CN108761399A - A kind of passive radar object localization method and device - Google Patents
A kind of passive radar object localization method and device Download PDFInfo
- Publication number
- CN108761399A CN108761399A CN201810556996.2A CN201810556996A CN108761399A CN 108761399 A CN108761399 A CN 108761399A CN 201810556996 A CN201810556996 A CN 201810556996A CN 108761399 A CN108761399 A CN 108761399A
- Authority
- CN
- China
- Prior art keywords
- function
- value
- time difference
- angle
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000004807 localization Effects 0.000 title abstract 2
- 230000005855 radiation Effects 0.000 claims description 58
- 238000005259 measurement Methods 0.000 claims description 54
- 238000012545 processing Methods 0.000 claims description 17
- 239000013598 vector Substances 0.000 claims description 15
- 230000002087 whitening effect Effects 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000001131 transforming effect Effects 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 4
- 239000011159 matrix material Substances 0.000 description 7
- 238000004088 simulation Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003471 anti-radiation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
The present invention relates to a kind of passive radar object localization method and devices, the observational equation of angle and the time difference are linearized, obtain one group of linear equation, and obtain the rough estimate of target location using least square, by observation error and external sort algorithm site error simultaneously in view of in linear equation, it obtains constraint total least square model and the accurate estimation of target location is obtained using Newton iteration using obtained least square solution as initial solution.The present invention considers angular observation error, the site error of time difference observation error and external sort algorithm, positioning result is that there are optimal estimation results when error for external sort algorithm, by nonlinear angle and time difference observational equation linearization process, least square algebraic solution is obtained, and as the initial solution of Newton iteration, it ensure that convergence.
Description
Technical Field
The invention belongs to the technical field of passive radar target positioning, and particularly relates to a passive radar target positioning method and device.
Background
The passive radar is a special bistatic radar, does not radiate source electromagnetic waves per se, and detects and positions a target by receiving and processing a reflected or scattered signal of the target to an existing external radiation source in the environment. Compared with the traditional active radar, the special working principle has the good characteristics of four-reactance (electronic interference, anti-radiation weapon attack, stealth target attack and low-altitude ultra-low altitude penetration prevention). Therefore, passive radar technology has been of great interest in the field of international radar for many years.
The position information of the external radiation source is an essential parameter for passive radar target positioning. However, for some radiation sources, such as enemy military radiation sources, the position of the radiation source is often not accurately obtained and can only be estimated by the ESM system, and the position of the obtained external radiation source contains large errors. For example, the author "single station DOA-TDOA passive positioning algorithm based on regularization constrained total least squares" published by zhao champion, zhu, usa, 9, 2016, 9, in the book 38, which reduces the positioning accuracy of a passive radar system due to the presence of external radiation source position errors, and therefore, it is necessary to consider the influence of the external radiation source position errors on the positioning accuracy and design a targeted target positioning algorithm.
The positioning of the joint angle and the time difference is a commonly used positioning system of the passive radar, and has better positioning precision than a positioning system only using the angle or the time difference. However, in the conventional positioning method, the position error of the external radiation source is not considered. Therefore, a multi-base passive radar target positioning method considering the position error of the external radiation source is needed, so that the optimal estimation of the target position is realized when the position of the external radiation source is inaccurate.
Disclosure of Invention
The invention aims to provide a passive radar target positioning method and a passive radar target positioning device, which are used for solving the problem that the target position estimation precision of the conventional passive radar target positioning method is low.
In order to solve the technical problem, the invention provides a passive radar target positioning method, which comprises the following steps:
1) constructing an observation equation of the angle and the time difference, carrying out linearization treatment on the observation equation of the angle and the time difference to obtain a linear equation, and solving the linear equation to obtain an initial estimation value of the target position;
2) expressing the angle measurement value as the difference between an angle true value and an angle observation error, expressing the time difference measurement value as the difference between the time difference true value and the time difference observation error, expressing the measurement position value of the external radiation source as the difference between the true position value and the position measurement error of the external radiation source, respectively substituting the angle measurement value and the time difference measurement value into the linear equation, and respectively obtaining a first function of taking the angle true value as a quantity to be solved and a second function of taking the time difference true value as the quantity to be solved; substituting the measured position value of the external radiation source as a new variable into the linear equation to obtain a third function of taking the real position value of the external radiation source as a quantity to be solved;
3) and constructing a least square model according to the first function, the second function and the third function, carrying out Taylor expansion on the model at the initial estimation value of the target position, solving to obtain a Newton iteration formula, carrying out iteration by using the initial estimation value of the target position and the Newton iteration formula until the iteration reaches a set number of times, and obtaining an accurate estimation value of the target position.
The method includes the steps of linearizing observation equations of angles and time differences to obtain a group of linear equations, obtaining rough estimation of a target position by using least square, simultaneously considering observation errors and external radiation source position errors into the linear equations to obtain a constrained total least square model, using the obtained least square solution as an initial solution, and obtaining accurate estimation of the target position by adopting Newton iteration. The method considers the angle observation error, the time difference observation error and the position error of the external radiation source, and the positioning result is the optimal estimation result when the external radiation source has errors; the method linearizes the nonlinear angle and time difference observation equation to obtain a least square algebraic solution, and uses the least square algebraic solution as an initial solution of Newton iteration to ensure the convergence of the algorithm.
As a further definition of the least squares model, step 3) further comprises the following sub-steps of constructing the least squares model:
(1) whitening processing is carried out on the angle observation error in the first function, the time difference observation error in the second function and the position measurement error in the third function, and functional relations of whitening noise vectors with the angle observation error, the time difference observation error and the position measurement error are obtained after processing;
(2) and establishing a constraint condition according to the functional relation and the first function, the second function and the third function, and taking the norm-squared minimum of the whitening noise vector as a target function.
Further, the method also comprises the following steps: and transforming the target function under the constraint condition into a minimization target function without the constraint condition to be used as a final least square model.
In order to solve the above technical problem, the present invention further provides a passive radar target positioning device, including a calculation processing module, where the calculation processing module is configured to implement the following steps:
1) constructing an observation equation of the angle and the time difference, carrying out linearization treatment on the observation equation of the angle and the time difference to obtain a linear equation, and solving the linear equation to obtain an initial estimation value of the target position;
2) expressing the angle measurement value as the difference between an angle true value and an angle observation error, expressing the time difference measurement value as the difference between the time difference true value and the time difference observation error, expressing the measurement position value of the external radiation source as the difference between the true position value and the position measurement error of the external radiation source, respectively substituting the angle measurement value and the time difference measurement value into the linear equation, and respectively obtaining a first function of taking the angle true value as a quantity to be solved and a second function of taking the time difference true value as the quantity to be solved; substituting the measured position value of the external radiation source as a new variable into the linear equation to obtain a third function of taking the real position value of the external radiation source as a quantity to be solved;
3) and constructing a least square model according to the first function, the second function and the third function, carrying out Taylor expansion on the model at the initial estimation value of the target position, solving to obtain a Newton iteration formula, carrying out iteration by using the initial estimation value of the target position and the Newton iteration formula until the iteration reaches a set number of times, and obtaining an accurate estimation value of the target position.
Further, step 3) further comprises the following sub-steps of constructing a least squares model:
(1) whitening processing is carried out on the angle observation error in the first function, the time difference observation error in the second function and the position measurement error in the third function, and functional relations of whitening noise vectors with the angle observation error, the time difference observation error and the position measurement error are obtained after processing;
(2) and establishing a constraint condition according to the functional relation and the first function, the second function and the third function, and taking the norm-squared minimum of the whitening noise vector as a target function.
Further, the method also comprises the following steps: and transforming the target function under the constraint condition into a minimization target function without the constraint condition to be used as a final least square model.
Drawings
FIG. 1 is a schematic flow chart of the present invention for estimating a target location;
FIG. 2 is a schematic diagram of the geometric positions of an external radiation source and an observation station in the experimental simulation of the present invention;
FIG. 3 is a comparison graph of simulation of target position estimation error versus time difference measurement error in accordance with the present invention;
FIG. 4 is a simulated contrast plot of target position estimation error as a function of angle measurement error in accordance with the present invention;
FIG. 5 is a simulated contrast plot of target position estimation error as a function of external radiation source position error in accordance with the present invention.
Detailed Description
The following further describes embodiments of the present invention with reference to the drawings.
The invention provides a passive radar target positioning method, which comprises the following steps:
1) and constructing an observation equation of the angle and the time difference, carrying out linearization treatment on the observation equation of the angle and the time difference to obtain a linear equation, and solving the linear equation to obtain an initial estimation value of the target position.
2) Expressing the angle measurement value as the difference between an angle true value and an angle observation error, expressing the time difference measurement value as the difference between the time difference true value and the time difference observation error, expressing the measurement position value of the external radiation source as the difference between the true position value and the position measurement error of the external radiation source, respectively substituting the angle measurement value and the time difference measurement value into the linear equation, and respectively obtaining a first function of taking the angle true value as a quantity to be solved and a second function of taking the time difference true value as the quantity to be solved; and substituting the measured position value of the external radiation source as a new variable into the linear equation to obtain a real position value of the external radiation source as a third function of the quantity to be solved.
3) And constructing a least square model according to the first function, the second function and the third function, carrying out Taylor expansion on the model at the initial estimation value of the target position, solving to obtain a Newton iteration formula, carrying out iteration by using the initial estimation value of the target position and the Newton iteration formula until the iteration reaches the set times, and obtaining an accurate estimation value of the target position.
The method includes the steps of linearizing observation equations of angles and time differences to obtain a group of linear equations, obtaining rough estimation of a target position by using least square, simultaneously considering observation errors and external radiation source position errors into the linear equations to obtain a constrained total least square model, using the obtained least square solution as an initial solution, and obtaining accurate estimation of the target position by adopting Newton iteration. The method considers the angle observation error, the time difference observation error and the position error of the external radiation source, and the positioning result is the optimal estimation result when the external radiation source has errors; the method linearizes the nonlinear angle and time difference observation equation to obtain a least square algebraic solution, and uses the least square algebraic solution as an initial solution of Newton iteration to ensure the convergence of the algorithm.
Specifically, the invention provides a multi-base passive radar target positioning method considering the joint angle and the time difference of the position error of an external radiation source aiming at a passive radar system under the condition that the position error of the external radiation source exists, as shown in fig. 1, the steps are as follows:
firstly, linearizing an observation equation of the angle and the time difference to obtain a group of linear equations, and obtaining a rough estimation of the target position by using least square. The specific solving method is as follows:
assume that there are N external radiation sources, 1 target, and 1 observation station in the scene. And two pairs of antennas are distributed on the observation station and are respectively used for receiving the direct signal from the external radiation source and the target echo signal. Establishing a space right angle by taking an observation station as an originA coordinate system. Assume that the target position to be estimated X ═ Xo,yo,zo]T. True position of external radiation sourceUnknown, only obtaining a measurement s containing an errork=[xk,yk,zk]T(k ═ 1, 2.., N), i.e.
Wherein, Δ skIs the corresponding measurement error vector. The positions of the N external radiation sources are represented in a matrix form, resulting in a 3N × 1 matrix as follows:
s=so+Δs
in the formula,
the true distance of the target from the observation station isTrue distance of target to radiation source kThe true distance of the radiation source k from the observation station isAssuming that the signal propagation speed is c, the time difference between the direct signal of the external radiation source k and the echo signal after the direct signal and the echo signal after the echo signal are reflected by the target arrive at the observation station is:
the azimuth angle and the pitch angle of the target to the observation station are respectively set as thetaoAndthen according to the geometric relationship between the target and the observation station:
through a series of transformations, the observation equation for angle and time difference can be expressed in linear form as follows:
the system of linear equations is expressed in matrix form as:
HoX=bo
wherein,
by using a weighted least square estimation method, the coarse estimation of the target position is obtained as follows:
secondly, simultaneously considering the observation error and the position error of the external radiation source into a linear equation to obtain a least square model, and the steps are as follows:
(1) and whitening the angle observation error in the first function, the time difference observation error in the second function and the position measurement error in the third function to obtain a functional relation between the whitening noise vector and the angle observation error, the time difference observation error and the position measurement error respectively.
(2) And establishing a constraint condition according to the functional relation and the first function, the second function and the third function, wherein the minimum norm square of the whitening noise vector is taken as a target function.
Further, the least square model may be transformed to convert an objective function under a constraint condition into a minimized objective function without a constraint condition as a final least square model.
The specific process is as follows:
setting true value of observation vectorMeasured value thereof isMeasurement errorThen there are:
θ=θo+Δθ
merging s and θ into one (4N +2) × 1 column vector α ═ θT,sT]TAs a total observed quantity, the corresponding observation error is n ═ Δ θT,ΔsT]T. Simultaneously considering angle, time difference observation error delta theta and external radiation source position error delta s to matrix HoAnd boInfluence of (b) then HoX=bocan be expressed as a function of the observed quantity α:
Ho(α-n)=bo(α-n)
h is to beo(α -n) and bo(α -n) Taylor expansion at the measured value α, and neglecting the second order and above error terms, yields the following equation:
Ho=H-ΔH,bo=b-Δb
then Ho(α-n)=bo(α -n) can be represented as:
(H-ΔH)X=b-Δb
in the formula,
ΔH=[F1n,F2n,F3n],Δb=F4n
Fl1,2,3,4 can be calculated according to the following formula:
calculating according to the formula to obtain a matrix Fl1,2,3,4 are each:
wherein, sigma1,Σ2,Σ4,Σ5Is Nx 3N, Σ3An N × 2 matrix, whose elements are as follows:
if the errors in n have correlation or have different variance, it needs to be whitened. Let Q be E [ nnT]Cholesky decomposition (triangular decomposition) is performed on Q to obtain Q ═ PPTObtaining a whitened noise vector u ═ P-1n, then, orderThen
FlPu=Glu
Let WX=xG1+yG2+zG3-G4Then (H- Δ H) X ═ b- Δ b can be expressed as:
HX-b=WXu
solving the CTLS solution of the target position when the constraint condition HX-b is satisfiedXu, determining a suitable solution vector X to make the objective function | | u | | non-calculation2And minimum. The mathematical expression is as follows:
the above formula is a minimization problem of a quadratic function under the constraint of a quadratic constraint equation, and can be transformed into an unconstrained minimization problem of a minimized variable X:
in the formulaA representation matrix WXThe Moore-Penrose inverse of (1). Will be provided withSubstituting into the target function of the CTLS model (least square model), the CTLS solution (least square solution) of the target position is a variable X which satisfies the minimization of the following target function, therefore, the measurement error and the position error of the external radiation source are both considered in the equation, and the constraint total least square model of the target position is constructed as follows:
and finally, taking the obtained least square solution as an initial solution, and obtaining accurate estimation of the target position by adopting Newton iteration. The specific process is as follows:
using the least square solution obtained as the initial solutionPlacing J (X) at X0And (3) processing Taylor expansion, and neglecting error terms of the third order and above to obtain:
in the formula,and is Wherein,
order toObtaining:
A+B(X-X0)=0
solving the above formula to obtain a Newton iteration formula as follows:
X=X0-B-1A
and obtaining accurate estimation of the target position by using a Newton iteration formula, and converging to a global optimal solution by iterating for 2-3 times.
The simulation experiment of the invention was simulated using the passive radar system of fig. 2 and the geometric position diagram of the target. Fig. 3, fig. 4, and fig. 5 show simulation comparisons of the target position estimation error with time difference measurement error, angle measurement error, and external radiation source position error change, respectively, and it can be seen that the estimation performance of the present invention is significantly better than a positioning algorithm that ignores the external radiation source position error under the condition that the external radiation source position error exists, and the estimation error is closest to the cramer-perot boundary.
The invention also provides a passive radar target positioning device, which comprises a calculation processing module, wherein the calculation processing module is used for realizing the following steps:
1) and constructing an observation equation of the angle and the time difference, carrying out linearization treatment on the observation equation of the angle and the time difference to obtain a linear equation, and solving the linear equation to obtain an initial estimation value of the target position.
2) Expressing the angle measurement value as the difference between an angle true value and an angle observation error, expressing the time difference measurement value as the difference between the time difference true value and the time difference observation error, expressing the measurement position value of the external radiation source as the difference between the true position value and the position measurement error of the external radiation source, respectively substituting the angle measurement value and the time difference measurement value into the linear equation, and respectively obtaining a first function of taking the angle true value as a quantity to be solved and a second function of taking the time difference true value as the quantity to be solved; and substituting the measured position value of the external radiation source as a new variable into the linear equation to obtain a real position value of the external radiation source as a third function of the quantity to be solved.
3) And constructing a least square model according to the first function, the second function and the third function, carrying out Taylor expansion on the model at the initial estimation value of the target position, solving to obtain a Newton iteration formula, carrying out iteration by using the initial estimation value of the target position and the Newton iteration formula until the iteration reaches the set times, and obtaining an accurate estimation value of the target position.
The passive radar target positioning device referred to in the above embodiments is actually a computer solution based on the method flow of the present invention, that is, a software framework, and can be applied to a computer, and the above device is a processing process corresponding to the method flow. The above-described method will not be described in detail since it is sufficiently clear and complete.
The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention, and various modifications and changes may be made by those skilled in the art. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the scope of the claims of the present invention.
Claims (6)
1. A passive radar target positioning method is characterized by comprising the following steps:
1) constructing an observation equation of the angle and the time difference, carrying out linearization treatment on the observation equation of the angle and the time difference to obtain a linear equation, and solving the linear equation to obtain an initial estimation value of the target position;
2) expressing the angle measurement value as the difference between an angle true value and an angle observation error, expressing the time difference measurement value as the difference between the time difference true value and the time difference observation error, expressing the measurement position value of the external radiation source as the difference between the true position value and the position measurement error of the external radiation source, respectively substituting the angle measurement value and the time difference measurement value into the linear equation, and respectively obtaining a first function of taking the angle true value as a quantity to be solved and a second function of taking the time difference true value as the quantity to be solved; substituting the measured position value of the external radiation source as a new variable into the linear equation to obtain a third function of taking the real position value of the external radiation source as a quantity to be solved;
3) and constructing a least square model according to the first function, the second function and the third function, carrying out Taylor expansion on the model at the initial estimation value of the target position, solving to obtain a Newton iteration formula, carrying out iteration by using the initial estimation value of the target position and the Newton iteration formula until the iteration reaches a set number of times, and obtaining an accurate estimation value of the target position.
2. The passive radar target locating method according to claim 1, wherein step 3) further comprises the sub-steps of constructing a least squares model by:
(1) whitening processing is carried out on the angle observation error in the first function, the time difference observation error in the second function and the position measurement error in the third function, and functional relations of whitening noise vectors with the angle observation error, the time difference observation error and the position measurement error are obtained after processing;
(2) and establishing a constraint condition according to the functional relation and the first function, the second function and the third function, and taking the norm-squared minimum of the whitening noise vector as a target function.
3. The passive radar target locating method of claim 2, further comprising the steps of: and transforming the target function under the constraint condition into a minimization target function without the constraint condition to be used as a final least square model.
4. A passive radar target locating device is characterized by comprising a calculation processing module, wherein the calculation processing module is used for realizing the following steps:
1) constructing an observation equation of the angle and the time difference, carrying out linearization treatment on the observation equation of the angle and the time difference to obtain a linear equation, and solving the linear equation to obtain an initial estimation value of the target position;
2) expressing the angle measurement value as the difference between an angle true value and an angle observation error, expressing the time difference measurement value as the difference between the time difference true value and the time difference observation error, expressing the measurement position value of the external radiation source as the difference between the true position value and the position measurement error of the external radiation source, respectively substituting the angle measurement value and the time difference measurement value into the linear equation, and respectively obtaining a first function of taking the angle true value as a quantity to be solved and a second function of taking the time difference true value as the quantity to be solved; substituting the measured position value of the external radiation source as a new variable into the linear equation to obtain a third function of taking the real position value of the external radiation source as a quantity to be solved;
3) and constructing a least square model according to the first function, the second function and the third function, carrying out Taylor expansion on the model at the initial estimation value of the target position, solving to obtain a Newton iteration formula, carrying out iteration by using the initial estimation value of the target position and the Newton iteration formula until the iteration reaches a set number of times, and obtaining an accurate estimation value of the target position.
5. The passive radar target locating apparatus of claim 4, wherein step 3) further comprises the sub-steps of constructing a least squares model by:
(1) whitening processing is carried out on the angle observation error in the first function, the time difference observation error in the second function and the position measurement error in the third function, and functional relations of whitening noise vectors with the angle observation error, the time difference observation error and the position measurement error are obtained after processing;
(2) and establishing a constraint condition according to the functional relation and the first function, the second function and the third function, and taking the norm-squared minimum of the whitening noise vector as a target function.
6. The passive radar target locating apparatus of claim 5, further comprising the steps of: and transforming the target function under the constraint condition into a minimization target function without the constraint condition to be used as a final least square model.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810556996.2A CN108761399B (en) | 2018-06-01 | 2018-06-01 | Passive radar target positioning method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810556996.2A CN108761399B (en) | 2018-06-01 | 2018-06-01 | Passive radar target positioning method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108761399A true CN108761399A (en) | 2018-11-06 |
CN108761399B CN108761399B (en) | 2020-09-25 |
Family
ID=64001814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810556996.2A Active CN108761399B (en) | 2018-06-01 | 2018-06-01 | Passive radar target positioning method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108761399B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109782224A (en) * | 2018-12-04 | 2019-05-21 | 嘉兴国电通新能源科技有限公司 | A kind of radiation source positioning and method for tracing based on unmanned aerial vehicle platform |
CN109822571A (en) * | 2019-02-18 | 2019-05-31 | 中国铁建重工集团有限公司 | A kind of assembling machine Mechanical arm control method, device and equipment |
CN110132283A (en) * | 2019-05-28 | 2019-08-16 | 中国人民解放军火箭军工程大学 | A kind of UAV electro-optical's platform is to ground static target localization method and system |
CN110988790A (en) * | 2019-12-16 | 2020-04-10 | 深圳大学 | Passive target positioning method and device |
CN111239718A (en) * | 2020-01-17 | 2020-06-05 | 电子科技大学 | Multi-base-station target positioning method based on single-satellite radiation source |
CN112394318A (en) * | 2020-10-30 | 2021-02-23 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Infield passive positioning test system for airborne single-station flight test |
CN112526523A (en) * | 2020-10-30 | 2021-03-19 | 中国航空工业集团公司洛阳电光设备研究所 | Improved method for multi-base sonar positioning |
CN112782647A (en) * | 2020-12-15 | 2021-05-11 | 中国人民解放军战略支援部队信息工程大学 | Information-combined quadratic equality constraint least square radiation source positioning method |
CN115508775A (en) * | 2022-10-20 | 2022-12-23 | 电子科技大学 | Using azimuth difference of incoming wave node positioning method for measurement |
CN116299393A (en) * | 2023-02-24 | 2023-06-23 | 烟台欣飞智能系统有限公司 | Stealth radar high-precision navigation positioning system based on multi-target detection |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102819016A (en) * | 2011-06-07 | 2012-12-12 | 中国人民解放军海军航空工程学院 | Passive detection system and method for detecting low-altitude target by using navigation radar signals |
CN102819008A (en) * | 2011-06-07 | 2012-12-12 | 中国人民解放军海军航空工程学院 | Non-cooperative radar radiation source positioning method based on nonlinear least squares |
CN104698453A (en) * | 2015-03-15 | 2015-06-10 | 西安电子科技大学 | Passive radar signal locating method based on synthetic-aperture antenna array |
CN106932759A (en) * | 2017-01-17 | 2017-07-07 | 电子科技大学 | A kind of co-located method for active radar and passive radar |
CN107526073A (en) * | 2017-08-22 | 2017-12-29 | 哈尔滨工程大学 | One kind motion passive TDOA-FDOA joint location method of multistation |
-
2018
- 2018-06-01 CN CN201810556996.2A patent/CN108761399B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102819016A (en) * | 2011-06-07 | 2012-12-12 | 中国人民解放军海军航空工程学院 | Passive detection system and method for detecting low-altitude target by using navigation radar signals |
CN102819008A (en) * | 2011-06-07 | 2012-12-12 | 中国人民解放军海军航空工程学院 | Non-cooperative radar radiation source positioning method based on nonlinear least squares |
CN104698453A (en) * | 2015-03-15 | 2015-06-10 | 西安电子科技大学 | Passive radar signal locating method based on synthetic-aperture antenna array |
CN106932759A (en) * | 2017-01-17 | 2017-07-07 | 电子科技大学 | A kind of co-located method for active radar and passive radar |
CN107526073A (en) * | 2017-08-22 | 2017-12-29 | 哈尔滨工程大学 | One kind motion passive TDOA-FDOA joint location method of multistation |
Non-Patent Citations (3)
Title |
---|
DEXIU HU,ETAL: "Coherent TDOA/FDOA estimation method for frequency-hopping", 《2016 8TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP)》 * |
Y. NOROUZI M. DERAKHSHANI: "Joint time difference of arrival/angle of arrival position finding in passive radar", 《IET RADAR, SONAR AND NAVIGATION》 * |
赵拥军 等: "正则化约束总体最小二乘的单站DOA-TDOA无源定位算法", 《电子与信息学报》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109782224A (en) * | 2018-12-04 | 2019-05-21 | 嘉兴国电通新能源科技有限公司 | A kind of radiation source positioning and method for tracing based on unmanned aerial vehicle platform |
CN109822571A (en) * | 2019-02-18 | 2019-05-31 | 中国铁建重工集团有限公司 | A kind of assembling machine Mechanical arm control method, device and equipment |
CN110132283A (en) * | 2019-05-28 | 2019-08-16 | 中国人民解放军火箭军工程大学 | A kind of UAV electro-optical's platform is to ground static target localization method and system |
CN110988790A (en) * | 2019-12-16 | 2020-04-10 | 深圳大学 | Passive target positioning method and device |
CN110988790B (en) * | 2019-12-16 | 2023-04-11 | 深圳大学 | Passive target positioning method and device |
CN111239718B (en) * | 2020-01-17 | 2022-11-15 | 电子科技大学 | Multi-base-station target positioning method based on single-satellite radiation source |
CN111239718A (en) * | 2020-01-17 | 2020-06-05 | 电子科技大学 | Multi-base-station target positioning method based on single-satellite radiation source |
CN112526523A (en) * | 2020-10-30 | 2021-03-19 | 中国航空工业集团公司洛阳电光设备研究所 | Improved method for multi-base sonar positioning |
CN112394318A (en) * | 2020-10-30 | 2021-02-23 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Infield passive positioning test system for airborne single-station flight test |
CN112394318B (en) * | 2020-10-30 | 2023-08-15 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | In-situ passive positioning test system for airborne single-station flight test |
CN112526523B (en) * | 2020-10-30 | 2023-09-19 | 中国航空工业集团公司洛阳电光设备研究所 | Improved multi-base sound localization method |
CN112782647A (en) * | 2020-12-15 | 2021-05-11 | 中国人民解放军战略支援部队信息工程大学 | Information-combined quadratic equality constraint least square radiation source positioning method |
CN115508775A (en) * | 2022-10-20 | 2022-12-23 | 电子科技大学 | Using azimuth difference of incoming wave node positioning method for measurement |
CN116299393A (en) * | 2023-02-24 | 2023-06-23 | 烟台欣飞智能系统有限公司 | Stealth radar high-precision navigation positioning system based on multi-target detection |
Also Published As
Publication number | Publication date |
---|---|
CN108761399B (en) | 2020-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108761399B (en) | Passive radar target positioning method and device | |
Yang et al. | Comparison of unscented and extended Kalman filters with application in vehicle navigation | |
US10371784B2 (en) | System and method for multi-sensor multi-target 3D fusion using an unbiased measurement space | |
JP3179355B2 (en) | Multi-target tracking method and multi-target tracking device | |
CN110285800B (en) | Cooperative relative positioning method and system for aircraft cluster | |
CN107688179A (en) | Combined chance data interconnection method based on doppler information auxiliary | |
CN110209180B (en) | Unmanned underwater vehicle target tracking method based on HuberM-Cubasic Kalman filtering | |
Zhou et al. | State estimation with a destination constraint using pseudo-measurements | |
CN111190229B (en) | Magnetic target detection method | |
CN109901106A (en) | A kind of TDOA/AOA hybrid locating method | |
CN111551897B (en) | TDOA (time difference of arrival) positioning method based on weighted multidimensional scaling and polynomial root finding under sensor position error | |
CN110471029B (en) | Single-station passive positioning method and device based on extended Kalman filtering | |
CN110187337A (en) | A kind of highly maneuvering target tracking and system based on LS and NEU-ECEF time-space relation | |
Niazi | Estimation of LOS rates for target tracking problems using EKF and UKF algorithms-a comparative study | |
Zhou et al. | State estimation with destination constraints | |
Ji et al. | Localization bias correction in n-dimensional space | |
CN114742141A (en) | Multi-source information data fusion studying and judging method based on ICP point cloud | |
CN109035301B (en) | Group target tracking method based on repulsion model modified random matrix algorithm | |
CN112782647A (en) | Information-combined quadratic equality constraint least square radiation source positioning method | |
JP2985608B2 (en) | Multi-target tracking device | |
Jian et al. | Algorithm for passive localization with single observer based on ambiguous phase differences measured by rotating interferometer | |
CN112858997B (en) | Solid body positioning method based on time domain measurement in non-line-of-sight environment | |
Elsaesser | Sensor data fusion using a probability density grid | |
CN115508774B (en) | Time difference positioning method and device based on two-step weighted least square and storage medium | |
Xuanzi et al. | Research on Multi-Base Sonar Localization Based on Improved TLS Algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |