image classification method based on middle lamella semantic attribute and convolution neural network | |
He et al. | Object-oriented mangrove species classification using hyperspectral data and 3-D Siamese residual network | |
Liu et al. | Multimodal ground-based remote sensing cloud classification via learning heterogeneous deep features | |
CN116910571B (en) | Open-domain adaptation method and system based on prototype comparison learning | |
CN106611423A (en) | SAR image segmentation method based on ridge wave filter and deconvolution structural model | |
CN105320963B (en) | The semi-supervised feature selection approach of large scale towards high score remote sensing images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |