CN108784703A - 一种中老年人可穿戴式呼吸监测方法 - Google Patents

一种中老年人可穿戴式呼吸监测方法 Download PDF

Info

Publication number
CN108784703A
CN108784703A CN201810731670.9A CN201810731670A CN108784703A CN 108784703 A CN108784703 A CN 108784703A CN 201810731670 A CN201810731670 A CN 201810731670A CN 108784703 A CN108784703 A CN 108784703A
Authority
CN
China
Prior art keywords
inertial measurement
respiration
measurement unit
human body
aged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810731670.9A
Other languages
English (en)
Other versions
CN108784703B (zh
Inventor
杨海
罗涛
梁海波
张禾
周兆明
李莉
饶悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201810731670.9A priority Critical patent/CN108784703B/zh
Publication of CN108784703A publication Critical patent/CN108784703A/zh
Application granted granted Critical
Publication of CN108784703B publication Critical patent/CN108784703B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • A61B5/1135Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing by monitoring thoracic expansion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/08Elderly

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了一种中老年人可穿戴式呼吸监测方法,具体为:通过智能穿戴背心监测出人体呼吸时前胸和后背的加速度、角速度信息,该背心同时拥有前后两个固定安装的惯性测量单元,得到监测数据后利用UWB无线传输方式将数据传送至背心的微处理器,微处理器根据实时测量数据,并利用人体呼吸姿态融合算法,解算出身体处在不同状态下的胸腔呼吸频率和呼吸深度,通过和预存储在微处理器里面的健康人体的呼吸数据库进行模式匹配,进而判断出被监测者身体的健康状况,若呼吸的频率、深度超出标准范围,微处理器发出报警提示。

Description

一种中老年人可穿戴式呼吸监测方法
技术领域
本发明属于智能医疗监测领域,涉及一种中老年人可穿戴式呼吸监测方法。
背景技术
随着社会的发展我国人口老龄化问题不断加剧,农村留守老人也越来越多,对老年人健康问题的关注也越发成为社会热点。由于子女常年不在老人身边,无法掌握老人的健康状态,如果老人遭遇突发状况而不能进行及时医治进而造成无法想象的后果。在老人身体各项数据指标中呼吸及心率的监测是最重要的项目之一。
随着医疗条件的逐步提升,目前呼吸监测的技术和设备主要有以下2种类型:一类是接触式。包括容积式呼吸检测法、速度式呼吸检测法、温度检测法、位移检测法、阻抗检测法、血氧检测法、可穿戴技术和睡眠床垫、枕头等。一类是非接触式。利用电磁波、光、红外线等媒介进行检测。这些技术运用在临床领域精准度高,但在家庭和个人方面,存在设计复杂,成本较高;配戴麻烦,舒适性不佳;数据繁杂,监测不直观;只反馈数据,不能智能分析调控等问题。其中,在近距离监测呼吸音频的技术中,大多采用了面罩、插入等方式,设备较大,人体舒适性差;在穿戴技术中,大多采用胸部穿戴、手部穿戴等方式,胸部穿戴舒适性差,手部穿戴不能直观监测到呼吸,准确性差。有一种直接放置在口鼻处的呼吸监测方式,采取耳机麦克风的方式配戴,但存在与口鼻距离较远,收集呼吸音频效率不高,对轻缓呼吸监测效果不好,大多用于运动呼吸监测;而且配戴容易晃动,臂杆也会产生振动,极大地影响了呼吸音频监测的准确性。
发明内容
为克服现有技术的不足,本发明着重为家庭和个人提供一种便捷、准确、智能的可呼吸监测方法,通过智能背心上装有的惯性测量单元设备,采集人体呼吸时前胸和后背的各项数据,并将这些数据通过UWB传输方式传送给智能背心上的微处理器,微处理器通过多种融合算法解算出老人呼吸数据,判断出危险状态后发出报警提示。
为了实现上述技术目标,本发明具体通过以下技术方案实现:
一种中老年人可穿戴式呼吸监测方法,具体包括以下步骤:
1)利用惯性测量单元实时测量人体不同运动状态下前胸和后背呼吸的加速度和角速度信息;
2)对得到人体的加速度和角速度信息进行粒子滤波,摆脱系统模型的限制;
3)经过滤波后的加速度和角速度信息与人体的运动呈非线性关系,分别对加速度和角速度信息进行速度校准和姿态校准;
4)针对前胸和后背两个惯性测量单元安装的任意性,利用经过补偿矫正后的两个惯性测量单元的姿态角和速度信息,进行基于欧拉角的坐标旋转匹配校准,实现对两个惯性测量单元的坐标校准;
5)针对前胸和后背两个惯性测量单元数据传输时序的任意性,利用人为设定的融合周期建立批处理伪量测方程,该量测方程的公式表达为其中wk表示观测噪声矩阵,进而构建批处理时间异步融合校准模型,该算法在充分分析组合系统数据传输特性的基础上进行状态方程和批处理伪量测方程的构建,并利用UKF进行状态量的最优估计,进而得到异步融合下的定位结果,就此实现对两个惯性测量单元数据传输的时间校准;
6)在经过坐标和时间校准之后,利用惯性测量单元解算的姿态角和速度信息,构建基于前胸与后背相对运动方程下的差分呼吸解算模型,其模型为其中uk表示状态噪声矩阵,建立非线性无迹差分卡尔曼滤波模型,无迹差分卡尔曼滤波摒弃了对非线性函数进行线性化的传统做法,采用卡尔曼线性滤波框架,对于一步预测方程,使用无迹变换来处理均值和协方差的非线性传递问题,进而得到单纯人体呼吸运动下的时域呼吸波形;
7)对呼吸运动的时域参数进行误差精度检验,如果符合解算精度条件,则对呼吸运动的时域信号进行频谱分析,将所测出的实验数信号强度按频率顺序展开,使其成为频率的函数,并考察变化规律。对信号进行频谱分析,就是对其进行傅里叶变换,观察其频谱幅度与频谱相位,分析软件是MATLAB,进而得到准确的运动人体呼吸深度和呼吸频率参数。
进一步的,所述的粒子滤波的具体为通过初步姿态信息中寻找一组在状态空间传播的随机样本对概率密度函数进行近似,以样本均值代替积分运算,获得状态最小方差分布。
进一步的,所述的姿态校准为:对人体在进行大幅度运动时,惯性测量单元姿态解算时进行角速度信息下的角振动特性分析,建立圆锥误差补偿算法来提高惯性测量单元的姿态解算精度。
圆锥误差的补偿主要与陀螺的采样周期和旋转矢量修正算法有关。缩短采样周期可以减小圆锥误差,其旋转矢量微分方程的简化式为式中,Φ为旋转矢量;ω为陀螺输出的角速率。
进一步的,所述的速度校准为:惯性测量单元在进行比例积分下的速度解算时,进行惯性测量单元线振动特性分析,建立划船误差补偿模型以提高惯性测量单元的速度解算精度。在惯导的速度积分中,速度更新周期为T,采样周期为t,T=N×t,划船误差补偿项为
进一步的,所述的坐标校准采用欧拉角转方向余弦矩阵的方式将前后惯性测量单元所测得角速度转换到同一平面内。
进一步的,所述的时间校准采用无锚定TDOA定位算法,以此来克服所测数据的时间差。
本发明的有益效果为:
本发明提供了一种中老年人可穿戴式呼吸监测方法,可以实时检测中老年人在行走和运动状态下的呼吸深度和频率,可以通过与健康人体的呼吸数据进行比对,判断出被监测身体的健康状况并发出报警提示。本发明方法使用方便,便于连续常规监测,大大提高了使用的方便性和可追溯性,方便快捷,简单实用。
附图说明
图1是本发明实施例程序框图;
图2是本发明实施例人体呼气吸气胸廓变化示意图;
图3是本发明实施例明算法流程图;
图4是本发明静坐呼吸三轴加速度实验结果图;
图5是本发明匀速走动三轴加速度实验结果图;
图6是本发明正常跑动三轴加速度实验结果图。
具体实施方式
下面将结合本发明具体的实施例,对本发明技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1本发明程序流程图所示,智能背心通过惯性单元设备实时得到各项数据,然后通过UWB信号传输给背心上的微处理器,微处理器通过算法解算出呼吸的深度、呼吸频率等体征数据,然后将解算出体征数据与健康人体呼吸数据库进行模式匹配,判断出穿戴者的呼吸是否在正常范围内波动,若超出标准范围发出报警信号。
如图2和图3所示,智能背心拥有前后两个惯性测量单元设备,当人体进行不同状态的运动时呼吸的幅度是不同的,前胸和后背的惯性测量单元会相应的收缩和扩张,前胸惯性测量单元设备测量呼吸时前胸的加速度、角速度,人体位置的信息,后背惯性测量单元设备测量呼吸时后背的加速度、角速度。
惯性测量单元设备和微处理器通过纽扣电池供电,电池每半年一换,惯导测量单元和微处理器的频率是10Hz。惯性测量单元和微处理器都具有防水特性,微处理器将采集到的数据进行算法解算。
微处理器在接收到数据后首先通过粒子滤波对前后两个惯性测量单元所测得的三轴加速度和角速度信息进行初次滤波,粒子滤波比较精确地表达基于观测量和控制量的后验概率分布。
智能背心前胸和后背固定安装有两个惯性测量单元设备实时测量出人体不同运动状态下的三轴加速度和角速度信息。针对人体处于不同的运动状态时惯性测量单元所测得的数据含有多个均值和方差都无法确定的过程噪声和测量噪声的情况,对测量得到的加速度和角速度信息进行粒子滤波,摆脱系统模型的限制经过滤波后的加速度和角速度信息与人体的运动呈非线性关系,通过寻找一组在状态空间传播的随机样本对概率密度函数进行近似,以样本均值代替积分运算,从而获得状态最小方差分布。
对人体在进行大幅度运动时惯性测量单元姿态解算产生的漂移现象,进行角速度信息下的角振动特性分析,同时建立圆锥误差补偿算法来提高惯性测量单元的姿态解算精度。
惯性测量单元在进行比力积分速度计算时,由于机体姿态变化,惯性测量单元存在着明显的划船效应,此时对线振动特性分析,建立划船补偿模型降低粒子滤波后的加速度误差。
针对前胸和后背两个惯性测量单元安装的任意性,利用经过补偿矫正后的两个惯性测量单元的姿态角和速度信息,进行基于欧拉角的坐标旋转匹配校准,实现对双惯性测量单元的空间校准,针对前胸和后背两个惯性测量单元数据传输时序的任意性,利用人为设定的融合周期建立批处理伪量测方程,进而构建批处理时间异步融合校准模型,实现对双惯性测量单元的时间校准。
坐标校准采用欧拉角转方向余弦矩阵的方式将前后惯性测量单元所测得角速度转换到同一平面内。
a=aψaθaφ(Z→Y→X)
其中,aψ为Z轴方向加速度,aθ为Y轴方向加速度,aψ为X轴方向加速度。
时间校准采用无锚定TDOA定位算法以此来克服所测数据的时间差,TDOA是通过检测信号到达两个信号接收点的时间差,而不是到达的绝对时间来确定移动台的位置,降低了时间同步要求。
对坐标校准和时间校准后的角速度、加速度进行差分无迹卡尔曼滤波。
在经过时空配准之后,利用惯性测量单元解算的姿态角和速度等信息,构建基于前胸与后背相对运动方程下的差分呼吸解算模型,考虑到差分模型的非线性,建立非线性无迹差分卡尔曼滤波模型,进而得到单纯人体呼吸运动下的时域呼吸波形。
得到人体呼吸的深度,在解算出呼吸深度后通过频谱分析及人体健康呼吸比例耦合模型得到呼吸频率。
在解算出呼吸深度和心率后通过和在微处理器里面健康人体的呼吸数据进行比对,判断出被监测身体的健康状况,微处理器所比对的数据来自标准医学数据,为疾病的诊断提供可靠的数据,进而诊断出被监测者身体的健康状况,若呼吸深度和呼吸频率超出标准范围,微处理器发出报警提示,并且进行算法循环。
为证明该发明专利方法的可行性,于是采用实验进行验证,实验分别测出人体在静坐、匀速走动、正常跑动下的加速度和角速度,对所测出的实验数据按照本发明专利方法的流程进行数据分析和绘图,得到当人体处于不同状态下呼吸的三轴曲线图其结果如图4~图6所示,从图中可得到呼吸时的深度和频率。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种中老年人可穿戴式呼吸监测方法,其特征在于,包括以下步骤:
1)利用惯性测量单元实时测量人体不同运动状态下前胸和后背呼吸的加速度和角速度信息;
2)对得到人体的加速度和角速度信息进行粒子滤波,摆脱系统模型的限制;
3)经过滤波后的加速度和角速度信息与人体的运动呈非线性关系,分别对加速度和角速度信息进行速度校准和姿态校准;
4)针对前胸和后背两个惯性测量单元安装的任意性,利用经过补偿矫正后的两个惯性测量单元的姿态角和速度信息,进行基于欧拉角的坐标旋转匹配校准,实现对两个惯性测量单元的坐标校准;
5)针对前胸和后背两个惯性测量单元数据传输时序的任意性,利用人为设定的融合周期建立批处理伪量测方程,进而构建批处理时间异步融合校准模型,实现对两个惯性测量单元数据传输的时间校准;
6)在经过坐标和时间校准之后,利用惯性测量单元解算的姿态角和速度信息,构建基于前胸与后背相对运动方程下的差分呼吸解算模型,建立非线性无迹差分卡尔曼滤波模型,得到单纯人体呼吸运动下的时域呼吸波形;
7)对呼吸运动的时域参数进行误差精度检验,如果符合解算精度条件,则对呼吸运动的时域信号进行频谱分析,进而得到准确的运动人体呼吸深度和呼吸频率参数。
2.根据权利要求1所述的一种中老年人可穿戴式呼吸监测方法,其特征在于,所述的粒子滤波的具体为通过初步姿态信息中寻找一组在状态空间传播的随机样本对概率密度函数进行近似,以样本均值代替积分运算,获得状态最小方差分布。
3.根据权利要求1所述的一种中老年人可穿戴式呼吸监测方法,其特征在于,所述的姿态校准为:对人体在进行大幅度运动时,惯性测量单元姿态解算时进行角速度信息下的角振动特性分析,建立圆锥误差补偿算法来提高惯性测量单元的姿态解算精度。
4.根据权利要求1所述的一种中老年人可穿戴式呼吸监测方法,其特征在于,所述的速度校准为:惯性测量单元在进行比例积分下的速度解算时,进行惯性测量单元线振动特性分析,建立划船误差补偿模型以提高惯性测量单元的速度解算精度。
5.根据权利要求1所述的一种中老年人可穿戴式呼吸监测方法,其特征在于,所述的坐标校准采用欧拉角转方向余弦矩阵的方式将前后惯性测量单元所测得角速度转换到同一平面内。
6.根据权利要求1所述的一种中老年人可穿戴式呼吸监测方法,其特征在于,所述的时间校准采用无锚定TDOA定位算法,以此来克服所测数据的时间差。
CN201810731670.9A 2018-07-05 2018-07-05 一种中老年人可穿戴式呼吸监测方法 Expired - Fee Related CN108784703B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810731670.9A CN108784703B (zh) 2018-07-05 2018-07-05 一种中老年人可穿戴式呼吸监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810731670.9A CN108784703B (zh) 2018-07-05 2018-07-05 一种中老年人可穿戴式呼吸监测方法

Publications (2)

Publication Number Publication Date
CN108784703A true CN108784703A (zh) 2018-11-13
CN108784703B CN108784703B (zh) 2021-02-02

Family

ID=64075187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810731670.9A Expired - Fee Related CN108784703B (zh) 2018-07-05 2018-07-05 一种中老年人可穿戴式呼吸监测方法

Country Status (1)

Country Link
CN (1) CN108784703B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111657951A (zh) * 2020-06-15 2020-09-15 复旦大学 一种基于传感器阵列式排布的呼吸监测装置
CN112932460A (zh) * 2021-02-01 2021-06-11 重庆大学 呼吸频率监测装置和方法
CN112971765A (zh) * 2021-03-01 2021-06-18 中山大学附属第一医院 一种便携式呼吸运动实时监测装置及方法
CN113768491A (zh) * 2021-09-08 2021-12-10 西安交通大学 基于惯性测量单元的呼吸深度与呼吸频率测量装置和方法
CN116602637A (zh) * 2023-07-20 2023-08-18 济宁矿业集团有限公司霄云煤矿 一种基于煤矿开采人员的生命安全监测预警和定位系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294811A (zh) * 2008-05-29 2008-10-29 北京航空航天大学 采用奇异摄动方法进行圆锥误差与划船误差补偿的捷联惯导系统
CN101365373A (zh) * 2005-06-21 2009-02-11 早期感知有限公司 用于预测和监测临床发作的技术
US20110066051A1 (en) * 2009-09-15 2011-03-17 Jim Moon Body-worn vital sign monitor
CN101999002A (zh) * 2008-02-04 2011-03-30 彼帕科学公司 诊断和治疗parp-介导的疾病的方法
CN102525477A (zh) * 2010-12-08 2012-07-04 索尼公司 呼吸状态分析设备、呼吸状态显示设备及其处理方法
CN103027684A (zh) * 2011-10-08 2013-04-10 皇家飞利浦电子股份有限公司 用于去除在呼吸运动监测中由身体运动引起的噪声的装置和方法
CN103052353A (zh) * 2010-08-04 2013-04-17 皇家飞利浦电子股份有限公司 监测运动期间的生命体信号
CN105606846A (zh) * 2015-09-18 2016-05-25 北京理工大学 一种基于姿态信息的加速度计校准方法
CN206080518U (zh) * 2016-06-08 2017-04-12 任昊星 一种可穿戴式呼吸监护系统
CN107405106A (zh) * 2016-01-29 2017-11-28 松下知识产权经营株式会社 呼吸次数检测装置、呼吸次数检测方法及程序存储介质
CN107438398A (zh) * 2015-01-06 2017-12-05 大卫·伯顿 移动式可穿戴的监控系统
CN207101277U (zh) * 2016-04-11 2018-03-16 上海用为医疗科技有限公司 呼吸状态检测装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365373A (zh) * 2005-06-21 2009-02-11 早期感知有限公司 用于预测和监测临床发作的技术
CN101999002A (zh) * 2008-02-04 2011-03-30 彼帕科学公司 诊断和治疗parp-介导的疾病的方法
CN101294811A (zh) * 2008-05-29 2008-10-29 北京航空航天大学 采用奇异摄动方法进行圆锥误差与划船误差补偿的捷联惯导系统
US20110066051A1 (en) * 2009-09-15 2011-03-17 Jim Moon Body-worn vital sign monitor
CN103052353A (zh) * 2010-08-04 2013-04-17 皇家飞利浦电子股份有限公司 监测运动期间的生命体信号
CN102525477A (zh) * 2010-12-08 2012-07-04 索尼公司 呼吸状态分析设备、呼吸状态显示设备及其处理方法
CN103027684A (zh) * 2011-10-08 2013-04-10 皇家飞利浦电子股份有限公司 用于去除在呼吸运动监测中由身体运动引起的噪声的装置和方法
CN107438398A (zh) * 2015-01-06 2017-12-05 大卫·伯顿 移动式可穿戴的监控系统
CN105606846A (zh) * 2015-09-18 2016-05-25 北京理工大学 一种基于姿态信息的加速度计校准方法
CN107405106A (zh) * 2016-01-29 2017-11-28 松下知识产权经营株式会社 呼吸次数检测装置、呼吸次数检测方法及程序存储介质
CN207101277U (zh) * 2016-04-11 2018-03-16 上海用为医疗科技有限公司 呼吸状态检测装置
CN206080518U (zh) * 2016-06-08 2017-04-12 任昊星 一种可穿戴式呼吸监护系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨环宇: "基于角速度信号的呼吸参数提取研究及应用", 《中国硕士学位论文全文数据库 信息科技辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111657951A (zh) * 2020-06-15 2020-09-15 复旦大学 一种基于传感器阵列式排布的呼吸监测装置
CN111657951B (zh) * 2020-06-15 2023-04-21 复旦大学 一种基于传感器阵列式排布的呼吸监测装置
CN112932460A (zh) * 2021-02-01 2021-06-11 重庆大学 呼吸频率监测装置和方法
CN112932460B (zh) * 2021-02-01 2022-11-04 重庆大学 呼吸频率监测装置和方法
CN112971765A (zh) * 2021-03-01 2021-06-18 中山大学附属第一医院 一种便携式呼吸运动实时监测装置及方法
CN112971765B (zh) * 2021-03-01 2024-05-24 中山大学附属第一医院 一种便携式呼吸运动实时监测装置及方法
CN113768491A (zh) * 2021-09-08 2021-12-10 西安交通大学 基于惯性测量单元的呼吸深度与呼吸频率测量装置和方法
CN113768491B (zh) * 2021-09-08 2022-12-09 西安交通大学 基于惯性测量单元的呼吸深度与呼吸频率测量装置和方法
CN116602637A (zh) * 2023-07-20 2023-08-18 济宁矿业集团有限公司霄云煤矿 一种基于煤矿开采人员的生命安全监测预警和定位系统
CN116602637B (zh) * 2023-07-20 2023-11-14 济宁矿业集团有限公司霄云煤矿 一种基于煤矿开采人员的生命安全监测预警和定位系统

Also Published As

Publication number Publication date
CN108784703B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN108784703A (zh) 一种中老年人可穿戴式呼吸监测方法
Sardini et al. Wireless wearable T-shirt for posture monitoring during rehabilitation exercises
EP2598028B1 (en) Automatic orientation calibration for a body-mounted device
Tian et al. An adaptive-gain complementary filter for real-time human motion tracking with MARG sensors in free-living environments
AU2010269846B2 (en) Fall prevention
WO2017183039A1 (en) Body motion monitor
Liu et al. A wearable human motion tracking device using micro flow sensor incorporating a micro accelerometer
Guo et al. A low-cost body inertial-sensing network for practical gait discrimination of hemiplegia patients
WO2002037827A9 (en) Method and apparatus for motion tracking of an articulated rigid body
CN208677399U (zh) 智能关节角度测量装置及系统
CN109171734A (zh) 基于多传感器数据融合的人体行为分析云管理系统
CN111693024A (zh) 一种基于九轴惯性测量单元可穿戴人体传感监测设备
CN105534500B (zh) 一种整合生理参数监测的平衡功能测评装置及方法
US20150073281A1 (en) Generating a flow-volume loop for respiratory function assessment
Vertens et al. Measuring Respiration and Heart Rate using Two Acceleration Sensors on a Fully Embedded Platform.
Lo et al. Wireless body area network node localization using small-scale spatial information
WO2012018472A2 (en) Respirations activity and motion measurement using accelerometers
CN111895997B (zh) 一种无需标准矫正姿势的基于惯性传感器的人体动作采集方法
Qiu et al. Ambulatory estimation of 3D walking trajectory and knee joint angle using MARG Sensors
Mallat et al. Upper limbs kinematics estimation using affordable visual-inertial sensors
Cotton et al. Wearable monitoring of joint angle and muscle activity
Yang et al. Smart wearable monitoring system based on multi-type sensors for motion recognition
Johnson et al. Estimation of three-dimensional thoracoabdominal displacements during respiration using inertial measurement units
Erfianto et al. IMU-based respiratory signal processing using cascade complementary filter method
Daponte et al. Experimental comparison of orientation estimation algorithms in motion tracking for rehabilitation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210202

Termination date: 20210705