CN108788405A - The tungsten argon arc welding method of austenitic heat-resistance steel - Google Patents
The tungsten argon arc welding method of austenitic heat-resistance steel Download PDFInfo
- Publication number
- CN108788405A CN108788405A CN201810643483.5A CN201810643483A CN108788405A CN 108788405 A CN108788405 A CN 108788405A CN 201810643483 A CN201810643483 A CN 201810643483A CN 108788405 A CN108788405 A CN 108788405A
- Authority
- CN
- China
- Prior art keywords
- welding
- less
- voltage
- speed
- heat input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title claims abstract description 201
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 36
- 239000010959 steel Substances 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 33
- NGONBPOYDYSZDR-UHFFFAOYSA-N [Ar].[W] Chemical compound [Ar].[W] NGONBPOYDYSZDR-UHFFFAOYSA-N 0.000 title claims abstract description 24
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 26
- 230000008569 process Effects 0.000 claims abstract description 16
- 229910052786 argon Inorganic materials 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 19
- 239000007789 gas Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 239000002893 slag Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000011229 interlayer Substances 0.000 claims description 3
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 238000000465 moulding Methods 0.000 abstract 1
- 239000010953 base metal Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/167—Arc welding or cutting making use of shielding gas and of a non-consumable electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/0026—Arc welding or cutting specially adapted for particular articles or work
- B23K9/0052—Welding of pipe panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/235—Preliminary treatment
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
Abstract
本发明公开奥氏体耐热钢的钨极氩弧焊接方法,奥氏体耐热钢22Cr25NiWCoCu(UNSS31035)的无缝钢管进行焊接,焊接接头采用单边30°V型坡口并清理,采焊前先用钨极氩弧焊点焊固定位置,组合配对,再使用钨极氩弧焊进行单面焊双面成型,焊前不预热,焊后不热处理,同时采用全氩气保护。本发明的奥氏体耐热钢钢管道焊接工艺减少焊接应力与变形,可以降低焊接接头的脆性,抑制热裂纹的发生,实现对焊接接头塑性和韧性的改善提升,从而综合提高管道焊接后的力学性能。
The invention discloses a tungsten argon arc welding method for austenitic heat-resistant steel. The seamless steel pipe of austenitic heat-resistant steel 22Cr25NiWCoCu (UNSS31035) is welded. First use argon tungsten arc welding to fix the position, combine and match, and then use argon tungsten arc welding for single-sided welding and double-sided molding. There is no preheating before welding and no heat treatment after welding. At the same time, full argon protection is used. The austenitic heat-resistant steel pipeline welding process of the present invention reduces welding stress and deformation, can reduce the brittleness of welded joints, suppress the occurrence of thermal cracks, and realize the improvement of plasticity and toughness of welded joints, thereby comprehensively improving the welded joints. mechanical properties.
Description
技术领域technical field
本发明涉及焊接技术领域,更加具体地说,涉及一种使用配套焊丝焊接新型奥氏体耐热钢的钨极氩弧焊工艺,特别是涉及一种使用配套焊丝,焊接新型奥氏体耐热钢的钨极氩弧焊工艺。The present invention relates to the field of welding technology, more specifically, to a tungsten argon arc welding process for welding new austenitic heat-resistant steels with matching welding wires, in particular to a new austenitic heat-resistant welding process using matching welding wires Gas tungsten arc welding process for steel.
背景技术Background technique
大力发展高参数、大容量的超超临界机组是提高火电站整体发电效率、防治雾霾的重要途径。先进超超临界火电机组主蒸汽压力突破30MPa,再热蒸汽温度提升至623℃,并采用了二次再热技术,其运行效率可提高到50%以上(现行锅炉的运行效率为35%~45%)。电站锅炉在较高温度和压力下运行后,可显著地提高生产效率并可大大减少度电耗煤量。在超超临界锅炉的过热器和再热器管出口段,一般使用奥氏体耐热钢,主要有18%Cr系列的Super304H和20%~25%Cr系列的HR3C等。当蒸汽温度参数达到620℃后,HR3C钢在强度上难以满足要求,Super304H不仅强度不能满足要求,而且抗氧化性能也略显逊色。新型奥氏体耐热钢22Cr25NiWCoCu(UNS S31035)具有持久强度高于HR3C、抗氧化性能优于Super304H的综合优势,可在蒸汽出口温度或再热蒸汽出口温度达623℃的高效超超临界锅炉中替代HR3C和Super304H。22Cr25NiWCoCu钢在700℃左右的高温下使用具有优越的蠕变抗力、耐腐蚀性、耐氧化性,一经问世便成为了再热器和过热器的理想材料。所以对该材料的研究和开发对于发展超超临界发电机组具有十分重要的意义。Vigorously developing high-parameter, large-capacity ultra-supercritical units is an important way to improve the overall power generation efficiency of thermal power plants and prevent smog. The main steam pressure of the advanced ultra-supercritical thermal power unit breaks through 30MPa, the temperature of the reheated steam rises to 623°C, and the double reheating technology is adopted, and its operating efficiency can be increased to more than 50% (the operating efficiency of the current boiler is 35% to 45% %). Power plant boilers can significantly improve production efficiency and greatly reduce coal consumption per kWh after operating at higher temperature and pressure. In the superheater and reheater tube outlet sections of ultra-supercritical boilers, austenitic heat-resistant steels are generally used, mainly Super304H of 18% Cr series and HR3C of 20% to 25% Cr series. When the steam temperature parameter reaches 620°C, the strength of HR3C steel is difficult to meet the requirements, and Super304H not only fails to meet the requirements for strength, but also has slightly inferior oxidation resistance. The new austenitic heat-resistant steel 22Cr25NiWCoCu (UNS S31035) has the comprehensive advantages of higher durable strength than HR3C and better oxidation resistance than Super304H, and can be used in high-efficiency ultra-supercritical boilers with steam outlet temperature or reheat steam outlet temperature up to 623 °C Replace HR3C and Super304H. 22Cr25NiWCoCu steel has excellent creep resistance, corrosion resistance, and oxidation resistance when used at a high temperature of about 700 ° C. It has become an ideal material for reheaters and superheaters once it comes out. Therefore, the research and development of this material is of great significance for the development of ultra-supercritical generator sets.
焊接是建造和维护超超临界锅炉必不可少的手段。目前广泛应用于新型奥氏体耐热钢22Cr25NiWCoCu的焊材是Sanicro 53或者Alloy 617mod,但是上述两者皆为镍基材料,耗费成本较高,进口周期较长,大大增加了电站建设的投入。同时,异种钢接头一旦出现早期失效问题,会严重影响焊管的服役寿命。针对这一现象,国内完全自主开发了与22Cr25NiWCoCu钢成分匹配的实芯焊丝。然而,针对该母材(22Cr25NiWCoCu)和该焊接材料的相关焊接工艺还没有明确。焊接工艺选择不当,容易导致焊接接头出现脆化、热裂纹和力学性能不达标等问题,这将会严重影响超超临界机组的安全性和可靠性,轻者生产不能正常运转,严重者会造成灾难性事故。Welding is an essential means for building and maintaining ultra-supercritical boilers. At present, Sanicro 53 or Alloy 617mod are widely used in the new austenitic heat-resistant steel 22Cr25NiWCoCu. However, both of them are nickel-based materials, which are expensive and have a long import cycle, which greatly increases the investment in power station construction. At the same time, once the early failure of dissimilar steel joints occurs, it will seriously affect the service life of the welded pipe. In response to this phenomenon, China has completely independently developed a solid-core welding wire that matches the composition of 22Cr25NiWCoCu steel. However, the related welding process for this base metal (22Cr25NiWCoCu) and this welding material has not been clarified yet. Improper selection of welding process can easily lead to problems such as embrittlement, thermal cracks and substandard mechanical properties of welded joints, which will seriously affect the safety and reliability of ultra-supercritical units. catastrophic accident.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供奥氏体耐热钢的钨极氩弧焊接方法,即一种针对22Cr25NiWCoCu钢及其成分匹配的实芯焊丝的钨极氩弧焊焊接工艺。The object of the present invention is to overcome the deficiencies of the prior art and provide a gas tungsten arc welding method for austenitic heat-resistant steel, that is, a gas tungsten arc welding process for 22Cr25NiWCoCu steel and its composition-matched solid wire.
本发明的技术目的通过下述技术方案予以实现:Technical purpose of the present invention is achieved through the following technical solutions:
奥氏体耐热钢的钨极氩弧焊接方法,按照下述步骤进行:The tungsten argon arc welding method of austenitic heat-resistant steel is carried out according to the following steps:
奥氏体耐热钢选用22Cr25NiWCoCu(UNSS31035)无缝钢管,焊丝采用国产成分匹配的实芯焊丝,焊接接头采用单边30°V型坡口,钝边为1—3mm,根部间隙为1—3mm,焊前先用钨极氩弧焊点焊固定位置;焊接采用钨极氩弧焊的多层多道焊,单面焊双面成型,焊前不预热,焊后不热处理,层间温度要控制在100℃以内,焊接电流90-120A,电压8-12V,焊接热输入小于1KJ/mm,焊接速度不大于1.5mm/s,焊接全程采用氩气保护,流量为8-12L/min。The austenitic heat-resistant steel is made of 22Cr25NiWCoCu (UNSS31035) seamless steel pipe, the welding wire is made of solid wire with matching domestic composition, the welding joint adopts a single-sided 30° V-shaped groove, the blunt edge is 1-3mm, and the root gap is 1-3mm , use argon tungsten arc welding spot welding to fix the position before welding; welding adopts multi-layer and multi-pass welding of argon tungsten arc welding, single-sided welding and double-sided forming, no preheating before welding, no heat treatment after welding, interlayer temperature To control within 100 ℃, welding current 90-120A, voltage 8-12V, welding heat input is less than 1KJ/mm, welding speed is not greater than 1.5mm/s, argon protection is used throughout the welding process, and the flow rate is 8-12L/min.
在上述技术方案中,焊丝采用国产成分匹配的实芯焊丝,直径为Φ2.4mm;22Cr25NiWCoCu(UNSS31035)无缝钢管,管子的外径为φ53.8mm,壁厚8.9mm。In the above technical scheme, the welding wire adopts domestically-made solid wire with a diameter of Φ2.4mm; 22Cr25NiWCoCu (UNSS31035) seamless steel pipe with an outer diameter of Φ53.8mm and a wall thickness of 8.9mm.
在上述技术方案中,施焊前应将焊口上的毛刺用挫刀、砂轮清理干净,并用不锈钢刷及丙酮或其它有机溶液将坡口面和内外面30mm以内的脏物、油漆清理干净,采用砂轮机打磨直至露出金属光泽,脱脂时间2-3小时。In the above technical scheme, before welding, the burrs on the welding joint should be cleaned with a file and a grinding wheel, and the dirt and paint within 30mm on the groove surface and the inner and outer surfaces should be cleaned with a stainless steel brush and acetone or other organic solutions. Grinding with a grinder until the metallic luster is revealed, and the degreasing time is 2-3 hours.
在上述技术方案中,管口坡口端面应垂直于中心线,两管口的对口间隙应均匀,如附图所示,焊件水平固定时,可将其截面看作钟表面,焊接之前在12点钟的位置进行定位(点固)焊。In the above technical scheme, the end face of the nozzle bevel should be perpendicular to the center line, and the gap between the two nozzles should be uniform. As shown in the attached figure, when the weldment is fixed horizontally, its cross section can be regarded as the surface of the bell. Tack (spot) welding is performed at the 12 o'clock position.
在上述技术方案中,焊接结束后,将管内外表面的金属飞溅、熔渣、氧化皮、毛刺、焊瘤、凹坑、油污清除干净。In the above technical solution, after the welding is completed, the metal spatter, slag, scale, burrs, weld bumps, pits, and oil stains on the inner and outer surfaces of the pipe are cleaned.
在上述技术方案中,氩气纯度不得低于99.90%-99.96%,焊接管道内充气时先将管内空气排出然后封闭继续充氩,氩气泄漏量应小于进气量;焊接之前先通气,焊接结束后滞后断气。In the above technical scheme, the purity of argon gas should not be lower than 99.90%-99.96%. When inflating the welding pipe, first discharge the air in the pipe and then seal it to continue filling argon. The leakage of argon should be less than the intake air; After the end of the hysteresis cut off the breath.
在上述技术方案中,在钨极氩弧焊的多层多道焊中,每焊接完一道,彻底清除焊渣与飞溅,特别是接头中间和坡口边缘。In the above technical solution, in the multi-layer multi-pass welding of argon tungsten arc welding, after each welding pass, completely remove welding slag and spatter, especially the middle of the joint and the edge of the groove.
在上述技术方案中,点固焊参数(即点固焊接层):电流为95—110A,电压为10—12V,焊接速度1—1.2mm/s,焊接热输入小于1KJ/mm;优选电流为98—102A,电压为10—11V,焊接速度1—1.1mm/s,焊接热输入小于1KJ/mm。In the above technical scheme, spot welding parameters (that is, spot welding layer): the current is 95-110A, the voltage is 10-12V, the welding speed is 1-1.2mm/s, and the welding heat input is less than 1KJ/mm; the preferred current is 98-102A, voltage 10-11V, welding speed 1-1.1mm/s, welding heat input less than 1KJ/mm.
在上述技术方案中,打底焊接参数(即第一层):电流为110—120A,电压为8—12V,焊接速度1—1.5mm/s,焊接热输入小于1KJ/mm;优选电流为115—120A,电压为10—11V,焊接速度1—1.3mm/s,焊接热输入小于1KJ/mm。In the above technical scheme, the welding parameters of the bottom layer (that is, the first layer): the current is 110-120A, the voltage is 8-12V, the welding speed is 1-1.5mm/s, and the welding heat input is less than 1KJ/mm; the preferred current is 115 —120A, voltage 10-11V, welding speed 1-1.3mm/s, welding heat input less than 1KJ/mm.
在上述技术方案中,填充焊接参数(即第二层):电流为95—100A,电压为10—12V,焊接速度1—1.2mm/s,焊接热输入小于1KJ/mm;优选电流为98—100A,电压为10—11V,焊接速度1—1.1mm/s,焊接热输入小于1KJ/mm。In the above technical scheme, filling welding parameters (that is, the second layer): the current is 95-100A, the voltage is 10-12V, the welding speed is 1-1.2mm/s, and the welding heat input is less than 1KJ/mm; the preferred current is 98- 100A, voltage 10-11V, welding speed 1-1.1mm/s, welding heat input less than 1KJ/mm.
在上述技术方案中,填充焊接参数(即第三层):电流为95—100A,电压为10—12V,焊接速度1—1.2mm/s,焊接热输入小于1KJ/mm;优选电流为98—100A,电压为10—11V,焊接速度1—1.1mm/s,焊接热输入小于1KJ/mm。In the above technical scheme, filling welding parameters (that is, the third layer): the current is 95-100A, the voltage is 10-12V, the welding speed is 1-1.2mm/s, and the welding heat input is less than 1KJ/mm; the preferred current is 98- 100A, voltage 10-11V, welding speed 1-1.1mm/s, welding heat input less than 1KJ/mm.
在上述技术方案中,填充焊接参数(即第四层):电流为95—100A,电压为10—12V,焊接速度1—1.2mm/s,焊接热输入小于1KJ/mm;优选电流为98—100A,电压为10—11V,焊接速度1—1.1mm/s,焊接热输入小于1KJ/mm。In the above technical scheme, filling welding parameters (that is, the fourth layer): the current is 95-100A, the voltage is 10-12V, the welding speed is 1-1.2mm/s, and the welding heat input is less than 1KJ/mm; the preferred current is 98- 100A, voltage 10-11V, welding speed 1-1.1mm/s, welding heat input less than 1KJ/mm.
在上述技术方案中,盖面焊接参数(即第五层第一道):电流为95—100A,电压为10—12V,焊接速度1—1.2mm/s,焊接热输入小于1KJ/mm;优选电流为99—100A,电压为10—11V,焊接速度1—1.1mm/s,焊接热输入小于1KJ/mm。In the above technical scheme, the welding parameters of the cover surface (that is, the first pass of the fifth layer): the current is 95-100A, the voltage is 10-12V, the welding speed is 1-1.2mm/s, and the welding heat input is less than 1KJ/mm; preferably The current is 99-100A, the voltage is 10-11V, the welding speed is 1-1.1mm/s, and the welding heat input is less than 1KJ/mm.
在上述技术方案中,盖面焊接参数(即第五层第二道):电流为95—100A,电压为10—12V,焊接速度1—1.2mm/s,焊接热输入小于1KJ/mm;优选电流为99—100A,电压为10—11V,焊接速度1—1.1mm/s,焊接热输入小于1KJ/mm。In the above technical scheme, the welding parameters of the cover surface (that is, the second pass of the fifth layer): the current is 95-100A, the voltage is 10-12V, the welding speed is 1-1.2mm/s, and the welding heat input is less than 1KJ/mm; preferably The current is 99-100A, the voltage is 10-11V, the welding speed is 1-1.1mm/s, and the welding heat input is less than 1KJ/mm.
与现有技术相比,本发明的有益效果如下:(1)本发明涉及的这种奥氏体耐热钢钢管道焊接工艺,具有工艺各阶段参数严格合理控制,流程规范,减少焊接应力与变形,可以降低焊接接头的脆性,抑制热裂纹的发生,实现对焊接接头塑性和韧性的改善提升,从而综合提高管道焊接后的力学性能。(2)在本发明的焊接方法中,通过选取合适的焊接线热量,省去了在焊接过程中对焊接母材的焊前预热处理和对焊缝的焊后热处理。这样,在保证焊接质量的情况下,简化了焊接操作步骤,提高了焊接工作效率。Compared with the prior art, the beneficial effects of the present invention are as follows: (1) The austenitic heat-resistant steel pipeline welding process involved in the present invention has strict and reasonable control of parameters in each stage of the process, standardized flow process, and reduces welding stress and welding process. Deformation can reduce the brittleness of welded joints, inhibit the occurrence of thermal cracks, improve the plasticity and toughness of welded joints, and comprehensively improve the mechanical properties of pipelines after welding. (2) In the welding method of the present invention, by selecting the appropriate welding heat, the pre-weld preheating treatment of the welding base metal and the post-welding heat treatment of the weld seam are omitted in the welding process. In this way, under the condition of ensuring the welding quality, the welding operation steps are simplified and the welding work efficiency is improved.
附图说明Description of drawings
图1是本发明技术方案中坡口结构示意图。Fig. 1 is a schematic diagram of the groove structure in the technical solution of the present invention.
图2是本发明技术方案中点固焊结构示意图。Fig. 2 is a schematic diagram of the spot welding structure in the technical solution of the present invention.
具体实施方式Detailed ways
以下对本发明的实施例进行详细说明,但是本发明可以由权利要求限定和覆盖的多种不同方式实施。以下通过具体实施例对本发明进行详细描述。本发明包括以下步骤:Embodiments of the invention are described in detail below, but the invention can be practiced in many different ways as defined and covered by the claims. The present invention is described in detail below through specific examples. The present invention comprises the following steps:
步骤一,母材材料选择:奥氏体耐热钢选用22Cr25NiWCoCu(UNSS31035)无缝钢管,管子的外径为φ53.8mm,壁厚8.9mm,管子规格不限于此。选择焊材:采用国产成分匹配的钨极氩弧焊实芯焊丝,直径为Φ2.4mm,焊丝直径不限于此。Step 1, base metal material selection: 22Cr25NiWCoCu (UNSS31035) seamless steel pipe is selected as the austenitic heat-resistant steel, the outer diameter of the pipe is φ53.8mm, and the wall thickness is 8.9mm. The pipe specification is not limited to this. Selection of welding consumables: use domestically-made argon tungsten arc welding solid wire with a diameter of Φ2.4mm, and the diameter of the wire is not limited to this.
焊丝为昆山京群焊材科技有限公司的产品,申请号为2017114261509,申请日为2017年12月25日,焊丝即电焊条,由焊芯和药皮构成,药皮涂敷于焊芯外壁,所述焊芯采用合金芯线,药皮采用CaO-CaF2-SiO2渣系,合金元素采用焊条芯线过渡;按重量百分比计,其熔敷金属化学成分为:C 0.03-0.10,Mn 1.0-2.5,Si≤0.80,Ni 24.0-26.0,Cr 21.5-23.5,Mo 1.5-2.5,Cu 2.5-3.5,Nb 0.30-0.60,W 3.0-4.0,Co 1.0-2.0,N 0.15-0.30,余量为Fe及杂质,用于超超临界火电机组用奥氏体耐热不锈钢的焊接处理。The welding wire is a product of Kunshan Jingqun Welding Material Technology Co., Ltd., the application number is 2017114261509, and the application date is December 25, 2017. The welding wire is an electric welding rod, which is composed of a welding core and a coating. The coating is coated on the outer wall of the welding core. The welding core adopts alloy core wire, the coating adopts CaO-CaF2-SiO2 slag system, and the alloy elements adopt welding rod core wire for transition; in terms of weight percentage, the chemical composition of the deposited metal is: C 0.03-0.10, Mn 1.0-2.5 , Si≤0.80, Ni 24.0-26.0, Cr 21.5-23.5, Mo 1.5-2.5, Cu 2.5-3.5, Nb 0.30-0.60, W 3.0-4.0, Co 1.0-2.0, N 0.15-0.30, the balance is Fe and Impurities are used for welding treatment of austenitic heat-resistant stainless steel for ultra-supercritical thermal power units.
步骤二,坡口加工:焊接接头采用单边30°V型坡口,钝边为1mm,根部间隙为2mm,由车床、手提式电动坡口机或者等离子切割等方法加工成如示意图所示的结构。坡口角度及钝边应保持一致,对口间隙应修磨至圆周均匀,坡口形式和尺寸:焊接接头采用单边30°V型坡口,钝边为1mm,根部间隙为2mm。Step 2, Groove processing: The welded joint adopts a single-sided 30°V-shaped groove, the blunt side is 1mm, and the root gap is 2mm. It is processed by lathe, portable electric beveling machine or plasma cutting, etc. structure. The groove angle and the blunt edge should be kept consistent, and the gap between the butt joints should be ground to a uniform circumference.
步骤三,坡口清理:管道施焊前应将焊口上的毛刺用挫刀、砂轮清理干净,并用不锈钢刷及丙酮或其它有机溶液将坡口面和内外面30mm以内的脏物、油漆清理干净,采用砂轮机打磨直至露出金属光泽,脱脂时间2-3小时。Step 3, Groove cleaning: before welding the pipe, the burr on the weld should be cleaned with a file and a grinding wheel, and the dirt and paint within 30mm on the groove surface and the inner and outer surfaces should be cleaned with a stainless steel brush, acetone or other organic solutions , use a grinder to polish until the metallic luster is revealed, and the degreasing time is 2-3 hours.
步骤四,点固焊:采焊前先用钨极氩弧焊点焊固定位置,组合配对。管口坡口端面应垂直于中心线,两管口的对口间隙应均匀,如附图所示,焊件水平固定时,可将其截面看作钟表面,焊接之前在12点钟的位置进行定位(点固)焊。Step 4, spot welding: before welding, fix the position with argon tungsten arc welding spot welding, and combine and match. The end face of the groove of the nozzle should be perpendicular to the center line, and the gap between the two nozzles should be uniform. As shown in the attached figure, when the weldment is fixed horizontally, its cross section can be regarded as the surface of the clock. Positioning (spot) welding.
步骤五,焊接工艺参数:钨极氩弧焊(手工焊),单面焊双面成型,焊前不预热,焊后不热处理。用多层多道焊,层间温度要控制在100℃以内,焊接热输入小于1KJ/mm。每焊接完一道,彻底清除焊渣与飞溅,特别是接头中间和坡口边缘。具体焊接工艺参数见下表。Step 5, welding process parameters: argon tungsten arc welding (manual welding), single-sided welding and double-sided forming, no preheating before welding, and no heat treatment after welding. With multi-layer multi-pass welding, the interlayer temperature should be controlled within 100°C, and the welding heat input should be less than 1KJ/mm. After each welding, thoroughly remove welding slag and spatter, especially the middle of the joint and the edge of the groove. The specific welding process parameters are shown in the table below.
步骤六,气体:全氩气保护,流量为8-12L/min。焊接之前先通气,焊接结束后滞后断气。氩气纯度不得低于99.90%-99.96%,管内充气时先将管内空气排出然后封闭继续充氩,氩气泄漏量应小于进气量。Step 6, gas: full argon protection, the flow rate is 8-12L/min. Ventilate before welding, and cut off the gas after welding. The purity of the argon gas should not be lower than 99.90%-99.96%. When inflating the tube, first discharge the air in the tube and then seal it to continue filling with argon. The leakage of argon should be less than the intake volume.
步骤七,工作结束后,应将管内外表面的金属飞溅、熔渣、氧化皮、毛刺、焊瘤、凹坑、油污清除干净。Step 7. After the work is finished, the metal splash, slag, scale, burrs, welding bumps, pits, and oil stains on the inner and outer surfaces of the pipe should be removed.
在完成焊接后,对母材和焊缝的元素进行分析,如下表所示,在焊接处理之后,焊缝和母材表现出不同的元素组成。After the welding is completed, the elements of the base metal and the weld are analyzed, as shown in the table below, after the welding treatment, the weld and the base metal exhibit different elemental compositions.
按照国标GBT2651-2008焊接接头拉伸试验方法,采用长春试验机所万能试验机进行室温下的拉伸试验,得出焊接接头的室温区分强度为460MPa,抗拉强度为840MPa,其与母材对比如下表格,焊接接头强度明显高于母材,且断裂位置出现在母材位置。According to the national standard GBT2651-2008 welded joint tensile test method, the universal testing machine of Changchun Testing Machine Institute was used to carry out the tensile test at room temperature. It was obtained that the room temperature differential strength of the welded joint was 460MPa, and the tensile strength was 840MPa. Compared with the base metal As shown in the table below, the strength of the welded joint is significantly higher than that of the base metal, and the fracture position appears at the position of the base metal.
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。The present invention has been described as an example above, and it should be noted that, without departing from the core of the present invention, any simple deformation, modification or other equivalent replacements that can be made by those skilled in the art without creative labor all fall within the scope of this invention. protection scope of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810643483.5A CN108788405A (en) | 2018-06-21 | 2018-06-21 | The tungsten argon arc welding method of austenitic heat-resistance steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810643483.5A CN108788405A (en) | 2018-06-21 | 2018-06-21 | The tungsten argon arc welding method of austenitic heat-resistance steel |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108788405A true CN108788405A (en) | 2018-11-13 |
Family
ID=64084178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810643483.5A Pending CN108788405A (en) | 2018-06-21 | 2018-06-21 | The tungsten argon arc welding method of austenitic heat-resistance steel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108788405A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109514034A (en) * | 2018-12-07 | 2019-03-26 | 西安飞机工业(集团)有限责任公司 | A kind of large-scale composite material forming frock template welding method |
CN109648171A (en) * | 2019-02-27 | 2019-04-19 | 上海外高桥造船有限公司 | Stainless steel tube welding method |
CN110253116A (en) * | 2019-06-20 | 2019-09-20 | 中船澄西新荣船舶有限公司 | A kind of argon-are welding technology of super austenitic stainless steel 254SMo steel pipe |
CN111230255A (en) * | 2020-01-19 | 2020-06-05 | 武汉一冶钢结构有限责任公司 | Welding method for improving low-temperature toughness of 304L austenitic stainless steel welding joint |
CN113084313A (en) * | 2021-03-03 | 2021-07-09 | 广州特种承压设备检测研究院 | Argon tungsten-arc welding process for steel for ultra-supercritical boiler |
CN113084309A (en) * | 2021-04-16 | 2021-07-09 | 东方电气(广州)重型机器有限公司 | Welding method for chromium molybdenum steel and heat-resistant stainless steel under high-temperature liquid sodium medium |
CN113634853A (en) * | 2021-08-27 | 2021-11-12 | 中化二建集团有限公司 | Method for welding composite steel pipeline made of 1-1/4Cr-1/2Mo +410S |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102489842A (en) * | 2011-12-07 | 2012-06-13 | 鞍山锅炉厂有限公司 | Argon tungsten-arc welding process for pearlite heat-resistant steel pipe and austenitic heat-resistant steel pipe |
CN104858555A (en) * | 2015-06-10 | 2015-08-26 | 江苏力沛电力工程技术服务有限公司 | Pressure pipeline welding process |
CN107150161A (en) * | 2017-05-26 | 2017-09-12 | 中国能源建设集团湖南火电建设有限公司 | A kind of T91 steel welding technologies |
CN108098187A (en) * | 2017-12-25 | 2018-06-01 | 昆山京群焊材科技有限公司 | A kind of ultra supercritical coal-fired unit austenite heat-resistance stainless steel welding rod |
-
2018
- 2018-06-21 CN CN201810643483.5A patent/CN108788405A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102489842A (en) * | 2011-12-07 | 2012-06-13 | 鞍山锅炉厂有限公司 | Argon tungsten-arc welding process for pearlite heat-resistant steel pipe and austenitic heat-resistant steel pipe |
CN104858555A (en) * | 2015-06-10 | 2015-08-26 | 江苏力沛电力工程技术服务有限公司 | Pressure pipeline welding process |
CN107150161A (en) * | 2017-05-26 | 2017-09-12 | 中国能源建设集团湖南火电建设有限公司 | A kind of T91 steel welding technologies |
CN108098187A (en) * | 2017-12-25 | 2018-06-01 | 昆山京群焊材科技有限公司 | A kind of ultra supercritical coal-fired unit austenite heat-resistance stainless steel welding rod |
Non-Patent Citations (2)
Title |
---|
杨顺田 等: "新型超超临界531035锅炉用钢焊接试验", 《焊接》 * |
陈亮 等: "700℃超超临界锅炉高温过热器再热器用 Sanicro 25新材料焊接工艺研究", 《锅炉技术》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109514034A (en) * | 2018-12-07 | 2019-03-26 | 西安飞机工业(集团)有限责任公司 | A kind of large-scale composite material forming frock template welding method |
CN109648171A (en) * | 2019-02-27 | 2019-04-19 | 上海外高桥造船有限公司 | Stainless steel tube welding method |
CN110253116A (en) * | 2019-06-20 | 2019-09-20 | 中船澄西新荣船舶有限公司 | A kind of argon-are welding technology of super austenitic stainless steel 254SMo steel pipe |
CN111230255A (en) * | 2020-01-19 | 2020-06-05 | 武汉一冶钢结构有限责任公司 | Welding method for improving low-temperature toughness of 304L austenitic stainless steel welding joint |
CN113084313A (en) * | 2021-03-03 | 2021-07-09 | 广州特种承压设备检测研究院 | Argon tungsten-arc welding process for steel for ultra-supercritical boiler |
CN113084309A (en) * | 2021-04-16 | 2021-07-09 | 东方电气(广州)重型机器有限公司 | Welding method for chromium molybdenum steel and heat-resistant stainless steel under high-temperature liquid sodium medium |
CN113634853A (en) * | 2021-08-27 | 2021-11-12 | 中化二建集团有限公司 | Method for welding composite steel pipeline made of 1-1/4Cr-1/2Mo +410S |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108788405A (en) | The tungsten argon arc welding method of austenitic heat-resistance steel | |
CN104759743B (en) | A kind of nickel-based alloy pipe argon arc welding process | |
CN104084675B (en) | A kind of high-temperature nickel-base alloy welding procedure | |
CN102489842B (en) | Argon tungsten-arc welding process for pearlite heat-resistant steel pipe and austenitic heat-resistant steel pipe | |
CN101100013A (en) | Method for welding circumferential weld of composite pipe of thin-wall stainless steel clad layer and carbon steel base layer | |
CN101927390A (en) | Method for welding circumferential weld between metal thin-wall clad layer and base layer of clad pipe | |
CN102205458B (en) | Manufacturing method for X120 steel-level spiral seam hidden arc welding tube | |
CN107598351B (en) | Large-area plasma surfacing method for outer circle of Stellite cobalt-based alloy | |
CN106670738B (en) | The welding procedure of boiler tubing G115 steel | |
CN103464925B (en) | High-temperature heat-proof steel component welding repair method for power station | |
CN104308336B (en) | A kind of welded steel technique | |
CN101733523A (en) | Two phase stainless steel welding process for medium plates | |
CN105066098A (en) | Header of 620-DEG C steam parameter ultra supercritical unit boiler | |
CN104923928A (en) | Q690D steel tube longitudinal seam welding method for crane boom | |
CN110102878A (en) | The CMT and laser melting coating combined-repair method of roller mill main axle flat head sleeve inner hole | |
CN103495794B (en) | The duct butt-welding method of T23 steel pipe and T91 steel pipe | |
CN108526662A (en) | A kind of Ni-based multiple tube X grooves of heavy caliber exempt from back side argon filling welding method | |
CN104070271B (en) | 15Cr1Mo1V valve body and WB36 pipe arrangement different steel weld method | |
CN108247292A (en) | A kind of manufacturing method of super-duplex stainless steel Welding Thick Pipe | |
CN111331315B (en) | Ethylene cracking furnace tube welding repair method | |
CN101947682B (en) | Method for surface overlaying of frame of continuous casting machine | |
CN114131242B (en) | Alloy material for valve seat sealing surface overlaying layer and welding process thereof | |
CN105983761A (en) | High-strength steel welding process | |
CN107009003A (en) | The Rework Technics of Condenser Titanium Tube | |
CN104942525B (en) | Ultra-large copper nut remanufacturing technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181113 |
|
RJ01 | Rejection of invention patent application after publication |