CN108771884A - 一种复合式混合萃取装置及方法 - Google Patents
一种复合式混合萃取装置及方法 Download PDFInfo
- Publication number
- CN108771884A CN108771884A CN201810431466.5A CN201810431466A CN108771884A CN 108771884 A CN108771884 A CN 108771884A CN 201810431466 A CN201810431466 A CN 201810431466A CN 108771884 A CN108771884 A CN 108771884A
- Authority
- CN
- China
- Prior art keywords
- microchannel
- liquid
- phase
- liquid inlet
- iii
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000605 extraction Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 9
- 239000007788 liquid Substances 0.000 claims abstract description 151
- 239000000463 material Substances 0.000 claims abstract description 16
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims abstract description 12
- 239000004205 dimethyl polysiloxane Substances 0.000 claims abstract description 12
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims abstract description 12
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims abstract description 9
- 239000011521 glass Substances 0.000 claims abstract description 8
- 238000000622 liquid--liquid extraction Methods 0.000 claims abstract description 8
- 238000000638 solvent extraction Methods 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000012071 phase Substances 0.000 claims description 114
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000012074 organic phase Substances 0.000 claims description 12
- 238000005452 bending Methods 0.000 claims description 5
- -1 PDMS Dimethyl siloxane Chemical class 0.000 claims description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract 1
- 239000012530 fluid Substances 0.000 description 7
- 238000005755 formation reaction Methods 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502769—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
- B01L3/502776—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D11/00—Solvent extraction
- B01D11/04—Solvent extraction of solutions which are liquid
- B01D11/0496—Solvent extraction of solutions which are liquid by extraction in microfluidic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502769—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
- B01L3/502784—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Extraction Or Liquid Replacement (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明公开了一种复合式混合萃取装置及方法,包括玻璃基片,芯片,液体入口Ⅰ、液体入口Ⅱ,液体入口Ⅲ、液体入口Ⅳ、液体出口,连续相微通道,分散相微通道,拉伸折叠微通道,本发明采用PDMS材料制作微通道结构,能够在一定的变形条件下恢复到原来的状态而结构没有发生永久性破坏,本发明采用PDMS材料制作微通道结构,能够在一定的变形条件下恢复到原来的状态而结构没有发生永久性破坏,本发明集液滴生成、液滴收集于一体,通过对两相液体的管道设置,可以使两相充分混合,从而提高了液液萃取效率可控地实现液滴运动、内部混合和反应,同时增加了萃取界面的比表面积,有效的提供了微芯片的萃取效率,可靠性高,模型简化,容易理解,操作简单方便。
Description
技术领域
本发明涉及一种复合式混合萃取装置及方法,属于微流控技术领域。
背景技术
微反应器将反应空间受限在尺寸范围为数十到数百微米的通道内部。该尺度下反应体系具有高的比表面积和高的传质性能,不仅可以通过精确的过程控制大幅度地缩短反应时间和降低样品消耗,更重要的是以微反应器为基本单元直接进行数量的增加便可实现模块的集成,进而实现高通量的产品可控制备,从而避免了传统反应器直接几何放大导致的难于预期的非理想行为。不同于传统反应器,高效混合的微结构辅助集成装置的突出优势在于通过设计出在液体入口、液滴形成管道及液滴拉伸管道,可以极大的提高液液萃取效率和缩短萃取时间。
微流体器件广泛用于集成电子、精密仪器、医疗设备和生物制药等领域,微流体器件适合各种流量控制系统的开发,其控制技术包括光、电、气、磁、热、气相变化等。
发明内容
本发明的目的之一在于提供一种复合式混合萃取装置,本发明采用PDMS材料制作微通道结构,能够在一定的变形条件下恢复到原来的状态而结构没有发生永久性破坏。采用PDMS材料制作微通道结构,能够在一定的变形条件下恢复到原来的状态而结构没有发生永久性破坏。本发明集层流萃取及液滴生成反应有重要的应用价值,从而可高效的提高液液萃取效率。
本发明的技术方案是:一种复合式混合萃取装置,包括玻璃基片,芯片,液体入口Ⅰ、液体入口Ⅱ,液体入口Ⅲ、液体入口Ⅳ、液体出口,连续相微通道,分散相微通道,拉伸折叠微通道;
所述芯片设置在玻璃基片上,所述芯片上设有液体入口Ⅰ、液体入口Ⅱ,液体入口Ⅲ、液体入口Ⅳ和液体出口,所述芯片内设有连续相微通道,分散相微通道,拉伸折叠微通道,所述连续相微通道包括微通道Ⅰ、微通道Ⅱ和微通道Ⅲ,所述微通道Ⅰ、微通道Ⅱ的一端分别与液体入口Ⅰ、液体入口Ⅱ连通,所述微通道Ⅰ、微通道Ⅱ的另一端均与微通道Ⅲ的一端连通,所述分散相微通道为十字形微通道,所述分散相微通道的上下两端分别与液体入口Ⅳ、液体入口Ⅲ连通,所述分散相微通道的左右两端分别与连续相液体通道的微通道Ⅲ的另一端、拉伸折叠微通道的一端连通,所述拉伸折叠微通道的另一端与液体出口连通。
所述芯片采用PDMS聚二甲基硅氧烷材料制成。
所述液体入口Ⅰ为多孔筛状,再经过水相液体入口Ⅱ部分与有机相液体入口Ⅰ入口结构的设置,让水相整体包裹着油相,达到多个层流萃取入口装置,大大提高了两相之间反应效率。
所述微通道Ⅰ的宽度小于微通道Ⅱ的宽度,所述微通道Ⅱ的下部宽上部窄。
所述拉伸折叠微通道为弯曲通道,且拉伸折叠微通道设有一个以上的向上弯曲和向下弯曲的微通道。
所述芯片长25mm,宽10mm,厚5mm,所述液体入口Ⅰ、液体入口Ⅱ,液体入口Ⅲ、液体入口Ⅳ的直径均为0.2mm,所述液体入口Ⅰ与液体入口Ⅲ、液体入口Ⅳ的水平距离均为5mm,所述液体入口Ⅲ、液体入口Ⅳ到液体出口的水平距离均为10mm。
本发明的目的之二在于提供利用本装置进行萃取的方法,具体步骤为:给液体入口Ⅰ注入有机相液体,有机相液体以多股细流方式注入微通道Ⅰ中,给液体入口Ⅱ注入水相,水相进入微通道Ⅱ中,有机相和水相两相液体共同进入微通道Ⅲ内,实现水相包裹油相,达到多级层流,然后两相液体流入至分散相微通道中,此时向液体入口Ⅲ、液体入口Ⅳ中分别注入有机相,水相包裹油相的两相液体与液体入口Ⅲ、液体入口Ⅳ的有机相接触,此时水相包裹的油相外增加一层油相,形成油相包裹着水相,水相包裹着油相的层流,层流经过十字形分散相微通道中心后形成液滴,液滴进入拉伸折叠微通道内,液滴被拉伸折叠,进行液液萃取,萃取结束后由液体出口流出。
本发明通过COMSOL Multiphysics有限元模拟仿真软件分析了有辅助结构的微通道中的流体的流线和矢量分布,辅助结构通过促进各液相内部的混合和两相交界面处的溶质交换来促进层流萃取效率。通过在层流萃取微芯片中增加辅助结构,可以极大地提高液液层流萃取的萃取效率。
本发明使用PDMS(聚二甲基硅氧烷)材料制作辅助结构,材料透光性好、生物相容性佳以及良好的化学惰性,该材料韧性比较高,弹性好,该装置使用简单,成本低,是一种广泛应用于微流控等领域的聚合物材料。
本发明装置的液体入口部分,通过控制有机相液体入口Ⅰ与水相液体入口Ⅱ的流量比,而且要保证两相液体流出的速度,尽可能让有机相夹在水相中间,通过两相液体在连续相微通道上的接触可提高两相液体层流萃取的反应效率。
通过控制分散相液体入口Ⅲ、液体入口Ⅳ与液体入口Ⅰ、液体入口Ⅱ的流量比,不仅可以在分散相微通道的十字聚焦型通道处高效生成不同大小的液滴,还可控制液滴间的距离,由于微通道的尺度较小,所以为了将连续相和分散相接口能够较好的连接到微通道内,微通道的交叉口相对于连续相与分散相的的入口处的距离较大,另外,通过分散相微通道的十字聚焦型通道所产生的液滴具有尺寸均一和易于调控的显著优势。
本发明拉伸折叠微通道的液滴拉伸与折叠部分,拐角处不同形状涡流的出现有效地强化了液滴内部的宏观传质过程,通过流道的设计使得液滴内流体的分布被物理拉伸、折叠或者变向,可以使混合更充分;待两相液体经过层流反应后,再经过分散相微通道的十字聚焦形通道内剪切作用产生的涡流强度可以改变液滴初始分布,且液滴越长,其涡流和内环流的影响越弱;是弯曲通道对于液滴内分布的影响,利用内环流对液滴混合界面进行折叠和拉伸使得待混合的液层越来越薄,经过这三部分的辅助萃取增强了相界面处的目标分子的传递过程,从而显著地提高了液液萃取的萃取效率。
本发明的有益效果是:
(1)本发明高效提升了两相液体萃取效率,通过把机相入口改成筛状形式从而增加了两相液体的接触面积提高了层流液液萃取的效率,缩短了萃取时间。
(2)本发明液滴生成部分中,通过控制液体分散相液体入口Ⅲ、液体入口Ⅳ与液体连续相液体入口Ⅰ、液体入口Ⅱ的流量比,在经过分散相微通道的十字形管道后,可以在管道内形成液滴,它们之间互相包裹,大大的提高了它们之间的反应效率。
(3)本发明的拉伸折叠微通道为蜿蜒形通道,节省材料且增加了通道长度,而且能够实现液滴的拉伸与折叠从而增加了两相接触时间,提高了萃取效率。
(4)本发明使用PDMS聚二甲基硅氧烷材料制作芯片,材料透光性好、生物相容性佳以及良好的化学惰性,该材料韧性比较高,弹性好。
(5)本发明装置使用简单,成本低,是一种广泛应用于微流控等领域的聚合物材料。
附图说明
图1是本发明装置的结构示意图;
图2是本发明液体入口Ⅰ、液体入口Ⅱ的放大图及剖视图;
图3是本发明分散相微通道的局部放大图;
图4是本发明拉伸折叠微通道的局部放大图;
图5是本发明连续相微通道的结构示意图;
图中各标号:1-玻璃基片、2-芯片、3-液体入口Ⅰ、4-液体入口Ⅱ、5-连续相微通道、6-液体入口Ⅲ、7-液体入口Ⅳ、8-分散相微通道、9-拉伸折叠微通道、10-液体出口、11-微通道Ⅰ、12-微通道Ⅱ、13-微通道Ⅲ。
具体实施方式
下面结合附图和具体实施例,对本发明作进一步说明。
实施例1:如图1-5所示,本复合式混合萃取装置,包括玻璃基片1,芯片2,液体入口Ⅰ3、液体入口Ⅱ4,液体入口Ⅲ6、液体入口Ⅳ7、液体出口10,连续相微通道5,分散相微通道8,拉伸折叠微通道9;
所述芯片2设置在玻璃基片1上,所述芯片2上设有液体入口Ⅰ3、液体入口Ⅱ4,液体入口Ⅲ6、液体入口Ⅳ7和液体出口10,所述芯片2内设有连续相微通道5,分散相微通道8,拉伸折叠微通道9,所述连续相微通道5包括微通道Ⅰ11、微通道Ⅱ12和微通道Ⅲ13,所述微通道Ⅰ11、微通道Ⅱ12的一端分别与液体入口Ⅰ3、液体入口Ⅱ4连通,所述微通道Ⅰ11、微通道Ⅱ12的另一端均与微通道Ⅲ13的一端连通,所述分散相微通道8为十字形微通道,所述分散相微通道8的上下两端分别与液体入口Ⅳ7、液体入口Ⅲ6连通,所述分散相微通道8的左右两端分别与连续相液体通道5的微通道Ⅲ13的另一端、拉伸折叠微通道9的一端连通,所述拉伸折叠微通道9的另一端与液体出口10连通。
所述芯片2采用PDMS聚二甲基硅氧烷材料制成。
所述液体入口Ⅰ3为多孔筛状。
所述微通道Ⅰ11的宽度小于微通道Ⅱ12的宽度,所述微通道Ⅱ12的下部宽上部窄。
所述拉伸折叠微通道9为弯曲通道,且拉伸折叠微通道9设有2个向上弯曲和1个向下弯曲的微通道。
所述芯片2长25mm,宽10mm,厚5mm,所述液体入口Ⅰ3、液体入口Ⅱ4,液体入口Ⅲ6、液体入口Ⅳ7的直径均为0.2mm,所述液体入口Ⅰ3与液体入口Ⅲ6、液体入口Ⅳ7的水平距离均为5mm,所述液体入口Ⅲ6、液体入口Ⅳ7到液体出口10的水平距离均为10mm。
本实施例装置进行萃取的方法步骤为:
给液体入口Ⅰ3注入有机相液体,有机相液体以多股细流方式注入微通道Ⅰ11中,给液体入口Ⅱ4注入水相,水相进入微通道Ⅱ12中,有机相和水相两相液体共同进入微通道Ⅲ13内,实现水相包裹油相,达到多级层流,然后两相液体流入至分散相微通道8中,此时向液体入口Ⅲ6、液体入口Ⅳ7中分别注入有机相,水相包裹油相的两相液体与液体入口Ⅲ6、液体入口Ⅳ7的有机相接触,此时水相包裹的油相外增加一层油相,形成油相包裹着水相,水相包裹着油相的层流,层流经过十字形分散相微通道8中心后形成液滴,液滴进入拉伸折叠微通道9内,液滴被拉伸折叠,进行液液萃取,萃取结束后由液体出口10流出。
上面结合附图对本发明的具体实施例作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。
Claims (7)
1.一种复合式混合萃取装置,其特征在于,包括玻璃基片(1),芯片(2),液体入口Ⅰ(3)、液体入口Ⅱ(4),液体入口Ⅲ(6)、液体入口Ⅳ(7)、液体出口(10),连续相微通道(5),分散相微通道(8),拉伸折叠微通道(9);
所述芯片(2)设置在玻璃基片(1)上,所述芯片(2)上设有液体入口Ⅰ(3)、液体入口Ⅱ(4),液体入口Ⅲ(6)、液体入口Ⅳ(7)和液体出口(10),所述芯片(2)内设有连续相微通道(5),分散相微通道(8),拉伸折叠微通道(9),所述连续相微通道(5)包括微通道Ⅰ(11)、微通道Ⅱ(12)和微通道Ⅲ(13),所述微通道Ⅰ(11)、微通道Ⅱ(12)的一端分别与液体入口Ⅰ(3)、液体入口Ⅱ(4)连通,所述微通道Ⅰ(11)、微通道Ⅱ(12)的另一端均与微通道Ⅲ(13)的一端连通,所述分散相微通道(8)为十字形微通道,所述分散相微通道(8)的上下两端分别与液体入口Ⅳ(7)、液体入口Ⅲ(6)连通,所述分散相微通道(8)的左右两端分别与连续相液体通道(5)的微通道Ⅲ(13)的另一端、拉伸折叠微通道(9)的一端连通,所述拉伸折叠微通道(9)的另一端与液体出口(10)连通。
2.根据权利要求1所述的复合式混合萃取装置,其特征在于:所述芯片(2)采用PDMS聚二甲基硅氧烷材料制成。
3.根据权利要求1所述的复合式混合萃取装置,其特征在于:所述液体入口Ⅰ(3)为多孔筛状。
4.根据权利要求1所述的复合式混合萃取装置,其特征在于:所述微通道Ⅰ(11)的宽度小于微通道Ⅱ(12)的宽度,所述微通道Ⅱ(12)的下部宽上部窄。
5.根据权利要求1所述的复合式混合萃取装置,其特征在于:所述拉伸折叠微通道(9)为弯曲通道,且拉伸折叠微通道(9)设有一个以上的向上弯曲和向下弯曲的微通道。
6.根据权利要求1所述的复合式混合萃取装置,其特征在于:所述芯片(2)长25mm,宽10mm,厚5mm,所述液体入口Ⅰ(3)、液体入口Ⅱ(4),液体入口Ⅲ(6)、液体入口Ⅳ(7)的直径均为0.2mm,所述液体入口Ⅰ(3)与液体入口Ⅲ(6)、液体入口Ⅳ(7)的水平距离均为5mm,所述液体入口Ⅲ(6)、液体入口Ⅳ(7)到液体出口(10)的水平距离均为10mm。
7.利用权利要求1~6所述装置进行萃取的方法,其特征在于,具体步骤为:给液体入口Ⅰ(3)注入有机相液体,有机相液体以多股细流方式注入微通道Ⅰ(11)中,给液体入口Ⅱ(4)注入水相,水相进入微通道Ⅱ(12)中,有机相和水相两相液体共同进入微通道Ⅲ(13)内,实现水相包裹油相,达到多级层流,,然后两相液体流入至分散相微通道(8)中,此时向液体入口Ⅲ(6)、液体入口Ⅳ(7)中分别注入有机相,水相包裹油相的两相液体与液体入口Ⅲ(6)、液体入口Ⅳ(7)的有机相接触,此时水相包裹的油相外增加一层油相,形成油相包裹着水相,水相包裹着油相的层流,层流经过十字形分散相微通道(8)中心后形成液滴,液滴进入拉伸折叠微通道(9)内,液滴被拉伸折叠,进行液液萃取,萃取结束后由液体出口(10)流出。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810431466.5A CN108771884B (zh) | 2018-05-08 | 2018-05-08 | 一种复合式混合萃取装置及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810431466.5A CN108771884B (zh) | 2018-05-08 | 2018-05-08 | 一种复合式混合萃取装置及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108771884A true CN108771884A (zh) | 2018-11-09 |
CN108771884B CN108771884B (zh) | 2021-03-02 |
Family
ID=64027044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810431466.5A Active CN108771884B (zh) | 2018-05-08 | 2018-05-08 | 一种复合式混合萃取装置及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108771884B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109304094A (zh) * | 2018-11-29 | 2019-02-05 | 昆明理工大学 | 一种主动式电渗萃取微混合的集成装置及其萃取集成方法 |
CN109304050A (zh) * | 2018-11-14 | 2019-02-05 | 昆明理工大学 | 一种高效辅助萃取集成装置及方法 |
CN109621486A (zh) * | 2018-12-29 | 2019-04-16 | 四川大学 | 一种在微通道内构建稳定环状流的方法 |
CN109692500A (zh) * | 2018-12-29 | 2019-04-30 | 四川大学 | 一种提高微通道内稳定环状流传质速率的方法 |
CN112161907A (zh) * | 2020-09-23 | 2021-01-01 | 武汉大学 | 一种表面湿润性可变的微观孔隙模型及其制作和使用方法 |
TWI812058B (zh) * | 2022-03-11 | 2023-08-11 | 國立中興大學 | 液-液分離裝置及其分離方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1530657A (zh) * | 2003-03-14 | 2004-09-22 | 中国科学院大连化学物理研究所 | 一种带筛孔的塑料微流控芯片的制备方法 |
US20050232817A1 (en) * | 2003-09-26 | 2005-10-20 | The University Of Cincinnati | Functional on-chip pressure generator using solid chemical propellant |
CN102179064A (zh) * | 2011-03-24 | 2011-09-14 | 西南交通大学 | 微流控双水相环隙流萃取技术及装置 |
CN102233241A (zh) * | 2011-07-14 | 2011-11-09 | 北京工业大学 | 一种基于成涡结构强化混合的平面被动式微混合器 |
CN202538793U (zh) * | 2011-12-30 | 2012-11-21 | 北京瑞斯诺生物医药技术有限公司 | 一种应用于纳米颗粒制备的高并行微流道芯片 |
CN103060559A (zh) * | 2013-01-30 | 2013-04-24 | 昆明理工大学 | 一种萃取分离In和Fe、Zn的微流体萃取方法 |
CN106109440A (zh) * | 2016-06-17 | 2016-11-16 | 安徽理工大学 | 一种微流控芯片及海藻酸盐磁性微球的制备方法 |
CN106179148A (zh) * | 2016-07-21 | 2016-12-07 | 昆明理工大学 | 一种精确放大的微反应器、制备方法及其应用 |
CN106324236A (zh) * | 2015-06-28 | 2017-01-11 | 上海市第人民医院 | 基于纳米均相时间分辨荧光免疫与液滴微流控技术的检测生物大分子的方法 |
-
2018
- 2018-05-08 CN CN201810431466.5A patent/CN108771884B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1530657A (zh) * | 2003-03-14 | 2004-09-22 | 中国科学院大连化学物理研究所 | 一种带筛孔的塑料微流控芯片的制备方法 |
US20050232817A1 (en) * | 2003-09-26 | 2005-10-20 | The University Of Cincinnati | Functional on-chip pressure generator using solid chemical propellant |
CN102179064A (zh) * | 2011-03-24 | 2011-09-14 | 西南交通大学 | 微流控双水相环隙流萃取技术及装置 |
CN102233241A (zh) * | 2011-07-14 | 2011-11-09 | 北京工业大学 | 一种基于成涡结构强化混合的平面被动式微混合器 |
CN202538793U (zh) * | 2011-12-30 | 2012-11-21 | 北京瑞斯诺生物医药技术有限公司 | 一种应用于纳米颗粒制备的高并行微流道芯片 |
CN103060559A (zh) * | 2013-01-30 | 2013-04-24 | 昆明理工大学 | 一种萃取分离In和Fe、Zn的微流体萃取方法 |
CN106324236A (zh) * | 2015-06-28 | 2017-01-11 | 上海市第人民医院 | 基于纳米均相时间分辨荧光免疫与液滴微流控技术的检测生物大分子的方法 |
CN106109440A (zh) * | 2016-06-17 | 2016-11-16 | 安徽理工大学 | 一种微流控芯片及海藻酸盐磁性微球的制备方法 |
CN106179148A (zh) * | 2016-07-21 | 2016-12-07 | 昆明理工大学 | 一种精确放大的微反应器、制备方法及其应用 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109304050A (zh) * | 2018-11-14 | 2019-02-05 | 昆明理工大学 | 一种高效辅助萃取集成装置及方法 |
CN109304094A (zh) * | 2018-11-29 | 2019-02-05 | 昆明理工大学 | 一种主动式电渗萃取微混合的集成装置及其萃取集成方法 |
CN109621486A (zh) * | 2018-12-29 | 2019-04-16 | 四川大学 | 一种在微通道内构建稳定环状流的方法 |
CN109692500A (zh) * | 2018-12-29 | 2019-04-30 | 四川大学 | 一种提高微通道内稳定环状流传质速率的方法 |
CN109621486B (zh) * | 2018-12-29 | 2020-01-10 | 四川大学 | 一种在微通道内构建稳定环状流的方法 |
CN112161907A (zh) * | 2020-09-23 | 2021-01-01 | 武汉大学 | 一种表面湿润性可变的微观孔隙模型及其制作和使用方法 |
CN112161907B (zh) * | 2020-09-23 | 2021-06-04 | 武汉大学 | 一种表面湿润性可变的微观孔隙模型及其制作和使用方法 |
TWI812058B (zh) * | 2022-03-11 | 2023-08-11 | 國立中興大學 | 液-液分離裝置及其分離方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108771884B (zh) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108771884A (zh) | 一种复合式混合萃取装置及方法 | |
Shah et al. | Experimental and numerical analysis of Y-shaped split and recombination micro-mixer with different mixing units | |
Gu et al. | Droplets formation and merging in two-phase flow microfluidics | |
Vladisavljević et al. | Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery | |
CN104321652B (zh) | 由诱发的空化所驱动的高速按需液滴生成及单细胞包封 | |
JP2016165721A (ja) | 噴霧乾燥技術 | |
US20140026968A1 (en) | Systems and methods for splitting droplets | |
Chung et al. | A rhombic micromixer with asymmetrical flow for enhancing mixing | |
CN103285947A (zh) | 一种液滴微流控芯片及其操控方法 | |
CN108144659A (zh) | 基于芯片实验室微流控技术微结构辅助萃取装置及方法 | |
EP2411133A1 (en) | Droplet generator | |
CN109304050A (zh) | 一种高效辅助萃取集成装置及方法 | |
CN209451369U (zh) | 一种微流控芯片液滴快速微混合萃取的装置 | |
CN109289951A (zh) | 液滴分裂微流控芯片及应用 | |
Zhu et al. | Stackable micromixer with modular design for efficient mixing over wide Reynold numbers | |
CN209451370U (zh) | 一种偏场加热的交流电热微混合装置 | |
Zhang et al. | Realization of planar mixing by chaotic velocity in microfluidics | |
Wang et al. | Numerical study on dynamic behaviors of the coalescence between the advancing liquid meniscus and multi-droplets in a microchannel using CLSVOF method | |
CN108993337A (zh) | 一种液滴流微反应器的集成装置 | |
Xie et al. | Functional microfluidics: theory, microfabrication, and applications | |
CN201596477U (zh) | 一种气泡摆动式微混合系统 | |
Gou et al. | Machining technologies and structural models of microfluidic devices | |
CN108654490B (zh) | 一种基于混沌流微混合芯片 | |
CN110975775A (zh) | 一种基于迪恩流效应的高通量三维微流体混合装置及其混合方法 | |
Zhang et al. | Flexible on-chip droplet generation, switching and splitting via controllable hydrodynamics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |