CN108801257A - A kind of localization method for indoor automatic parking - Google Patents
A kind of localization method for indoor automatic parking Download PDFInfo
- Publication number
- CN108801257A CN108801257A CN201810297034.XA CN201810297034A CN108801257A CN 108801257 A CN108801257 A CN 108801257A CN 201810297034 A CN201810297034 A CN 201810297034A CN 108801257 A CN108801257 A CN 108801257A
- Authority
- CN
- China
- Prior art keywords
- grid
- bit
- binary
- information
- road section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000004807 localization Effects 0.000 title 1
- 238000005070 sampling Methods 0.000 claims description 16
- 238000005286 illumination Methods 0.000 claims description 6
- 238000012795 verification Methods 0.000 claims description 6
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 3
- 230000001174 ascending effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
- G01C21/206—Instruments for performing navigational calculations specially adapted for indoor navigation
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
- Image Processing (AREA)
Abstract
本发明公开了一种用于室内自动泊车的定位方法,包括如下步骤:(1)在室内停车场道路上喷涂网格,网格采用二进制编码;(2)将实际位置对应的二进制数字序列录入GIS数据库;(3)摄像头拍摄地面上的网格的照片并上传到服务器;(4)识别网格信息,读出二进制数字序列;(5)根据输出二进制数字序列在GIS数据库中查询出车辆实际位置。本发明结合了计算机视觉,位置编码和位置服务等技术,将位置数据存入数据库后,通过识别画好的网格得到二进制ID信息,使用便捷,定位精度较高,可以准确可靠地在室内进行车辆定位,应用范围广。
The invention discloses a positioning method for indoor automatic parking. Enter the GIS database; (3) The camera takes pictures of the grid on the ground and uploads them to the server; (4) Identify the grid information and read out the binary number sequence; (5) Query the vehicle in the GIS database according to the output binary number sequence actual location. The invention combines technologies such as computer vision, location coding, and location services. After storing the location data in the database, the binary ID information is obtained by identifying the drawn grid. Vehicle positioning has a wide range of applications.
Description
技术领域technical field
本发明涉及车辆泊车方法,尤其涉及一种用于室内自动泊车的定位方法。。The invention relates to a vehicle parking method, in particular to a positioning method for indoor automatic parking. .
背景技术Background technique
随着科学技术的不断进步,室内定位技术不断发展,有蓝牙室内定位技术、红外线室内定位技术、超宽带室内定位技术、Zigbee室内定位技术、WiFi室内定位技术等。但这些技术使用不便,不能满足自动泊车的定位需求。因此室内自动泊车急需一种稳定且精度较高且使用便捷的定位方法。With the continuous advancement of science and technology, indoor positioning technology continues to develop, including Bluetooth indoor positioning technology, infrared indoor positioning technology, ultra-wideband indoor positioning technology, Zigbee indoor positioning technology, WiFi indoor positioning technology, etc. However, these technologies are inconvenient to use and cannot meet the positioning requirements of automatic parking. Therefore, there is an urgent need for a stable, high-precision and easy-to-use positioning method for indoor automatic parking.
发明内容Contents of the invention
发明目的:针对现有技术存在的问题,本发明的目的是提供一种使用便捷且定位精度较高的用于室内自动泊车的定位方法。Purpose of the invention: In view of the problems existing in the prior art, the purpose of the present invention is to provide a positioning method for indoor automatic parking that is convenient to use and has high positioning accuracy.
技术方案:一种用于室内自动泊车的定位方法,包括如下步骤:Technical solution: a positioning method for indoor automatic parking, comprising the following steps:
(1)在室内停车场道路上喷涂网格,网格采用二进制编码;(1) Spray the grid on the road of the indoor parking lot, and the grid adopts binary code;
(2)将实际位置对应的二进制数字序列录入GIS数据库;(2) Enter the binary number sequence corresponding to the actual position into the GIS database;
(3)摄像头拍摄地面上的网格的照片并上传到服务器;(3) The camera takes pictures of the grid on the ground and uploads them to the server;
(4)识别网格信息,读出二进制数字序列;(4) Identify the grid information and read out the binary number sequence;
(5)根据输出二进制数字序列在GIS数据库中查询出车辆实际位置。(5) Query the actual position of the vehicle in the GIS database according to the output binary number sequence.
所述步骤(1)包括如下内容:Described step (1) comprises following content:
(1.1)采用n位二进制编码,主体部分n个网格,一个网格大小为a米*a米,则可以表示的路宽为n*a=na米,可以表示的路长为2n*a=2na米,可表示的面积为na*2na=n2na2平方米;(1.1) Adopt n-bit binary code, the main part has n grids, and the size of a grid is a meter*a meter, then the road width that can be represented is n*a=na meter, and the road length that can be represented is 2 n * a=2 n a meters, the representable area is na*2 n a=n2 n a 2 square meters;
(1.2)网格喷涂黑白两色,黑色代表二进制数字1,白色代表二进制数字0;(1.2) The grid is sprayed in black and white, black represents the binary number 1, and white represents the binary number 0;
(1.3)设置起始位,终止位和校验位;起始位为黑色,设置为“1”,终止位为白色,设置为“0”;采用奇或者偶校验位,使得起始位和终止位之间“1”的个数始终为奇数或者偶数;(1.3) Set the start bit, stop bit and parity bit; the start bit is black, set to "1", the stop bit is white, set to "0"; use odd or even parity bit, so that the start bit The number of "1" between the stop bit and the stop bit is always odd or even;
(1.4)顺序编码,每一个路段从头至尾的ID信息是连续的。(1.4) Sequential coding, the ID information of each road section is continuous from the beginning to the end.
所述步骤(2)包括如下内容:Described step (2) comprises following content:
GIS数据库中,直线路段用它的类型和它两端的二进制ID信息以及它们的实际坐标表示:{S;ID1,(X1,Y1);ID2,(X2,Y2)};圆弧路段用它的类型、角度、圆心坐标和两端的二进制ID信息以及它们的实际坐标表示:{C;θ;(X0,Y0);ID1,(X1,Y1);ID2,(X2,Y2)}。In the GIS database, the straight-line road section is represented by its type, the binary ID information at both ends and their actual coordinates: {S; ID1, (X1, Y1); ID2, (X2, Y2)}; the circular arc road section is represented by its Type, angle, center coordinates and binary ID information at both ends and their actual coordinate representation: {C; θ; (X0, Y0); ID1, (X1, Y1); ID2, (X2, Y2)}.
所述步骤(4)包括如下内容:Described step (4) comprises following content:
(4.1)将摄像头拍摄的彩色网格图像进行灰度化处理,降低数据量,减少存储空间和图像处理时间;(4.1) Grayscale the color grid image captured by the camera to reduce the amount of data, storage space and image processing time;
(4.2)使用中值滤波去除拍摄网格图像时引入的噪声点,降低噪声对后续图像处理的干扰;(4.2) Use the median filter to remove the noise points introduced when taking the grid image, and reduce the interference of noise on the subsequent image processing;
(4.3)对图像进行二值化,采用自适应光照均衡和Otsu全局阈值相结合的算法对网格图像进行二值化,去除网格图像光照不均的影响;(4.3) Binarize the image, and use the algorithm combining adaptive illumination equalization and Otsu global threshold to binarize the grid image to remove the influence of uneven illumination of the grid image;
(4.4)提取边缘特征,计算总长度L,则第i个采样点的坐标为(Li/(n+3),a/2),i<=n+3;(4.4) Extract edge features and calculate the total length L, then the coordinates of the i-th sampling point are (Li/(n+3), a/2), i<=n+3;
(4.5)根据得到的坐标对采样点进行采样,深色记为“0”,浅色记为“1”;(4.5) Sampling the sampling point according to the obtained coordinates, the dark color is recorded as "0", and the light color is recorded as "1";
(4.6)从起始位开始向终止位输出二进制码字;不管车辆正反行驶,第一个采样点和最后一个采样点必然一个是“0”、一个是“1”;若“1”在左端,则从左向右输出二进制码字,校验后舍去起始位、终止位和校验位得到一个ID信息;若“1”在右端,则从右向左输出二进制码字,校验后舍去起始位、终止位和校验位得到一个ID信息。(4.6) Output binary codewords from the start bit to the stop bit; regardless of whether the vehicle is driving forward or backward, the first sampling point and the last sampling point must be "0" and the other is "1"; if "1" is in At the left end, the binary code word is output from left to right, and after verification, the start bit, stop bit and check bit are discarded to obtain an ID information; if "1" is at the right end, the binary code word is output from right to left, and the calibration After verification, the start bit, stop bit and check bit are discarded to obtain an ID information.
所述步骤(5)包括如下内容:Described step (5) comprises following content:
(5.1)根据检测到的二进制ID信息,搜索该ID在哪个路段的两端ID之间,则实际位置就在该路段上;(5.1) According to the detected binary ID information, search for the ID between the two end IDs of which road section, then the actual position is on the road section;
(5.2)根据搜索出的实际路段的数据,若为{S;ID1,(X1,Y1);ID2,(X2,Y2)},即路段为直线型,将(ID-ID1)转化为十进制数A,将(ID2-ID1)转化为十进制数B,则当前实际坐标为(A(X2-X1)/B,A(Y2-Y1)/B);若路段数据为{C;θ;(X0,Y0);ID1,(X1,Y1);ID2,(X2,Y2)},则圆弧半径R=√(X0-X1)2+(Y0-Y1)2,则当前实际坐标为(5.2) According to the data of the actual road section searched, if it is {S; ID1, (X1, Y1); ID2, (X2, Y2)}, that is, the road section is linear, convert (ID-ID1) into a decimal number A, convert (ID2-ID1) into decimal number B, then the current actual coordinates are (A(X2-X1)/B,A(Y2-Y1)/B); if the road section data is {C; θ; (X0 ,Y0); ID1, (X1,Y1); ID2,(X2,Y2)}, then the arc radius R=√(X0-X1) 2 +(Y0-Y1) 2 , then the current actual coordinate is
有益效果Beneficial effect
与现有技术相比,本发明具有如下显著进步:本发明结合了计算机视觉,位置编码和位置服务等技术,将位置数据存入数据库后,通过识别画好的网格得到二进制ID信息,使用便捷,定位精度较高,可以准确可靠地在室内进行车辆定位,应用范围广。Compared with the prior art, the present invention has the following remarkable progress: the present invention combines technologies such as computer vision, location coding and location services, and after storing the location data in the database, obtains the binary ID information by identifying the drawn grid, and uses Convenient, high positioning accuracy, accurate and reliable vehicle positioning indoors, wide application range.
附图说明Description of drawings
图1为本发明所述的构建方法的流程示意图;Fig. 1 is a schematic flow chart of the construction method of the present invention;
图2为直线路段网格的示意图;Fig. 2 is a schematic diagram of a grid of a straight road segment;
图3为圆弧路段的示意图;Fig. 3 is the schematic diagram of circular arc section;
图4为计算采样点的示意图。Fig. 4 is a schematic diagram of calculating sampling points.
具体实施方式Detailed ways
下面结合实施实例和附图对本发明的技术方案作进一步详细说明。The technical scheme of the present invention will be described in further detail below in conjunction with the implementation examples and the accompanying drawings.
如图1所示,一种用于室内自动泊车的定位方法,包括以下步骤:As shown in Figure 1, a positioning method for indoor automatic parking includes the following steps:
步骤一,在室内停车场道路上喷涂网格,网格采用二进制编码。采用32位二进制编码,主体部分32个网格,一个网格大小为25cm*25cm,则可以表示的路宽为32*0.25=8米,可以表示的路长为232*0.25=230米,可表示的面积为8*230=233平方米,约为8590平方公里。网格喷涂黑白两色,黑色代表二进制数字1,白色代表二进制数字0。设置起始位,终止位和校验位。起始位为黑色,设置为“1”,终止位为白色,设置为“0”。采用偶校验位,使得起始位和终止位之间“1”的个数始终为偶数。顺序编码,每一个路段从头至尾的ID信息是连续的。Step 1: Spray the grid on the road of the indoor parking lot, and the grid adopts binary code. Using 32-bit binary code, there are 32 grids in the main part, and the size of a grid is 25cm*25cm, then the road width that can be represented is 32*0.25=8 meters, and the road length that can be represented is 2 32 *0.25=2 30 meters , the representable area is 8*2 30 =2 33 square meters, which is about 8590 square kilometers. The grid is painted in black and white, with black representing the binary number 1 and white representing the binary number 0. Set start bit, stop bit and parity bit. The start bit is black and set to "1" and the stop bit is white and set to "0". The even parity bit is used so that the number of "1"s between the start bit and the stop bit is always an even number. Sequential coding, the ID information of each road segment is continuous from the beginning to the end.
步骤二,将实际位置对应的二进制数字序列录入GIS数据库。GIS数据库中,直线路段用它的类型和它两端的二进制ID信息以及它们的实际坐标表示。在本实例中,直线路段表示为{S;ID1,(X1,Y1);ID2,(X2,Y2)};圆弧路段用它的类型、圆心坐标、角度和两端的二进制ID信息以及它们的实际坐标表示。在本实例中,圆弧路段表示为{C;θ;(X0,Y0);ID1,(X1,Y1);ID2,(X2,Y2)}。Step 2, enter the binary number sequence corresponding to the actual location into the GIS database. In the GIS database, a straight road segment is represented by its type, the binary ID information of its two ends and their actual coordinates. In this example, the straight-line road section is expressed as {S; ID1, (X1, Y1); ID2, (X2, Y2)}; the arc road section is represented by its type, center coordinates, angle and binary ID information at both ends and their Actual coordinate representation. In this example, the arc segment is expressed as {C; θ; (X0, Y0); ID1, (X1, Y1); ID2, (X2, Y2)}.
步骤三,车辆驶入室内停车场时,车载摄像头拍摄地面上的网格的照片并上传到服务器;Step 3, when the vehicle enters the indoor parking lot, the on-board camera takes pictures of the grid on the ground and uploads them to the server;
步骤四,识别网格信息,读出二进制数字序列。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255个值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围。而灰度图像一个像素点的变化范围只有255种,但是灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。将摄像头拍摄的彩色网格图像进行灰度化处理,降低数据量,减少存储空间和图像处理时间。从图像中某个采样窗口取出奇数个数进行升序或降序排列,将排序后各点的值进行算数平均计算,计算后的中值取代要处理的那个值,让周围的像素值接近真实值,实现对图像的中值滤波,去除拍摄网格图像时引入的噪声点,降低噪声对后续图像处理的干扰。对图像进行二值化,采用自适应光照均衡和Otsu全局阈值相结合的算法对网格图像进行二值化,去除网格图像光照不均的影响。其中Otsu算法的流程如下。设图象包含L个灰度级(0,1…,L-1),灰度值为i的的象素点数为Ni,图象总的象素点数为N=N0+N1+...+N(L-1)。灰度值为i的点的概为:P(i)=N(i)/N.门限t将整幅图象分为暗区c1和亮区c2两类,则类间方差σ是t的函数:σ=a1*a2(u1-u2)^2(2)式中,aj为类cj的面积与图象总面积之比,a1=sum(P(i))i->t,a2=1-a1;uj为类cj的均值,u1=sum(i*P(i))/a1 0->t,u2=sum(i*P(i))/a2,t+1->L-1该法选择最佳门限t^使类间方差最大,即:令Δu=u1-u2,σb=max{a1(t)*a2(t)Δu^2}。提取图像的边缘特征,把网格从整张图像中提取出来,然后计算网格总长度L,则第i个采样点的坐标为(0.25/2,Li/34)。根据得到的采样点坐标对二值化后的网格图像进行采样,深色记为“0”,浅色记为“1”。从起始位开始向终止位输出二进制码字。不管车辆正反行驶,第一个采样点和最后一个采样点必然一个是“0”,一个是“1”。若“1”在左端,则从左向右输出二进制码字,校验后舍去起始位、终止位和校验位得到一个ID信息;若“1”在右端,则从右向左输出二进制码字,校验后舍去起始位、终止位和校验位得到一个ID信息。Step 4, identify the grid information and read out the sequence of binary numbers. The color of each pixel in a color image is determined by three components of R, G, and B, and each component has 255 values, so that a pixel can have more than 16 million (255*255*255) color changes scope. The variation range of one pixel of grayscale image is only 255 kinds, but the description of grayscale image still reflects the distribution and characteristics of the overall and local chromaticity and brightness level of the whole image just like color image. Grayscale the color grid image captured by the camera to reduce the amount of data, storage space and image processing time. Take an odd number from a sampling window in the image and arrange them in ascending or descending order, calculate the arithmetic average of the values of each point after sorting, and replace the value to be processed with the calculated median value, so that the surrounding pixel values are close to the real value, Realize the median filtering of the image, remove the noise points introduced when taking the grid image, and reduce the interference of noise on the subsequent image processing. The image is binarized, and the grid image is binarized by an algorithm combining adaptive illumination equalization and Otsu global threshold to remove the influence of uneven illumination of the grid image. The flow of the Otsu algorithm is as follows. Suppose the image contains L gray levels (0, 1..., L-1), the number of pixels with gray value i is Ni, and the total number of pixels in the image is N=N0+N1+...+ N(L-1). The generalization of the point with the gray value i is: P(i)=N(i)/N. The threshold t divides the whole image into dark area c1 and bright area c2, and the variance σ between classes is t Function: σ=a1*a2(u1-u2)^2(2) In the formula, aj is the ratio of the area of class cj and the total area of the image, a1=sum(P(i))i->t, a2= 1-a1; uj is the mean value of class cj, u1=sum(i*P(i))/a1 0->t, u2=sum(i*P(i))/a2,t+1->L- 1 This method selects the optimal threshold t^ to maximize the variance between classes, that is: let Δu=u1-u2, σb=max{a1(t)*a2(t)Δu^2}. Extract the edge features of the image, extract the grid from the entire image, and then calculate the total length L of the grid, then the coordinates of the i-th sampling point are (0.25/2, Li/34). The binarized grid image is sampled according to the obtained sampling point coordinates, and the dark color is recorded as "0", and the light color is recorded as "1". Output a binary codeword from the start bit to the stop bit. Regardless of whether the vehicle is driving forward or backward, the first sampling point and the last sampling point must be "0" and "1". If "1" is at the left end, the binary code word is output from left to right, and after verification, the start bit, stop bit and check bit are discarded to obtain an ID information; if "1" is at the right end, it is output from right to left Binary code word, after verification, the start bit, stop bit and check bit are discarded to obtain an ID information.
步骤五,根据输出二进制数字序列在GIS数据库中查询出车辆实际位置。根据检测到的二进制ID信息,搜索该ID在哪个路段的两端ID之间,则实际位置就在该路段上。在本实例中,假设检测到的ID为(01000000000000000000000000000000),若搜索出的实际路段的数据为{S;ID1,(X1,Y1);ID2,(X2,Y2)},即路段为直线型,将(ID-ID1)转化为十进制数2,将(ID2-ID1)转化为十进制数11,则当前实际坐标为(2(X2-X1)/11,2(Y2-Y1)/11);若路段数据为{C;θ;(X0,Y0);ID1,(X1,Y1);ID2,(X2,Y2)},即路段为圆弧形,令圆弧半径R=√(X0-X1)2+(Y0-Y1)2,则当前实际坐标为 Step five, query the actual position of the vehicle in the GIS database according to the output binary number sequence. According to the detected binary ID information, search for the ID between the two end IDs of the road section, and the actual location is on the road section.在本实例中,假设检测到的ID为(01000000000000000000000000000000),若搜索出的实际路段的数据为{S;ID1,(X1,Y1);ID2,(X2,Y2)},即路段为直线型, Convert (ID-ID1) to decimal number 2, and convert (ID2-ID1) to decimal number 11, then the current actual coordinates are (2(X2-X1)/11,2(Y2-Y1)/11); if The road section data is {C; θ; (X0, Y0); ID1, (X1, Y1); ID2, (X2, Y2)}, that is, the road section is arc-shaped, and the radius of the arc is R=√(X0-X1) 2 +(Y0-Y1) 2 , the current actual coordinate is
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810297034.XA CN108801257B (en) | 2018-04-04 | 2018-04-04 | Positioning method for indoor automatic parking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810297034.XA CN108801257B (en) | 2018-04-04 | 2018-04-04 | Positioning method for indoor automatic parking |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108801257A true CN108801257A (en) | 2018-11-13 |
CN108801257B CN108801257B (en) | 2021-05-11 |
Family
ID=64094843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810297034.XA Active CN108801257B (en) | 2018-04-04 | 2018-04-04 | Positioning method for indoor automatic parking |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108801257B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109532824A (en) * | 2018-12-19 | 2019-03-29 | 杭州湘滨电子科技有限公司 | A kind of curb recognition methods that level is parked |
CN111161449A (en) * | 2020-01-07 | 2020-05-15 | 东南大学 | Internal positioning method of large parking lot for vehicles based on driving recorder images |
CN113435227A (en) * | 2020-03-23 | 2021-09-24 | 阿里巴巴集团控股有限公司 | Map generation and vehicle positioning method, system, device and storage medium |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030060970A1 (en) * | 2001-09-27 | 2003-03-27 | Siemens Information And Communication Mobile Llc | Method and apparatus for defining location coordinates |
US20060092016A1 (en) * | 2004-10-20 | 2006-05-04 | Modes Jerold R | Systems, methods and devices for area-based localization |
CN1996289A (en) * | 2006-12-26 | 2007-07-11 | 董崇军 | Searching and positioning method using electronic map |
CN102479214A (en) * | 2010-11-30 | 2012-05-30 | 余政 | Positioning method and positioning system based on bar code recognition technology and GIS technology |
CN103292805A (en) * | 2013-05-28 | 2013-09-11 | 武汉理工大学 | Indoor navigation system and indoor navigation method thereof |
CN104457738A (en) * | 2014-11-11 | 2015-03-25 | 龚斌 | Indoor navigation method based on mobile terminal application |
CN104596525A (en) * | 2014-12-29 | 2015-05-06 | 西南交通大学 | Vehicle positioning method based on coded graphics |
CN106169247A (en) * | 2016-08-04 | 2016-11-30 | 上海交通大学 | The garage parking indoor positioning of view-based access control model and map and micro navigation system and method |
CN106197417A (en) * | 2016-06-22 | 2016-12-07 | 平安科技(深圳)有限公司 | The indoor navigation method of handheld terminal and handheld terminal |
CN106468553A (en) * | 2016-08-30 | 2017-03-01 | 上海擎朗智能科技有限公司 | A kind of localization method of the mobile object based on road sign |
CN107301787A (en) * | 2017-07-28 | 2017-10-27 | 东南大学 | Large parking lot positioning and bootstrap technique based on position Quick Response Code |
-
2018
- 2018-04-04 CN CN201810297034.XA patent/CN108801257B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030060970A1 (en) * | 2001-09-27 | 2003-03-27 | Siemens Information And Communication Mobile Llc | Method and apparatus for defining location coordinates |
US20060092016A1 (en) * | 2004-10-20 | 2006-05-04 | Modes Jerold R | Systems, methods and devices for area-based localization |
CN1996289A (en) * | 2006-12-26 | 2007-07-11 | 董崇军 | Searching and positioning method using electronic map |
CN102479214A (en) * | 2010-11-30 | 2012-05-30 | 余政 | Positioning method and positioning system based on bar code recognition technology and GIS technology |
CN103292805A (en) * | 2013-05-28 | 2013-09-11 | 武汉理工大学 | Indoor navigation system and indoor navigation method thereof |
CN104457738A (en) * | 2014-11-11 | 2015-03-25 | 龚斌 | Indoor navigation method based on mobile terminal application |
CN104596525A (en) * | 2014-12-29 | 2015-05-06 | 西南交通大学 | Vehicle positioning method based on coded graphics |
CN106197417A (en) * | 2016-06-22 | 2016-12-07 | 平安科技(深圳)有限公司 | The indoor navigation method of handheld terminal and handheld terminal |
CN106169247A (en) * | 2016-08-04 | 2016-11-30 | 上海交通大学 | The garage parking indoor positioning of view-based access control model and map and micro navigation system and method |
CN106468553A (en) * | 2016-08-30 | 2017-03-01 | 上海擎朗智能科技有限公司 | A kind of localization method of the mobile object based on road sign |
CN107301787A (en) * | 2017-07-28 | 2017-10-27 | 东南大学 | Large parking lot positioning and bootstrap technique based on position Quick Response Code |
Non-Patent Citations (1)
Title |
---|
胡立栓等: "基于RFID/GIS/GPS的物流商品监控系统模型研究 ", 《测绘与空间地理信息》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109532824A (en) * | 2018-12-19 | 2019-03-29 | 杭州湘滨电子科技有限公司 | A kind of curb recognition methods that level is parked |
CN109532824B (en) * | 2018-12-19 | 2020-09-01 | 杭州湘滨电子科技有限公司 | Road edge identification method for horizontal parking |
CN111161449A (en) * | 2020-01-07 | 2020-05-15 | 东南大学 | Internal positioning method of large parking lot for vehicles based on driving recorder images |
CN113435227A (en) * | 2020-03-23 | 2021-09-24 | 阿里巴巴集团控股有限公司 | Map generation and vehicle positioning method, system, device and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN108801257B (en) | 2021-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111860319B (en) | Lane line determining method, positioning accuracy evaluating method, device and equipment | |
US20180300549A1 (en) | Road detecting method and apparatus | |
CN103473774B (en) | A kind of vehicle positioning method based on pavement image characteristic matching | |
CN112949633A (en) | Improved YOLOv 3-based infrared target detection method | |
Tongtong et al. | 3D LIDAR-based ground segmentation | |
CN108801257A (en) | A kind of localization method for indoor automatic parking | |
CN106886801A (en) | A kind of image, semantic dividing method and device | |
CN107909638B (en) | Rendering method, medium, system and electronic device of virtual object | |
CN114581887B (en) | Method, device, equipment and computer readable storage medium for detecting lane line | |
CN110516532B (en) | A computer vision-based method for the identification of railway track lines by unmanned aerial vehicles | |
CN109003297A (en) | A kind of monocular depth estimation method, device, terminal and storage medium | |
CN105469393A (en) | Shallow water depth multi-temporal remote sensing image inversion method based on decision fusion | |
Lauko et al. | Local color and morphological image feature based vegetation identification and its application to human environment street view vegetation mapping, or how green is our county? | |
CN114913498A (en) | Parallel multi-scale feature aggregation lane line detection method based on key point estimation | |
CN106503170A (en) | A kind of based on the image base construction method for blocking dimension | |
CN113959439A (en) | Indoor high-precision visible light positioning method and system under sparse light source | |
CN107264570B (en) | Rail light strip distribution detection device and method | |
CN104598928A (en) | Vehicle classification method based on class dictionary sparse identification | |
Guiotte et al. | Semantic segmentation of lidar points clouds: rasterization beyond digital elevation models | |
CN109977834B (en) | Method and device for segmenting human hand and interactive object from depth image | |
CN115880683B (en) | An intelligent water level detection method for urban waterlogging based on deep learning | |
CN104253994B (en) | A kind of night monitoring video real time enhancing method merged based on sparse coding | |
CN104949621A (en) | Boundary positioning method of stripes of grating ruler | |
CN109816738B (en) | Stripe boundary extraction method based on coded structured light | |
CN101833665B (en) | Road Extraction Method for Remote Sensing Map Image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |