CN108802584B - 一种变压器绝缘纸老化状态评估方法 - Google Patents
一种变压器绝缘纸老化状态评估方法 Download PDFInfo
- Publication number
- CN108802584B CN108802584B CN201810692608.3A CN201810692608A CN108802584B CN 108802584 B CN108802584 B CN 108802584B CN 201810692608 A CN201810692608 A CN 201810692608A CN 108802584 B CN108802584 B CN 108802584B
- Authority
- CN
- China
- Prior art keywords
- paper
- transformer
- oil
- capacitance
- aging state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1263—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Housings And Mounting Of Transformers (AREA)
- Testing Relating To Insulation (AREA)
Abstract
本发明涉及一种变压器绝缘纸老化状态评估方法,步骤如下:首先,构建反映变压器绝缘纸老化状态变化的变压器绝缘油特征类、绝缘纸特征类、气体特征类、温度特征类、电容特征类、局部放电特征类的数据集以及计算相应的概率数值;然后,进行反映变压器绝缘纸老化状态的油、纸、气体、温度、电容、局部放电特征值平均值计算;再之,构建变压器绝缘纸老化状态评估函数;最后,进行变压器绝缘纸老化状态评估。本发明可以评估变压器绝缘纸老化状态,反映出变压器绝缘纸老化状态特征值具有的不确定性,为变压器绝缘纸老化状态评估提供理论指导,为配电网运维提供必要的技术支撑。
Description
技术领域
本发明涉及电力系统及其自动化的技术领域,尤其涉及到一种变压器绝缘纸老化状态评估方法。
背景技术
传统配网主设备的事后维修和定期计划检修往往需要投入大量的人为、物力,而且维修的性价比不高。随着设备自动化程度的提高,与时间相关的设备的故障模式只占设备所有故障模式的6%,因此基于时间的定期维修策略只对6%的设备故障模式有效。以定期维修为主结合经验决定延长或缩短检修周期的维修方式,取得了一定的效果。
随着电力设备数量与日俱增,设备间关联关系日趋复杂,社会对供电可靠性要求越来越高,安排停电检修日益困难;配电网设备量多面广、运行状态复杂多变,难以及时检测和评估配网主设备状态,以往检修策略更多地重视试验数据而很少重视运行数据,无法适应日趋精益化的状态检修管理要求。
变压器数量多,会存在不同程度的老化、老化、缺陷并具有家族性和隐蔽性,难以得到及时检测和评估。因运行年限、环境、检修等有很大差异并受多因素影响,增加了变压器运行绝缘纸老化状态评价的难度和复杂性,无法满足精准化和智能化评价的更高要求。
变压器安全可靠运行首先要有严格质量保障,还要有足够的维护和检修保证。虽然定期预防性检修能够在一定程度上预防老化、老化或缺陷问题所导致的故障事故事件的发生,但是很难发现潜在性、隐蔽性极强的缺陷等。故障检修是一种被动的检修模式,具有极大的压力和不确定性,也容易导致过修或失修的问题。状态检修具有针对性和合理性,能够有效克服定期检修造成的过修和失修的问题,能够防范配电设备老化、老化或缺陷问题的扩大化和严重化,是今后设备检修发展的趋势。
传统上,大多通过油中溶解气体等单一因素数据计算和分析方法来评估变压器绝缘纸老化状态,能够较准确、可靠地发现逐步发展的变压器潜在缺陷;利用小波网络法、神经网络方法、模糊聚类法、灰色聚类、支持向量机、粗糙集方法、证据推理法、贝叶斯网络分类器等数学方法对单一因素数据进行处理、计算和分析,也能够较准确、可靠地评估变压器老化、老化和缺陷状态。虽然神经网络法利用预先自训练和自学习的方式对高危数据进行处理和计算,受系统或参数的状态值严重影响,一旦状态发生变化就需要进行重新训练和学习,其适应性偏弱并影响分析结果;故障树法按照一定的规则对故障的细化分解,以剖析故障类型及其原因,需要非常细化的故障信息完整性和正确性,对潜在性故障难以发现;支持向量机法采用一定的规则对数据进行分层处理,在数据量多时容易出现误分、错分等问题;粗糙集和模糊理论方法在处理随机性和模糊性数据方面有独到的优势,但是粗糙集只能处理离散数据,模糊理论方法没有自学习和自适应能力;贝叶斯网络分类方法能够较好地处理不完备数据,但需要提供足够完备的系统或参数的关键属性数据,否则其计算和评估正确率会较低;证据推理理论能够较好、较准确地处理冗余信息或数据,但在信息或数据之间存在相互矛盾时应用于证据的事件判别有很大的局限性。
利用经验、单一参量或少量数据容易造成评价精确度低,进而导致过修或失修等问题。在出厂、监测、试验、测试、巡检、运行、计量、自动化等多源数据的融合基础上,根据设备类型、运行工况和应用环境进行分类评估,建立基于数据驱动的变压器绝缘纸老化状态模型,以关键指标的冗余分析和相关性分析进行状态评价,为变压器的可靠运行提供技术支撑,为变压器的故障发生提供风险预警。
导致变压器故障的因素有绝缘受潮、铁心故障、电流回路过热、绕组故障、局部放电、油流放电、电弧放电、绝缘老化和绝缘纸老化,影响变压器绝缘纸老化状态有绝缘油介质损耗、油中含水量、油击穿电压、绝缘电阻吸收比、极化指数、体积电阻率、H2含量、铁心绝缘电阻等参量。变压器差异化运维需要整体评估,而状态评估涉及台账信息、巡检信息、带电检测及在线监测数据、离线试验数据等,数据量大,影响机理不同,常规评估方法侧重于某些层面或指标研究,已无法满足多维度、大数据的要求。采用大数据技术,可以全面反映主设备状态变化并确定其特征和关键参量。利用出厂试验数据、缺陷和事故记录、定期和非定期的试验数据等静态数据,利用设备在线检测的数据及实时运行信息等动态数据,包括电压、电流、功率等实时运行信息,短路故障、雷击跳间、家族性缺陷等故障信息,红外测温、密封、污秽等巡检信息,直流电阻、绝缘电阻、油色谱、介损等停电检测信息等状态数据,建立变压器、断路器、避雷器、电容器等配网主设备的数据库,采用大数据技术研究主设备状态特征评估方法,阐明主设备状态与水解、热解的关联关系,采用模糊C-均值聚类分析方法提取主设备状态特征。
油介质损耗、油中含水量、油中含气量、油击穿电压、油体积电阻率、油电导率、油中酸值、油破坏电压、油总酸值、油中糠醛量、油色泽等与绝缘油相关参量,纸介质损耗、纸中含水量、纸击穿电压、纸电导率、纸中酸值、纸聚合度、纸总酸值、纸中糠醛量、纸色泽等与绝缘纸相关的参量,H2含量、C2H2含量、C2H6含量、C2H4含量、CH4含量、CO相对产气速率、CO2相对产气速率、总烃等与气体相关的参量,铁心绝缘电阻、铁心接地电流等与铁心相关的参量数据,绕组直流电阻、绝缘电阻吸收比、绕组直流电阻及其不平衡率、绕组短路阻抗初值差、绕组绝缘介质损耗、绕组电容量初值差等与绕组相关的参量,高压侧A相电容值、高压侧B相电容值、高压侧C相电容值、低压侧a相电容值、低压侧b相电容值、低压侧c相电容值等与电容值相关的参量,典型负荷时热点温度、高负荷时热点温度、油温等与温度相关的参量,局部放电量、偏斜度、陡峭度、互相关系数、相位不对称数等与局部放电相关的参量,在不同环境、气象条件下都有不同的数值,具有随机和模糊不确定性,可以说变压器绝缘纸老化是一个随机和模糊不确定性的事故或事件,这些因素也是随机和模糊不确定性的参量。这些影响因素通常都具有随机不确定性或模糊不确定性,或者是具有随机和模糊不确定性,往往以随机和模糊不确定性事件或参量而存在。可见,传统变压器绝缘纸老化状态评估的现有技术都没有全面考虑影响因素的不确定性和随机性,计算方法适用性、实用性和应用性也难以得到满足。
发明内容
本发明的目的在于克服现有技术的不足,提供一种变压器绝缘纸老化状态评估方法,针对如何处理变压器绝缘纸老化状态评估所涉及种类多、数量大、相互关系复杂的大数据问题,在建立大数据库基础上采用数据聚类原理对大数据进行处理和分析;针对变压器绝缘纸老化状态评估所涉及的随机和模糊不确定性的参量,采用概率模糊集的理论进行处理和分析。
变压器绝缘纸老化状态评估的基本原理是,利用出厂、监测、试验、测试、巡检、运行、计量、自动化等多源数据,建立与绝缘油、绝缘纸、铁心、绕组相关参量的大数据库,建立与油中气体、电容值、温度、局部放电相关参量的大数据库,建立温度、风力、湿度和降水等气象的大数据库,建立变压器电流、电压、功率、负载率等运行数据库;采用概率模糊集理论,对具有随机不确定性或模糊不确定性的并导致变压器绝缘纸老化状态的参量进行概率模糊建模;利用公开文献中与变压器绝缘纸老化状态评估方法相关结果的海量数据,构建变压器绝缘纸老化状态特征类概率模糊集;利用变压器绝缘纸老化状态试验的海量数据,构建变压器绝缘纸老化状态试验类概率模糊集;构建变压器试验类与特征类数据概率模糊集之间的距离测度函数,计算随机不确定性或模糊不确定性参量与变压器绝缘纸老化状态之间的综合属性值,进而确定变压器绝缘纸老化状态。
本发明的技术方案是这样实现的:
一种变压器绝缘纸老化状态评估方法,包括以下步骤:
S1:构建反映变压器绝缘纸老化状态变化的变压器绝缘油特征类的数据集与计算概率数值;
S2:构建反映变压器绝缘纸老化状态变化的变压器绝缘纸特征类的数据集与计算概率数值;
S3:构建反映变压器绝缘纸老化状态变化的变压器气体特征类的数据集与计算概率数值;
S4:构建反映变压器绝缘纸老化状态变化的变压器温度特征类的数据集与计算概率数值;
S5:构建反映变压器绝缘纸老化状态变化的变压器电容特征类的数据集与计算概率数值;
S6:构建反映变压器绝缘纸老化状态变化的变压器局部放电特征类的数据集与计算概率数值;
S7:进行反映变压器绝缘纸老化状态的油、纸、气体、温度、电容、局部放电特征值平均值计算;
S8:构建变压器绝缘纸老化状态评估函数;
S9:进行变压器绝缘纸老化状态评估。
进一步地,所述步骤S1构建的反映变压器绝缘纸老化状态变化的变压器绝缘油特征类数据集为:
式中,xAO1、xAO2、...、为与变压器油介质损耗、油中含水量、油中含气量、油击穿电压、油体积电阻率、油电导率、油中酸值、油破坏电压、油总酸值、油中糠醛量、油色泽相关数据集,NAO为变压器油特征类数据集的数量;
从相关数据库系统获取变压器绝缘油检测、试验的数据信息,采用模拟的方法,确定当变压器绝缘纸老化状态变化时变压器油介质损耗、油中含水量、油中含气量、油击穿电压、油体积电阻率、油电导率、油中酸值、油破坏电压、油总酸值、油中糠醛量、油色泽各自按照正态分布规律变化的均值和方差;
所述步骤S2构建的反映变压器绝缘纸老化状态变化的变压器绝缘纸特征类数据集为:
从相关数据库系统获取变压器绝缘绝缘纸检测、试验的数据信息,采用模拟的方法,确定变压器绝缘纸老化状态变化时变压器纸介质损耗、纸中含水量、纸击穿电压、纸电导率、纸中酸值、纸聚合度、纸总酸值、纸中糠醛量、纸色泽各自按照正态分布规律变化的均值和方差;
所述步骤S3构建的反映变压器绝缘纸老化状态变化的变压器气体特征类数据集为:
式中,xSG1、xSG2、...、为与变压器H2含量、C2H2含量、C2H6含量、C2H4含量、CH4含量、CO相对产气速率、CO2相对产气速率、总烃相关数据集,NSG为变压器气体特征类数据集的数量;
从相关数据库系统获取变压器气体检测、试验的数据信息,采用模拟的方法,确定变压器绝缘纸老化状态变化时变压器压器H2含量、C2H2含量、C2H6含量、C2H4含量、CH4含量、CO相对产气速率、CO2相对产气速率、总烃各自按照正态分布规律变化的均值和方差;
所述步骤S4构建的反映变压器绝缘纸老化状态变化的变压器温度特征类数据集为:
从相关数据库系统获取变压器温度检测、试验的数据信息,采用模拟的方法,确定变压器压器典型负荷时热点温度、高负荷时热点温度、油温按照正态分布规律变化的均值和方差;
所述步骤S5构建的反映变压器绝缘纸老化状态变化的变压器电容特征类数据集为:
式中,xSC1、xSC2、...、为与变压器高压侧A相电容值、高压侧B相电容值、高压侧C相电容值、低压侧a相电容值、低压侧b相电容值、低压侧c相电容值相关数据集,NSC为变压器电容特征类数据集的数量;
从相关数据库系统获取变压器电容检测、试验的数据信息,采用模拟的方法,确定变压器压器高压侧A相电容值、高压侧B相电容值、高压侧C相电容值、低压侧a相电容值、低压侧b相电容值、低压侧c相电容值各自按照正态分布规律变化的均值和方差;
所述步骤S6构建的反映变压器绝缘纸老化状态变化的变压器局部放电特征类数据集为:
从相关数据库系统获取变压器局部放电检测、试验的数据信息,采用模拟的方法,确定变压器绝缘纸老化状态变化时变压器压器局部放电量、偏斜度、陡峭度、互相关系数、相位不对称数各自按照正态分布规律变化的均值和方差。
进一步地,所述步骤S7进行反映变压器绝缘纸老化状态的油、纸、气体、温度、电容、局部放电特征值平均值计算的具体过程如下:
S7-1:进行一个元素特征值发生变化时油、纸、气体、温度、电容、局部放电特征值平均值计算:
式中,yAO1a(xSOa)、yAP1a(xSPa)、yAG1a(xSGa)、yAT1a(xSTa)、yAC1a(xSCa)、yAD1a(xSDa)分别为一个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集特征值的平均值,fAO1a(xSOai)、fAP1a(xSPai)、fAG1a(xSGai)、fAT1a(xSTai)、fAC1a(xSCai)、fAD1a(xSDai)为一个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集的概率密度函数,NAO1、NAP1、NAG1、NAT1、NAC1、NAD1分别为一个元素数值发生变化时油、纸、气体、温度、电容、局部放电也发生变化的特征类数据集元素数量,Pr(y=1|A)为油、纸、气体、温度、电容、局部放电特征类数据集一个元素数值发生变化的概率;
S7-2:进行两个元素特征值发生变化时油、纸、气体、温度、电容、局部放电特征值平均值计算:
式中,yAO2a(xSOa)、yAP2a(xSPa)、yAG2a(xSGa)、yAT2a(xSTa)、yAC2a(xSCa)、yAD2a(xSDa)分别为两个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集特征值的平均值,fAO2a(xSOai)、fAP2a(xSPai)、fAG2a(xSGai)、fAT2a(xSTai)、fAC2a(xSCai)、fAD2a(xSDai)分别为两个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集的概率密度函数,NAO2、NAP2、NAG2、NAT2、NAC2、NAD2分别为两个元素数值发生变化时油、纸、气体、温度、电容、局部放电也发生变化的特征类数据集元素数量,Pr(y=2|A)为油、纸、气体、温度、电容、局部放电特征类数据集两个元素数值发生变化的概率;
S7-3:进行多个元素特征值发生变化时油、纸、气体、温度、电容、局部放电特征值平均值计算:
式中,yAOka(xSOa)、yAPka(xSPa)、yAGka(xSGa)、yATka(xSTa)、yACka(xSCa)、yADka(xSDa)分别为k个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集特征值的平均值,fAOka(xSOai)、fAPka(xSPai)、fAGka(xSGai)、fATka(xSTai)、fACka(xSCai)、fADka(xSDai)分别为k个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集的概率密度函数,NAOk、NAPk、NAGk、NATk、NACk、NADk分别为k个元素数值发生变化时油、纸、气体、温度、电容、局部放电也发生变化的特征类数据集元素数量,Pr(y=k|A)为油、纸、气体、温度、电容、局部放电特征类数据集k个元素数值发生变化的概率。
进一步地,所述步骤S8构建变压器绝缘纸老化状态评估函数具体为:
引入权重系数,将油、纸、气体、温度、电容和局部放电试验数据与油、纸、气体、温度、电容和局部放电特征值平均值进行商值比较,构建变压器绝缘纸老化状态评估函数:
式中,y为反映变压器绝缘纸老化状态的综合指标值,k*为权重系数,xTOa、xTPa、xTGa、xTTa、xTCa、xTDa分别为油、纸、气体、温度、电容、局部放电试验或检测或监测数据。
进一步地,所述步骤S9进行变压器绝缘纸老化状态评估时,若反映变压器绝缘纸老化状态的综合指标值y小于设定值y0,则认为变压器绝缘纸处于老化状态。
与现有技术相比,本方案针对如何处理变压器绝缘纸老化状态评估所涉及种类多、数量大、相互关系复杂的大数据问题,在建立大数据库基础上采用数据聚类原理对大数据进行处理和分析;针对变压器绝缘纸老化状态评估所涉及的随机和模糊不确定性的参量,采用概率模糊集的理论进行处理和分析;本发明可以评估变压器绝缘纸老化状态,反映出变压器绝缘纸老化状态特征值具有的不确定性,为变压器绝缘纸老化状态评估提供理论指导,为配电网运维提供必要的技术支撑。
附图说明
图1是本发明所提出的一种变压器绝缘纸老化状态评估方法的流程框图。
具体实施方式
下面参照附图并结合实例对本发明的具体实施方式做进一步详细描述。
如图1所示,一种变压器绝缘纸老化状态评估方法,包括以下步骤:
S1:构建反映变压器绝缘纸老化状态变化的变压器绝缘油特征类的数据集与计算概率数值:
由油介质损耗、油中含水量、油中含气量、油击穿电压、油体积电阻率、油电导率、油中酸值、油破坏电压、油中糠醛量、油色泽等元素,构建变压器绝缘油特征类数据集xSO为:
式中,xSO1、xSO2、xSO3、...、为与变压器油介质损耗、油中含水量、油中含气量、油击穿电压、油体积电阻率、油电导率、油中酸值、油破坏电压、油总酸值、油中糠醛量、油色泽相关数据集,NSO为变压器油特征类数据集的数量。
从相关数据库系统获取变压器绝缘油检测、试验等的数据信息,采用模拟的方法,确定变压器油介质损耗、油中含水量、油中含气量、油击穿电压、油体积电阻率、油电导率、油中酸值、油破坏电压、油总酸值、油中糠醛量、油色泽按照正态分布规律变化的均值μSQ1和方差σSO1、均值μSO2和方差σSO2、均值μSO3和方差σSO3、均值μSO4和方差σSO4、均值μSO5和方差σSO5、均值μSO6和方差σSO6、均值μSO7和方差σSO7、均值μSO8和方差σSO8、均值μSO9和方差σSO9、均值μSO10和方差σSO10、均值μSO11和方差σSO11。
S2:构建反映变压器绝缘纸老化状态变化的变压器绝缘纸特征类的数据集与计算概率数值:
由纸介质损耗、纸中含水量、纸击穿电压、纸电导率、纸中酸值、纸聚合度、纸总酸值、纸中糠醛量、纸色泽等元素,构建变压器绝缘纸特征类数据集xSP为:
从相关数据库系统获取变压器绝缘绝缘纸检测、试验等的数据信息,采用模拟的方法,确定变压器纸介质损耗、纸中含水量、纸击穿电压、纸电导率、纸中酸值、纸聚合度、纸总酸值、纸中糠醛量、纸色泽按照正态分布规律变化的均值μSP1和方差σSP1、均值μSP2和方差σSP2、均值μSP3和方差σSP3、均值μSP4和方差σSP4、均值μSP5和方差σSP5、均值μSP6和方差σSP6、均值μSP7和方差σSP7、均值μSP8和方差σSP8、均值μSP9和方差σSP9。
S3:构建反映变压器绝缘纸老化状态变化的变压器气体特征类的数据集与计算概率数值:
由H2含量、C2H2含量、C2H6含量、C2H4含量、CH4含量、CO相对产气速率、CO2相对产气速率、总烃等气体元素,构建变压器气体特征类数据集xSG为:
式中,xSG1、xSG2、...、为与变压器H2含量、C2H2含量、C2H6含量、C2H4含量、CH4含量、CO相对产气速率、CO2相对产气速率、总烃相关数据集的元素数量,NSG为变压器气体特征类数据集的数量。
从相关数据库系统获取变压器气体检测、试验等的数据信息,采用模拟的方法,确定变压器压器H2含量、C2H2含量、C2H6含量、C2H4含量、CH4含量、CO相对产气速率、CO2相对产气速率、总烃按照正态分布规律变化的均值μSG1和方差σSG1、均值μSG2和方差σSG2、均值μSG3和方差σSG3、均值μSG4和方差σSG4、均值μSG5和方差σSG5、均值μSG6和方差σSG6、均值μSG7和方差σSG7、均值μSG8和方差σSG8。
S4:构建反映变压器绝缘纸老化状态变化的变压器温度特征类的数据集与计算概率数值:
由典型负荷时热点温度、高负荷时热点温度、油温等温度元素,构建变压器温度特征类数据集xST为:
从相关数据库系统获取变压器温度检测、试验等的数据信息,采用模拟的方法,确定变压器压器典型负荷时热点温度、高负荷时热点温度、油温按照正态分布规律变化的均值μST1和方差σST1、均值μST2和方差σST2、均值μST3和方差σST3。
S5:构建反映变压器绝缘纸老化状态变化的变压器电容特征类的数据集与计算概率数值:
由高压侧A相电容值、高压侧B相电容值、高压侧C相电容值、低压侧a相电容值、低压侧b相电容值、低压侧c相电容值等气体元素,构建变压器电容特征类数据集xSC为:
式中,xSC1、xSC2、...、为与变压器高压侧A相电容值、高压侧B相电容值、高压侧C相电容值、低压侧a相电容值、低压侧b相电容值、低压侧c相电容值相关数据集的元素数量,NSC为变压器电容特征类数据集的数量。
从相关数据库系统获取变压器电容检测、试验等的数据信息,采用模拟的方法,确定变压器压器高压侧A相电容值、高压侧B相电容值、高压侧C相电容值、低压侧a相电容值、低压侧b相电容值、低压侧c相电容值按照正态分布规律变化的均值μSC1和方差σSC1、均值μSC2和方差σSC2、均值μSC3和方差σSC3、均值μSC4和方差σSC4、均值μSC5和方差σSC5、均值μSC6和方差σSC6。
S6:构建反映变压器绝缘纸老化状态变化的变压器局部放电特征类的数据集与计算概率数值:
由局部放电量、偏斜度、陡峭度、互相关系数、相位不对称数等气体元素,构建变压器局部放电特征类数据集xSD为:
从相关数据库系统获取变压器局部放电检测、试验等的数据信息,采用模拟的方法,确定变压器压器局部放电量、偏斜度、陡峭度、互相关系数、相位不对称数按照正态分布规律变化的均值μSD1和方差σSD1、均值μSD2和方差σSD2、均值μSD3和方差σSD3、均值μSD4和方差σSD4、均值μSD5和方差σSD5。
S7:进行反映变压器绝缘纸老化状态的油、纸、气体、温度、电容、局部放电特征值平均值计算;
反映变压器油老化状态变化,可采用油、纸、气体、温度、电容、局部放电等特征值的平均值变化趋势来表征。当变压器油老化状态变化时,油、纸、气体、温度、电容、局部放电等元素的检测或监测数值也会发生变化,一个或多个元素数值可能会同时发生变化。
具体过程如下:
S7-1:进行一个元素特征值发生变化时油、纸、气体、温度、电容、局部放电特征值平均值计算:
因此,考虑一个元素数值发生变化情况,可计算反映变压器绝缘纸老化状态变化的油、纸、气体、温度、电容、局部放电特征类数据集特征值的平均值:
式中,yAO1a(xSOa)、yAP1a(xSPa)、yAG1a(xSGa)、yAT1a(xSTa)、yAC1a(xSCa)、yAD1a(xSDa)为一个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集特征值的平均值,fAO1a(xSOai)、fAP1a(xSPai)、fAG1a(xSGai)、fAT1a(xSTai)、fAC1a(xSCai)、fAD1a(xSDai)为一个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集的概率密度函数(由均值和方差决定),NAO1、NAP1、NAG1、NAT1、NAC1、NAD1为一个元素数值发生变化时油、纸、气体、温度、电容、局部放电也发生变化的特征类数据集元素数量,Pr(y=1|A)为油、纸、气体、温度、电容、局部放电特征类数据集一个元素数值发生变化的概率。
S7-2:进行两个元素特征值发生变化时油、纸、气体、温度、电容、局部放电特征值平均值计算:
因此,考虑两个元素数值发生变化情况,可计算反映变压器绝缘纸老化状态变化的油、纸、气体、温度、电容、局部放电特征类数据集特征值的平均值:
式中,yAO2a(xSOa)、yAP2a(xSPa)、yAG2a(xSGa)、yAT2a(xSTa)、yAC2a(xSCa)、yAD2a(xSDa)为两个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集特征值的平均值,fAO2a(xSOai)、fAP2a(xSPai)、fAG2a(xSGai)、fAT2a(xSTai)、fAC2a(xSCai)、fAD2a(xSDai)为两个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集的概率密度函数(由均值和方差决定),NAO2、NAP2、NAG2、NAT2、NAC2、NAD2为两个元素数值发生变化时油、纸、气体、温度、电容、局部放电也发生变化的特征类数据集元素数量,Pr(y=2|A)为油、纸、气体、温度、电容、局部放电特征类数据集两个元素数值发生变化的概率。
S7-3:进行多个元素特征值发生变化时油、纸、气体、温度、电容、局部放电特征值平均值计算:
因此,考虑k个元素数值发生变化情况,可计算反映变压器绝缘纸老化状态变化的油、纸、气体、温度、电容、局部放电特征类数据集特征值的平均值:
式中yAOka(xSOa)、yAPka(xSPa)、yAGka(xSGa)、yATka(xSTa)、yACka(xSCa)、yADka(xSDa)为k个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集特征值的平均值,fAOka(xSOai)、fAPka(xSPai)、fAGka(xSGai)、fATka(xSTai)、fACka(xSCai)、fADka(xSDai)为k个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集的概率密度函数(由均值和方差决定),NAOk、NAPk、NAGk、NATk、NACk、NADk为k个元素数值发生变化时油、纸、气体、温度、电容、局部放电也发生变化的特征类数据集元素数量,Pr(y=k|A)为油、纸、气体、温度、电容、局部放电特征类数据集k个元素数值发生变化的概率。
S8:构建变压器绝缘纸老化状态评估函数:
引入权重系数,将油、纸、气体、温度、电容和局部放电试验数据与油、纸、气体、温度、电容和局部放电特征值平均值进行商值比较,构建变压器绝缘纸老化状态评估函数:
式中,y为反映变压器绝缘纸老化状态的综合指标值,k*为权重系数,xTOa、xTPa、xTGa、xTTa、xTCa、xTDa与油、纸、气体、温度、电容、局部放电试验或检测或监测数据。
S9:进行变压器绝缘纸老化状态评估,若反映变压器绝缘纸老化状态的综合指标值y小于设定值y0,则认为变压器绝缘纸处于老化状态。
本实施例针对如何处理变压器绝缘纸老化状态评估所涉及种类多、数量大、相互关系复杂的大数据问题,在建立大数据库基础上采用数据聚类原理对大数据进行处理和分析;针对变压器绝缘纸老化状态评估所涉及的随机和模糊不确定性的参量,采用概率模糊集的理论进行处理和分析;本发明可以评估变压器绝缘纸老化状态,反映出变压器绝缘纸老化状态特征值具有的不确定性,为变压器绝缘纸老化状态评估提供理论指导,为配电网运维提供必要的技术支撑。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。
Claims (4)
1.一种变压器绝缘纸老化状态评估方法,其特征在于,包括以下步骤:
S1:构建反映变压器绝缘纸老化状态变化的变压器绝缘油特征类的数据集与计算概率数值;
S2:构建反映变压器绝缘纸老化状态变化的变压器绝缘纸特征类的数据集与计算概率数值;
S3:构建反映变压器绝缘纸老化状态变化的变压器气体特征类的数据集与计算概率数值;
S4:构建反映变压器绝缘纸老化状态变化的变压器温度特征类的数据集与计算概率数值;
S5:构建反映变压器绝缘纸老化状态变化的变压器电容特征类的数据集与计算概率数值;
S6:构建反映变压器绝缘纸老化状态变化的变压器局部放电特征类的数据集与计算概率数值;
S7:进行反映变压器绝缘纸老化状态的油、纸、气体、温度、电容、局部放电特征值平均值计算;
S8:构建变压器绝缘纸老化状态评估函数;
S9:进行变压器绝缘纸老化状态评估;
所述步骤S7进行反映变压器绝缘纸老化状态的油、纸、气体、温度、电容、局部放电特征值平均值计算的具体过程如下:
S7-1:进行一个元素特征值发生变化时油、纸、气体、温度、电容、局部放电特征值平均值计算:
式中,yAO1a(xSOa)、yAP1a(xSPa)、yAG1a(xSGa)、yAT1a(xSTa)、yAC1a(xSCa)、yAD1a(xSDa)分别为一个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集特征值的平均值,fAO1a(xSOai)、fAP1a(xSPai)、fAG1a(xSGai)、fAT1a(xSTai)、fAC1a(xSCai)、fAD1a(xSDai)为一个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集的概率密度函数,NAO1、NAP1、NAG1、NAT1、NAC1、NAD1分别为一个元素数值发生变化时油、纸、气体、温度、电容、局部放电也发生变化的特征类数据集元素数量,Pr(y=1|A)为油、纸、气体、温度、电容、局部放电特征类数据集一个元素数值发生变化的概率;
S7-2:进行两个元素特征值发生变化时油、纸、气体、温度、电容、局部放电特征值平均值计算:
式中,yAO2a(xSOa)、yAP2a(xSPa)、yAG2a(xSGa)、yAT2a(xSTa)、yAC2a(xSCa)、yAD2a(xSDa)分别为两个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集特征值的平均值,fAO2a(xSOai)、fAP2a(xSPai)、fAG2a(xSGai)、fAT2a(xSTai)、fAC2a(xSCai)、fAD2a(xSDai)分别为两个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集的概率密度函数,NAO2、NAP2、NAG2、NAT2、NAC2、NAD2分别为两个元素数值发生变化时油、纸、气体、温度、电容、局部放电也发生变化的特征类数据集元素数量,Pr(y=2|A)为油、纸、气体、温度、电容、局部放电特征类数据集两个元素数值发生变化的概率;
S7-3:进行多个元素特征值发生变化时油、纸、气体、温度、电容、局部放电特征值平均值计算:
式中,yAOka(xSOa)、yAPka(xSPa)、yAGka(xSGa)、yATka(xSTa)、yACka(xSCa)、yADka(xSDa)分别为k个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集特征值的平均值,fAOka(xSOai)、fAPka(xSPai)、fAGka(xSGai)、fATka(xSTai)、fACka(xSCai)、fADka(xSDai)分别为k个元素数值发生变化时油、纸、气体、温度、电容、局部放电特征类数据集的概率密度函数,NAOk、NAPk、NAGk、NATk、NACk、NADk分别为k个元素数值发生变化时油、纸、气体、温度、电容、局部放电也发生变化的特征类数据集元素数量,Pr(y=k|A)为油、纸、气体、温度、电容、局部放电特征类数据集k个元素数值发生变化的概率。
2.根据权利要求1所述的一种变压器绝缘纸老化状态评估方法,其特征在于,所述步骤S1构建的反映变压器绝缘纸老化状态变化的变压器绝缘油特征类数据集为:
从相关数据库系统获取变压器绝缘油检测、试验的数据信息,采用模拟的方法,确定当变压器绝缘纸老化状态变化时变压器油介质损耗、油中含水量、油中含气量、油击穿电压、油体积电阻率、油电导率、油中酸值、油破坏电压、油总酸值、油中糠醛量、油色泽各自按照正态分布规律变化的均值和方差;
所述步骤S2构建的反映变压器绝缘纸老化状态变化的变压器绝缘纸特征类数据集为:
从相关数据库系统获取变压器绝缘绝缘纸检测、试验的数据信息,采用模拟的方法,确定变压器绝缘纸老化状态变化时变压器纸介质损耗、纸中含水量、纸击穿电压、纸电导率、纸中酸值、纸聚合度、纸总酸值、纸中糠醛量、纸色泽各自按照正态分布规律变化的均值和方差;
所述步骤S3构建的反映变压器绝缘纸老化状态变化的变压器气体特征类数据集为:
从相关数据库系统获取变压器气体检测、试验的数据信息,采用模拟的方法,确定变压器绝缘纸老化状态变化时变压器压器H2含量、C2H2含量、C2H6含量、C2H4含量、CH4含量、CO相对产气速率、CO2相对产气速率、总烃各自按照正态分布规律变化的均值和方差;
所述步骤S4构建的反映变压器绝缘纸老化状态变化的变压器温度特征类数据集为:
从相关数据库系统获取变压器温度检测、试验的数据信息,采用模拟的方法,确定变压器压器典型负荷时热点温度、高负荷时热点温度、油温按照正态分布规律变化的均值和方差;
所述步骤S5构建的反映变压器绝缘纸老化状态变化的变压器电容特征类数据集为:
从相关数据库系统获取变压器电容检测、试验的数据信息,采用模拟的方法,确定变压器压器高压侧A相电容值、高压侧B相电容值、高压侧C相电容值、低压侧a相电容值、低压侧b相电容值、低压侧c相电容值各自按照正态分布规律变化的均值和方差;
所述步骤S6构建的反映变压器绝缘纸老化状态变化的变压器局部放电特征类数据集为:
从相关数据库系统获取变压器局部放电检测、试验的数据信息,采用模拟的方法,确定变压器绝缘纸老化状态变化时变压器压器局部放电量、偏斜度、陡峭度、互相关系数、相位不对称数各自按照正态分布规律变化的均值和方差。
4.根据权利要求1所述的一种变压器绝缘纸老化状态评估方法,其特征在于,所述步骤S9进行变压器绝缘纸老化状态评估时,若反映变压器绝缘纸老化状态的综合指标值y小于设定值y0,则认为变压器绝缘纸处于老化状态。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810692608.3A CN108802584B (zh) | 2018-06-29 | 2018-06-29 | 一种变压器绝缘纸老化状态评估方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810692608.3A CN108802584B (zh) | 2018-06-29 | 2018-06-29 | 一种变压器绝缘纸老化状态评估方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108802584A CN108802584A (zh) | 2018-11-13 |
CN108802584B true CN108802584B (zh) | 2020-12-08 |
Family
ID=64071430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810692608.3A Expired - Fee Related CN108802584B (zh) | 2018-06-29 | 2018-06-29 | 一种变压器绝缘纸老化状态评估方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108802584B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110488164B (zh) * | 2019-08-22 | 2023-01-31 | 中国电力科学研究院有限公司 | 一种高压电缆绝缘老化状态综合评估预警方法及系统 |
CN111047210B (zh) * | 2019-12-21 | 2021-07-20 | 西南交通大学 | 一种牵引变压器绝缘油老化状态评估方法 |
CN111308286B (zh) * | 2020-03-06 | 2021-01-12 | 西南交通大学 | 一种多参数赋权组合下牵引变压器服役年限估算的方法 |
US11719760B2 (en) | 2020-04-08 | 2023-08-08 | Hitachi Energy Switzerland Ag | Probabilistic determination of transformer end of life |
CN114167233A (zh) * | 2021-11-29 | 2022-03-11 | 海南电网有限责任公司电力科学研究院 | 一种基于频域介电谱的绝缘纸老化时间评估方法 |
CN114397332B (zh) * | 2022-01-05 | 2024-06-04 | 浙江浙能技术研究院有限公司 | 一种间接判断油浸式变压器绝缘纸聚合度方法 |
CN115508675B (zh) * | 2022-09-22 | 2024-09-06 | 重庆大学 | 变压器绝缘纸聚合度分布确定方法、设备及存储介质 |
CN117250456B (zh) * | 2023-11-20 | 2024-01-30 | 山东海鲲数控设备有限公司 | 一种变压器绝缘状态监测系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3221880B2 (ja) * | 1992-12-05 | 2001-10-22 | ベーリンガー インゲルハイム コマンディトゲゼルシャフト | 抗うつ作用を有する医薬組成物としての2‐アミノ‐6‐n‐プロピル‐アミノ‐4,5,6,7‐テトラヒドロベンゾチアゾールの使用 |
CN101408580A (zh) * | 2008-11-21 | 2009-04-15 | 重庆大学 | 基于局部放电特征参量的油纸绝缘老化状态评估方法 |
CN103308835A (zh) * | 2013-06-27 | 2013-09-18 | 深圳供电局有限公司 | 油纸绝缘电力设备绝缘老化状态检测方法及装置 |
CN107656181A (zh) * | 2017-09-26 | 2018-02-02 | 福州大学 | 一种定量诊断油纸绝缘老化程度的方法 |
CN107831415A (zh) * | 2017-10-20 | 2018-03-23 | 广东电网有限责任公司河源供电局 | 一种变压器绝缘纸老化状态评估的区间值模糊集方法 |
CN107843718A (zh) * | 2017-10-20 | 2018-03-27 | 广东电网有限责任公司河源供电局 | 一种变压器绝缘油老化状态评估的方法 |
CN107976613A (zh) * | 2017-10-17 | 2018-05-01 | 广西电网有限责任公司电力科学研究院 | 一种变压器油纸绝缘状态的定量评估方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3080313B2 (ja) * | 1990-01-27 | 2000-08-28 | 株式会社日立製作所 | 電気機器の絶縁劣化検出器 |
-
2018
- 2018-06-29 CN CN201810692608.3A patent/CN108802584B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3221880B2 (ja) * | 1992-12-05 | 2001-10-22 | ベーリンガー インゲルハイム コマンディトゲゼルシャフト | 抗うつ作用を有する医薬組成物としての2‐アミノ‐6‐n‐プロピル‐アミノ‐4,5,6,7‐テトラヒドロベンゾチアゾールの使用 |
CN101408580A (zh) * | 2008-11-21 | 2009-04-15 | 重庆大学 | 基于局部放电特征参量的油纸绝缘老化状态评估方法 |
CN103308835A (zh) * | 2013-06-27 | 2013-09-18 | 深圳供电局有限公司 | 油纸绝缘电力设备绝缘老化状态检测方法及装置 |
CN107656181A (zh) * | 2017-09-26 | 2018-02-02 | 福州大学 | 一种定量诊断油纸绝缘老化程度的方法 |
CN107976613A (zh) * | 2017-10-17 | 2018-05-01 | 广西电网有限责任公司电力科学研究院 | 一种变压器油纸绝缘状态的定量评估方法 |
CN107831415A (zh) * | 2017-10-20 | 2018-03-23 | 广东电网有限责任公司河源供电局 | 一种变压器绝缘纸老化状态评估的区间值模糊集方法 |
CN107843718A (zh) * | 2017-10-20 | 2018-03-27 | 广东电网有限责任公司河源供电局 | 一种变压器绝缘油老化状态评估的方法 |
Non-Patent Citations (3)
Title |
---|
《Using polarization/depolarization current characteristics to estimate oil paper insulation aging condition of the transformer》;Yuanhua Zhou等;《IEEE》;20161229;全文 * |
《变压器油纸绝缘水分含量和老化程度定量评估研究》;曹建军等;《高压电器》;20180116;全文 * |
《采用核主成分分析和随机森林算法的变压器油纸绝缘评估方法》;张丽平等;《四川电力技术》;20180430;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN108802584A (zh) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108802584B (zh) | 一种变压器绝缘纸老化状态评估方法 | |
CN108680811B (zh) | 一种变压器故障状态评估方法 | |
CN107843718B (zh) | 一种变压器绝缘油老化状态评估的方法 | |
CN107831415B (zh) | 一种变压器绝缘纸老化状态评估的区间值模糊集方法 | |
Afrasiabi et al. | Integration of accelerated deep neural network into power transformer differential protection | |
CN107831300B (zh) | 一种基于三维梯形概率模糊集的变压器绝缘油劣化评估方法 | |
CN107843816B (zh) | 一种考虑负载率影响的变压器绝缘缺陷状态评估方法 | |
Abbasi et al. | Transformer winding faults detection based on time series analysis | |
Aminifar et al. | A review of power system protection and asset management with machine learning techniques | |
Wang | Artificial intelligence applications in the diagnosis of power transformer incipient faults | |
CN107808044A (zh) | 一种考虑运行温度影响的变压器绝缘纸劣化评估方法 | |
Li et al. | Condition assessment of power transformers using a synthetic analysis method based on association rule and variable weight coefficients | |
CN108681835B (zh) | 一种变压器绝缘油劣化状态评估方法 | |
Xie | Analysis of fault of insulation aging of oiled paper of a large‐scale power transformer and the prediction of its service life | |
Ying et al. | Research on state evaluation and risk assessment for relay protection system based on machine learning algorithm | |
Kari et al. | Condition assessment of power transformer using fuzzy and evidential theory | |
Ma et al. | Fractal‐based autonomous partial discharge pattern recognition method for MV motors | |
Mharakurwa | In‐Service Power Transformer Life Time Prospects: Review and Prospects | |
CN109086483A (zh) | 一种变压器老化状态评估的证据融合与集对分析方法 | |
CN116452070B (zh) | 多辨识框架下的大型设备健康评估方法和装置 | |
CN108805467A (zh) | 一种变压器老化状态评估的概率模糊集方法 | |
CN109033198A (zh) | 一种变压器绝缘纸异常辨识的多要素模糊分析方法 | |
Yang | Comprehensive method detecting the status of the transformer based on the artificial intelligence | |
CN109086484A (zh) | 一种变压器健康状态评估的证据融合与集对分析方法 | |
CN114118208A (zh) | 基于多元信息的变压器故障判断方法、装置及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201208 Termination date: 20210629 |