CN108761399A - A kind of passive radar object localization method and device - Google Patents
A kind of passive radar object localization method and device Download PDFInfo
- Publication number
- CN108761399A CN108761399A CN201810556996.2A CN201810556996A CN108761399A CN 108761399 A CN108761399 A CN 108761399A CN 201810556996 A CN201810556996 A CN 201810556996A CN 108761399 A CN108761399 A CN 108761399A
- Authority
- CN
- China
- Prior art keywords
- function
- value
- time difference
- angle
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000004807 localization Effects 0.000 title abstract 2
- 230000005855 radiation Effects 0.000 claims description 57
- 238000005259 measurement Methods 0.000 claims description 41
- 239000013598 vector Substances 0.000 claims description 15
- 238000012545 processing Methods 0.000 claims description 14
- 230000002087 whitening effect Effects 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000001131 transforming effect Effects 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 4
- 239000011159 matrix material Substances 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003471 anti-radiation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于无源雷达目标定位技术领域,具体涉及一种无源雷达目标定位方法与装置。The invention belongs to the technical field of passive radar target positioning, and in particular relates to a passive radar target positioning method and device.
背景技术Background technique
无源雷达作为一种特殊的双基地雷达,本身不辐射源电磁波,而是通过接收和处理目标对环境中现有外辐射源的反射或散射信号,来探测和定位目标。这一特殊的工作原理,使其相比于传统有源雷达,具有良好的四抗(电子干扰、反辐射武器攻击、隐身目标攻击、低空超低空突防)特性。因此,多年来,无源雷达技术在国际雷达领域一直备受关注。As a special kind of bistatic radar, passive radar itself does not radiate electromagnetic waves, but detects and locates targets by receiving and processing the reflected or scattered signals of targets to existing external radiation sources in the environment. This special working principle makes it have good four-resistance (electronic interference, anti-radiation weapon attack, stealth target attack, low-altitude and ultra-low-altitude penetration) characteristics compared with traditional active radars. Therefore, passive radar technology has been receiving much attention in the international radar field for many years.
外辐射源的位置信息,是无源雷达目标定位的必需参数。但是,对于一些辐射源,例如敌方军用辐射源,其位置往往无法准确获得,仅能通过ESM系统进行估计,得到的外辐射源位置是含有较大误差的。例如作者为赵拥军于2016年9月发表在《电子与信息学报》第38卷第9期的论文《基于正则化约束总体最小二乘的单站DOA-TDOA无源定位算法》,由于存在外辐射源位置误差,该算法降低了无源雷达系统的定位精度,因此,有必要考虑外辐射源位置误差对定位精度的影响,并设计针对性的目标定位算法。The position information of the external radiation source is a necessary parameter for passive radar target location. However, for some radiation sources, such as enemy military radiation sources, their positions cannot be obtained accurately, and can only be estimated through the ESM system, and the obtained external radiation source positions contain large errors. For example, the author Zhao Yongjun published the paper "Single Station DOA-TDOA Passive Location Algorithm Based on Regularized Constrained Total Least Squares" in "Journal of Electronics and Information Technology" Volume 38 Issue 9 in September 2016. Due to the existence of external radiation Therefore, it is necessary to consider the influence of the location error of the external radiation source on the positioning accuracy and design a targeted target positioning algorithm.
联合角度和时差的定位是无源雷达常用的一种定位体制,具有优于仅利用角度或时差的定位系统的定位精度。但是现有的定位方法中,没有对外辐射源的位置误差进行考虑。因此,亟需一种考虑外辐射源位置误差的多基地无源雷达目标定位方法,从而在外辐射源位置不准确时,实现对目标位置的最优估计。Positioning combined with angle and time difference is a commonly used positioning system for passive radar, and it has better positioning accuracy than positioning systems that only use angle or time difference. However, in the existing positioning methods, the position error of the external radiation source is not considered. Therefore, there is an urgent need for a multistatic passive radar target location method that considers the position error of the external radiation source, so as to achieve the optimal estimation of the target position when the position of the external radiation source is inaccurate.
发明内容Contents of the invention
本发明的目的是提供一种无源雷达目标定位方法与装置,用于解决现有无源雷达目标定位方法估计目标位置精度低的问题。The object of the present invention is to provide a passive radar target positioning method and device, which are used to solve the problem of low accuracy of estimating the target position in the existing passive radar target positioning method.
为解决上述技术问题,本发明提出一种无源雷达目标定位方法,包括以下步骤:In order to solve the above technical problems, the present invention proposes a passive radar target positioning method, comprising the following steps:
1)构建角度和时差的观测方程,并将角度和时差的观测方程进行线性化处理,得到线性方程,求解该线性方程得到目标位置的初始估计值;1) Construct the observation equation of angle and time difference, and linearize the observation equation of angle and time difference to obtain a linear equation, and solve the linear equation to obtain the initial estimated value of the target position;
2)将角度测量值表示成角度真实值与角度观测误差的差,将时差测量值表示成时差真实值与时差观测误差的差,将外辐射源的测量位置值表示成外辐射源的真实位置值与位置测量误差的差,将角度的测量值、时差的测量值分别代入所述线性方程,分别得到角度真实值作为待求量的第一函数、时差真实值作为待求量的第二函数;将外辐射源的测量位置值作为新变量代入所述线性方程,得到外辐射源的真实位置值作为待求量的第三函数;2) Express the angle measurement value as the difference between the true angle value and the angle observation error, express the time difference measurement value as the difference between the time difference true value and the time difference observation error, and express the measured position value of the external radiation source as the real position of the external radiation source The difference between the value and the position measurement error, the measured value of the angle and the measured value of the time difference are respectively substituted into the linear equation, and the real value of the angle is obtained as the first function of the quantity to be sought, and the real value of the time difference is used as the second function of the quantity to be sought ; Substituting the measured position value of the external radiation source into the linear equation as a new variable, obtaining the real position value of the external radiation source as the third function of the quantity to be sought;
3)根据第一函数、第二函数、第三函数构建最小二乘模型,将该模型在所述目标位置的初始估计值处泰勒展开,求解得到牛顿迭代公式,利用所述目标位置的初始估计值和牛顿迭代公式进行迭代,迭代至设定次数,得到目标位置的精确估计值。3) Construct the least squares model according to the first function, the second function, and the third function, expand the model at the initial estimated value of the target position by Taylor expansion, and obtain the Newton iterative formula by solving it, and use the initial estimate of the target position The value and the Newton iteration formula are iterated to the set number of iterations to obtain an accurate estimate of the target position.
本发明将角度和时差的观测方程线性化,得到一组线性方程,并利用最小二乘得到目标位置的粗估计,将观测误差和外辐射源位置误差同时考虑到线性方程中,得到约束总体最小二乘模型,将得到的最小二乘解作为初始解,采用牛顿迭代得到目标位置的精确估计。本发明考虑了角度观测误差、时差观测误差和外辐射源的位置误差,定位结果为外辐射源存在误差时的最优估计结果;本发明将非线性的角度和时差观测方程线性化处理,得到了最小二乘代数解,并将其作为牛顿迭代的初始解,保证了算法的收敛性。The invention linearizes the observation equations of angle and time difference to obtain a set of linear equations, and uses least squares to obtain a rough estimate of the target position, and takes the observation error and the position error of the external radiation source into consideration in the linear equations to obtain the minimum constraint overall The square model takes the obtained least square solution as the initial solution, and uses Newton iteration to obtain an accurate estimate of the target position. The invention considers the angle observation error, the time difference observation error and the position error of the external radiation source, and the positioning result is the optimal estimation result when there is an error in the external radiation source; the present invention linearizes the non-linear angle and time difference observation equations to obtain The least squares algebraic solution is obtained, and it is used as the initial solution of Newton iteration, which ensures the convergence of the algorithm.
作为最小二乘模型的进一步限定,步骤3)还包括以下构建最小二乘模型的子步骤:As a further limitation of the least squares model, step 3) also includes the following substeps of building the least squares model:
(1)将第一函数中的角度观测误差、第二函数中的时差观测误差和第三函数中的位置测量误差进行白化处理,处理后得到白化噪声向量分别与角度观测误差、时差观测误差、位置测量误差的函数关系式;(1) The angle observation error in the first function, the time difference observation error in the second function, and the position measurement error in the third function are whitened, and after processing, the whitening noise vector is respectively associated with the angle observation error, time difference observation error, The functional relationship of the position measurement error;
(2)根据所述函数关系式,以及第一函数、第二函数和第三函数,建立约束条件,以所述白化噪声向量的范数平方最小为目标函数。(2) According to the functional relational expression, and the first function, the second function and the third function, a constraint condition is established, and the minimum norm square of the whitening noise vector is taken as the objective function.
进一步的,还包括以下步骤:将所述约束条件下的目标函数进行变换成无约束条件的极小化目标函数,作为最终的最小二乘模型。Further, the method further includes the following step: transforming the objective function under the constraints into an unconstrained minimized objective function as the final least squares model.
为解决上述技术问题,本发明还提出一种无源雷达目标定位装置,包括计算处理模块,该计算处理模块用于实现以下步骤:In order to solve the above technical problems, the present invention also proposes a passive radar target positioning device, including a calculation processing module, which is used to implement the following steps:
1)构建角度和时差的观测方程,并将角度和时差的观测方程进行线性化处理,得到线性方程,求解该线性方程得到目标位置的初始估计值;1) Construct the observation equation of angle and time difference, and linearize the observation equation of angle and time difference to obtain a linear equation, and solve the linear equation to obtain the initial estimated value of the target position;
2)将角度测量值表示成角度真实值与角度观测误差的差,将时差测量值表示成时差真实值与时差观测误差的差,将外辐射源的测量位置值表示成外辐射源的真实位置值与位置测量误差的差,将角度的测量值、时差的测量值分别代入所述线性方程,分别得到角度真实值作为待求量的第一函数、时差真实值作为待求量的第二函数;将外辐射源的测量位置值作为新变量代入所述线性方程,得到外辐射源的真实位置值作为待求量的第三函数;2) Express the angle measurement value as the difference between the true angle value and the angle observation error, express the time difference measurement value as the difference between the time difference true value and the time difference observation error, and express the measured position value of the external radiation source as the real position of the external radiation source The difference between the value and the position measurement error, the measured value of the angle and the measured value of the time difference are respectively substituted into the linear equation, and the real value of the angle is obtained as the first function of the quantity to be sought, and the real value of the time difference is used as the second function of the quantity to be sought ; Substituting the measured position value of the external radiation source into the linear equation as a new variable, obtaining the real position value of the external radiation source as the third function of the quantity to be sought;
3)根据第一函数、第二函数、第三函数构建最小二乘模型,将该模型在所述目标位置的初始估计值处泰勒展开,求解得到牛顿迭代公式,利用所述目标位置的初始估计值和牛顿迭代公式进行迭代,迭代至设定次数,得到目标位置的精确估计值。3) Construct the least squares model according to the first function, the second function, and the third function, expand the model at the initial estimated value of the target position by Taylor expansion, and obtain the Newton iterative formula by solving it, and use the initial estimate of the target position The value and the Newton iteration formula are iterated to the set number of iterations to obtain an accurate estimate of the target position.
进一步,步骤3)还包括以下构建最小二乘模型的子步骤:Further, step 3) also includes the following substeps of constructing the least squares model:
(1)将第一函数中的角度观测误差、第二函数中的时差观测误差和第三函数中的位置测量误差进行白化处理,处理后得到白化噪声向量分别与角度观测误差、时差观测误差、位置测量误差的函数关系式;(1) The angle observation error in the first function, the time difference observation error in the second function, and the position measurement error in the third function are whitened, and after processing, the whitening noise vector is respectively associated with the angle observation error, time difference observation error, The functional relationship of the position measurement error;
(2)根据所述函数关系式,以及第一函数、第二函数和第三函数,建立约束条件,以所述白化噪声向量的范数平方最小为目标函数。(2) According to the functional relational expression, and the first function, the second function and the third function, a constraint condition is established, and the minimum norm square of the whitening noise vector is taken as the objective function.
进一步的,还包括以下步骤:将所述约束条件下的目标函数进行变换成无约束条件的极小化目标函数,作为最终的最小二乘模型。Further, the method further includes the following step: transforming the objective function under the constraints into an unconstrained minimized objective function as the final least squares model.
附图说明Description of drawings
图1是本发明估计目标位置的流程示意图;Fig. 1 is a schematic flow chart of estimating target position in the present invention;
图2是本发明实验仿真中外辐射源和观测站几何位置示意图;Fig. 2 is a schematic diagram of the geometric positions of external radiation sources and observation stations in the experimental simulation of the present invention;
图3是本发明目标位置估计误差随时差测量误差变化的仿真对比图;Fig. 3 is the simulation comparison diagram of the variation of the target position estimation error with the time difference measurement error of the present invention;
图4是本发明目标位置估计误差随角度测量误差变化的仿真对比图;Fig. 4 is the simulation contrast diagram that the target position estimation error of the present invention changes with the angle measurement error;
图5是本发明目标位置估计误差随外辐射源位置误差变化的仿真对比图。Fig. 5 is a simulation comparison diagram of the variation of the target position estimation error with the position error of the external radiation source according to the present invention.
具体实施方式Detailed ways
下面结合附图对本发明的具体实施方式作进一步的说明。The specific embodiments of the present invention will be further described below in conjunction with the accompanying drawings.
本发明提供一种无源雷达目标定位方法,包括以下步骤:The invention provides a passive radar target positioning method, comprising the following steps:
1)构建角度和时差的观测方程,并将角度和时差的观测方程进行线性化处理,得到线性方程,求解该线性方程得到目标位置的初始估计值。1) Construct the observation equation of angle and time difference, and linearize the observation equation of angle and time difference to obtain a linear equation, and solve the linear equation to obtain the initial estimate of the target position.
2)将角度测量值表示成角度真实值与角度观测误差的差,将时差测量值表示成时差真实值与时差观测误差的差,将外辐射源的测量位置值表示成外辐射源的真实位置值与位置测量误差的差,将角度的测量值、时差的测量值分别代入上述线性方程,分别得到角度真实值作为待求量的第一函数、时差真实值作为待求量的第二函数;将外辐射源的测量位置值作为新变量代入上述线性方程,得到外辐射源的真实位置值作为待求量的第三函数。2) Express the angle measurement value as the difference between the true angle value and the angle observation error, express the time difference measurement value as the difference between the time difference true value and the time difference observation error, and express the measured position value of the external radiation source as the real position of the external radiation source The difference between the value and the position measurement error, the measured value of the angle and the measured value of the time difference are respectively substituted into the above-mentioned linear equation, and the real value of the angle is obtained as the first function of the quantity to be sought, and the real value of the time difference is used as the second function of the quantity to be sought; Substitute the measured position value of the external radiation source into the above linear equation as a new variable, and obtain the real position value of the external radiation source as the third function of the quantity to be sought.
3)根据第一函数、第二函数、第三函数构建最小二乘模型,将该模型在目标位置的初始估计值处泰勒展开,求解得到牛顿迭代公式,利用目标位置的初始估计值和牛顿迭代公式进行迭代,迭代至设定次数,得到目标位置的精确估计值。3) Construct the least squares model according to the first function, the second function, and the third function, expand the model at the initial estimated value of the target position, and obtain the Newton iteration formula by solving it, and use the initial estimated value of the target position and the Newton iteration The formula is iterated to a set number of iterations to obtain an accurate estimate of the target position.
本发明将角度和时差的观测方程线性化,得到一组线性方程,并利用最小二乘得到目标位置的粗估计,将观测误差和外辐射源位置误差同时考虑到线性方程中,得到约束总体最小二乘模型,将得到的最小二乘解作为初始解,采用牛顿迭代得到目标位置的精确估计。本发明考虑了角度观测误差、时差观测误差和外辐射源的位置误差,定位结果为外辐射源存在误差时的最优估计结果;本发明将非线性的角度和时差观测方程线性化处理,得到了最小二乘代数解,并将其作为牛顿迭代的初始解,保证了算法的收敛性。The invention linearizes the observation equations of angle and time difference to obtain a set of linear equations, and uses least squares to obtain a rough estimate of the target position, and takes the observation error and the position error of the external radiation source into consideration in the linear equations to obtain the minimum constraint overall The square model takes the obtained least square solution as the initial solution, and uses Newton iteration to obtain an accurate estimate of the target position. The invention considers the angle observation error, the time difference observation error and the position error of the external radiation source, and the positioning result is the optimal estimation result when there is an error in the external radiation source; the present invention linearizes the non-linear angle and time difference observation equations to obtain The least squares algebraic solution is obtained, and it is used as the initial solution of Newton iteration, which ensures the convergence of the algorithm.
具体的,本发明针对外辐射源位置存在误差条件下的无源雷达系统,提出一种考虑外辐射源位置误差的联合角度和时差的多基地无源雷达目标定位方法,如图1所示,步骤如下:Specifically, the present invention aims at the passive radar system under the condition that there is an error in the position of the external radiation source, and proposes a multi-static passive radar target positioning method that considers the joint angle and time difference of the position error of the external radiation source, as shown in Figure 1. Proceed as follows:
首先,将角度和时差的观测方程线性化,得到一组线性方程,并利用最小二乘得到目标位置的粗估计。具体求解方法如下:First, the observation equations of angle and time difference are linearized to obtain a set of linear equations, and a rough estimate of the target position is obtained using least squares. The specific solution method is as follows:
假设场景中有N个外辐射源,1个目标,1个观测站。观测站上布设两副天线,分别用于接收来自外辐射源的直达信号和目标回波信号。以观测站为原点,建立空间直角坐标系。假设待估的目标位置X=[xo,yo,zo]T。外辐射源的真实位置未知,只能得到其含有误差的测量值sk=[xk,yk,zk]T(k=1,2,...,N),即Suppose there are N external radiation sources, 1 target, and 1 observation station in the scene. Two antennas are arranged on the observation station, which are respectively used to receive the direct signal from the external radiation source and the target echo signal. With the observation station as the origin, a space rectangular coordinate system is established. Assume that the estimated target position X=[x o , y o , z o ] T . The true position of the external radiation source unknown, only its measured value with error s k =[x k ,y k ,z k ] T (k=1,2,...,N), namely
其中,Δsk为对应的测量误差向量。将N个外辐射源的位置表示成矩阵形式,得到如下3N×1的矩阵:Among them, Δs k is the corresponding measurement error vector. The positions of N external radiation sources are expressed in matrix form, and the following 3N×1 matrix is obtained:
s=so+Δss=s o +Δs
式中, In the formula,
目标到观测站的真实距离为目标到辐射源k的真实距离辐射源k到观测站的真实距离为假设信号传播速度为c,那么外辐射源k的直达信号与其经过目标反射后的回波信号到达观测站的时差为:The real distance from the target to the observation station is The real distance from the target to the radiation source k The real distance from the radiation source k to the observation station is Assuming that the signal propagation speed is c, then the time difference between the direct signal of the external radiation source k and the echo signal reflected by the target arriving at the observation station is:
设目标到观测站的方位角和俯仰角分别为θo和则根据目标和观测站的几何关系:Let the azimuth and elevation angles from the target to the observation station be θ o and According to the geometric relationship between the target and the observation station:
经过一系列变换,角度和时差的观测方程可以表示为如下的线性形式:After a series of transformations, the observation equations of angle and time difference can be expressed in the following linear form:
将该线性方程组表示成矩阵形式为:Express the system of linear equations in matrix form as:
HoX=bo H o X = b o
其中,in,
利用加权最小二乘估计方法,得到目标位置的粗估计为:Using the weighted least squares estimation method, the rough estimate of the target position is obtained as:
其次,将观测误差和外辐射源位置误差同时考虑到线性方程中,得到最小二乘模型,步骤如下:Secondly, taking the observation error and the position error of the external radiation source into the linear equation at the same time to obtain the least squares model, the steps are as follows:
(1)将第一函数中的角度观测误差、第二函数中的时差观测误差和第三函数中的位置测量误差进行白化处理,处理后得到白化噪声向量分别与角度观测误差、时差观测误差、位置测量误差的函数关系式。(1) The angle observation error in the first function, the time difference observation error in the second function, and the position measurement error in the third function are whitened, and after processing, the whitening noise vector is respectively associated with the angle observation error, time difference observation error, Functional relation for position measurement error.
(2)根据函数关系式,以及第一函数、第二函数和第三函数,建立约束条件,以白化噪声向量的范数平方最小为目标函数。(2) According to the functional relational expression, and the first function, the second function and the third function, a constraint condition is established, and the minimum square norm of the whitening noise vector is taken as the objective function.
进一步,还可以将上述最小二乘模型进行变换,将约束条件下的目标函数进行变换成无约束条件的极小化目标函数,作为最终的最小二乘模型。Further, the above least squares model can also be transformed, and the objective function under the constraint condition can be transformed into an unconstrained minimized objective function as the final least squares model.
具体过程为:The specific process is:
设观测向量真实值其测量值为测量误差则有:Let the true value of the observation vector be Its measured value is Measurement error Then there are:
θ=θo+Δθθ=θ o +Δθ
将s和θ合并为一个(4N+2)×1的列向量α=[θT,sT]T,作为总的观测量,对应的观测误差为n=[ΔθT,ΔsT]T。同时考虑角度、时差观测误差Δθ和外辐射源位置误差Δs对矩阵Ho和bo的影响,则HoX=bo可以表示为观测量α的函数:Combine s and θ into a (4N+2)×1 column vector α=[θ T ,s T ] T as the total observation quantity, and the corresponding observation error is n=[Δθ T ,Δs T ] T . Considering the influence of angle, time difference observation error Δθ and external radiation source position error Δs on matrices H o and b o at the same time, then H o X = b o can be expressed as a function of observation α:
Ho(α-n)=bo(α-n)H o (α-n)=b o (α-n)
将Ho(α-n)和bo(α-n)在测量值α处泰勒展开,并忽略二阶及以上误差项,得到如下公式:Taylor expansion of H o (α-n) and b o (α-n) at the measured value α, and ignoring the second-order and above error terms, the following formula is obtained:
Ho=H-ΔH,bo=b-ΔbH o =H-ΔH, b o =b-Δb
则Ho(α-n)=bo(α-n)可以表示为:Then H o (α-n)=b o (α-n) can be expressed as:
(H-ΔH)X=b-Δb(H-ΔH)X=b-Δb
式中,In the formula,
ΔH=[F1n,F2n,F3n],Δb=F4nΔH=[F 1 n, F 2 n, F 3 n], Δb=F 4 n
Fl,l=1,2,3,4可以按照下式计算得到:F l , l=1,2,3,4 can be calculated according to the following formula:
按照上式计算,得到矩阵Fl,l=1,2,3,4分别为:Calculated according to the above formula, the obtained matrix F l , l=1, 2, 3, 4 are respectively:
其中,Σ1,Σ2,Σ4,Σ5为N×3N,Σ3为N×2的矩阵,其元素如下:Among them, Σ 1 , Σ 2 , Σ 4 , Σ 5 are N×3N, Σ 3 is a matrix of N×2, and its elements are as follows:
若n中各项误差具有相关性或具有不同的方差,需将其白化处理。令Q=E[nnT],对Q作Cholesky分解(三角分解)得Q=PPT,得到白化的噪声向量u=P-1n,那么,令则If the errors in n are correlated or have different variances, they need to be whitened. Make Q=E[nn T ], do Cholesky decomposition (triangular decomposition) to Q to get Q=PP T , obtain the noise vector u=P -1 n of whitening, then, make but
FlPu=GluF l Pu = G l u
令WX=xG1+yG2+zG3-G4,则(H-ΔH)X=b-Δb可以表示为:Let W X =xG 1 +yG 2 +zG 3 -G 4 , then (H-ΔH)X=b-Δb can be expressed as:
HX-b=WXuHX-b=W X u
求解目标位置的CTLS解,即在满足约束条件HX-b=WXu下,确定一个合适的解向量X,使得目标函数||u||2最小。其数学表示为:Solve the CTLS solution of the target position, that is, determine a suitable solution vector X under the constraint condition HX-b=W X u, so that the objective function ||u|| 2 is the smallest. Its mathematical expression is:
上式是一个在二次型约束方程约束下的二次型函数的极小化问题,可以变换成一个对极小化变量X的非约束极小化问题:The above formula is a minimization problem of a quadratic function under the constraints of a quadratic constraint equation, which can be transformed into an unconstrained minimization problem for the minimization variable X:
式中表示矩阵WX的Moore-Penrose逆。将代入CTLS模型(最小二乘模型)的目标函数中,则目标位置的CTLS解(最小二乘解)即为满足下列目标函数极小化的变量X,因此,将测量误差和外辐射源位置误差均考虑到方程中,构建出目标位置的约束总体最小二乘模型为:In the formula Represents the Moore-Penrose inverse of matrix W X. Will Substituting into the objective function of the CTLS model (least squares model), the CTLS solution (least squares solution) of the target position is the variable X that satisfies the minimization of the following objective function. Therefore, the measurement error and the position error of the external radiation source are taken into account in the equation, the constrained overall least squares model of the target position is constructed as:
最后,将得到的最小二乘解作为初始解,采用牛顿迭代得到目标位置的精确估计。具体过程为:Finally, the obtained least squares solution is used as the initial solution, and the precise estimation of the target position is obtained by Newton iteration. The specific process is:
将上述得到的最小二乘解作为初始解将J(X)在X0处泰勒展开,并忽略三阶及以上误差项,得到:The least squares solution obtained above is used as the initial solution Taylor expansion of J(X) at X 0 , and ignoring the third-order and above error terms, we get:
式中,且 其中,In the formula, and in,
令得到:make get:
A+B(X-X0)=0A+B(XX 0 )=0
对上式求解,得到牛顿迭代公式为:Solving the above formula, the Newton iteration formula is obtained as:
X=X0-B-1AX=X 0 -B -1 A
利用牛顿迭代公式得到目标位置的精确估计,仅需迭代2-3次即可收敛至全局最优解。Using Newton's iterative formula to get an accurate estimate of the target position, it only needs to iterate 2-3 times to converge to the global optimal solution.
利用图2无源雷达系统和目标的几何位置示意图,对本发明进行模拟实验仿真。图3、图4、图5分别展示了本发明目标位置估计误差随时差测量误差、角度测量误差、外辐射源位置误差变化的仿真对比,可以看出在存在外辐射源位置误差的条件下,本发明估计性能明显优于忽略外辐射源位置误差的定位算法,估计误差最接近克拉美罗界。Using the schematic diagram of the geometric position of the passive radar system and the target in Fig. 2, the simulation experiment of the present invention is simulated. Fig. 3, Fig. 4, Fig. 5 have respectively shown the simulation comparison of the target position estimation error of the present invention with time difference measurement error, angle measurement error, external radiation source position error change, can find out that under the condition that there is external radiation source position error, The estimation performance of the invention is obviously better than the positioning algorithm which ignores the position error of the external radiation source, and the estimation error is closest to the Cramereau boundary.
本发明还提出一种无源雷达目标定位装置,包括计算处理模块,该计算处理模块用于实现以下步骤:The present invention also proposes a passive radar target positioning device, including a calculation processing module, and the calculation processing module is used to realize the following steps:
1)构建角度和时差的观测方程,并将角度和时差的观测方程进行线性化处理,得到线性方程,求解该线性方程得到目标位置的初始估计值。1) Construct the observation equation of angle and time difference, and linearize the observation equation of angle and time difference to obtain a linear equation, and solve the linear equation to obtain the initial estimate of the target position.
2)将角度测量值表示成角度真实值与角度观测误差的差,将时差测量值表示成时差真实值与时差观测误差的差,将外辐射源的测量位置值表示成外辐射源的真实位置值与位置测量误差的差,将角度的测量值、时差的测量值分别代入上述线性方程,分别得到角度真实值作为待求量的第一函数、时差真实值作为待求量的第二函数;将外辐射源的测量位置值作为新变量代入上述线性方程,得到外辐射源的真实位置值作为待求量的第三函数。2) Express the angle measurement value as the difference between the true angle value and the angle observation error, express the time difference measurement value as the difference between the time difference true value and the time difference observation error, and express the measured position value of the external radiation source as the real position of the external radiation source The difference between the value and the position measurement error, the measured value of the angle and the measured value of the time difference are respectively substituted into the above-mentioned linear equation, and the real value of the angle is obtained as the first function of the quantity to be sought, and the real value of the time difference is used as the second function of the quantity to be sought; Substitute the measured position value of the external radiation source into the above linear equation as a new variable, and obtain the real position value of the external radiation source as the third function of the quantity to be sought.
3)根据第一函数、第二函数、第三函数构建最小二乘模型,将该模型在目标位置的初始估计值处泰勒展开,求解得到牛顿迭代公式,利用目标位置的初始估计值和牛顿迭代公式进行迭代,迭代至设定次数,得到目标位置的精确估计值。3) Construct the least squares model according to the first function, the second function, and the third function, and Taylor expand the model at the initial estimated value of the target position to solve the Newton iteration formula, and use the initial estimated value of the target position and Newton iteration The formula is iterated to a set number of iterations to obtain an accurate estimate of the target position.
上述实施例中所指的无源雷达目标定位装置,实际上是基于本发明方法流程的一种计算机解决方案,即一种软件构架,可以应用到计算机中,上述装置即为与方法流程相对应的处理进程。由于对上述方法的介绍已经足够清楚完整,故不再详细进行描述。The passive radar target positioning device referred to in the above-mentioned embodiments is actually a computer solution based on the method flow of the present invention, that is, a software framework that can be applied to a computer, and the above-mentioned device is corresponding to the method flow. processing process. Since the introduction of the above method is clear enough and complete, it will not be described in detail.
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the scope of the claims of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810556996.2A CN108761399B (en) | 2018-06-01 | 2018-06-01 | A passive radar target positioning method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810556996.2A CN108761399B (en) | 2018-06-01 | 2018-06-01 | A passive radar target positioning method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108761399A true CN108761399A (en) | 2018-11-06 |
CN108761399B CN108761399B (en) | 2020-09-25 |
Family
ID=64001814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810556996.2A Active CN108761399B (en) | 2018-06-01 | 2018-06-01 | A passive radar target positioning method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108761399B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109782224A (en) * | 2018-12-04 | 2019-05-21 | 嘉兴国电通新能源科技有限公司 | A radiation source location and tracking method based on UAV platform |
CN109822571A (en) * | 2019-02-18 | 2019-05-31 | 中国铁建重工集团有限公司 | A kind of assembling machine Mechanical arm control method, device and equipment |
CN110132283A (en) * | 2019-05-28 | 2019-08-16 | 中国人民解放军火箭军工程大学 | A method and system for locating ground stationary targets by an unmanned aerial vehicle optoelectronic platform |
CN110988790A (en) * | 2019-12-16 | 2020-04-10 | 深圳大学 | Passive target positioning method and device |
CN111239718A (en) * | 2020-01-17 | 2020-06-05 | 电子科技大学 | A multi-base station target localization method based on single-star radiation source |
CN112394318A (en) * | 2020-10-30 | 2021-02-23 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Infield passive positioning test system for airborne single-station flight test |
CN112526523A (en) * | 2020-10-30 | 2021-03-19 | 中国航空工业集团公司洛阳电光设备研究所 | Improved method for multi-base sonar positioning |
CN112782647A (en) * | 2020-12-15 | 2021-05-11 | 中国人民解放军战略支援部队信息工程大学 | Information-combined quadratic equality constraint least square radiation source positioning method |
CN115508775A (en) * | 2022-10-20 | 2022-12-23 | 电子科技大学 | Using azimuth difference of incoming wave node positioning method for measurement |
CN116299393A (en) * | 2023-02-24 | 2023-06-23 | 烟台欣飞智能系统有限公司 | Stealth radar high-precision navigation positioning system based on multi-target detection |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102819016A (en) * | 2011-06-07 | 2012-12-12 | 中国人民解放军海军航空工程学院 | Passive detection system and method for detecting low-altitude target by using navigation radar signals |
CN102819008A (en) * | 2011-06-07 | 2012-12-12 | 中国人民解放军海军航空工程学院 | Non-cooperative radar radiation source positioning method based on nonlinear least squares |
CN104698453A (en) * | 2015-03-15 | 2015-06-10 | 西安电子科技大学 | Passive radar signal locating method based on synthetic-aperture antenna array |
CN106932759A (en) * | 2017-01-17 | 2017-07-07 | 电子科技大学 | A kind of co-located method for active radar and passive radar |
CN107526073A (en) * | 2017-08-22 | 2017-12-29 | 哈尔滨工程大学 | One kind motion passive TDOA-FDOA joint location method of multistation |
-
2018
- 2018-06-01 CN CN201810556996.2A patent/CN108761399B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102819016A (en) * | 2011-06-07 | 2012-12-12 | 中国人民解放军海军航空工程学院 | Passive detection system and method for detecting low-altitude target by using navigation radar signals |
CN102819008A (en) * | 2011-06-07 | 2012-12-12 | 中国人民解放军海军航空工程学院 | Non-cooperative radar radiation source positioning method based on nonlinear least squares |
CN104698453A (en) * | 2015-03-15 | 2015-06-10 | 西安电子科技大学 | Passive radar signal locating method based on synthetic-aperture antenna array |
CN106932759A (en) * | 2017-01-17 | 2017-07-07 | 电子科技大学 | A kind of co-located method for active radar and passive radar |
CN107526073A (en) * | 2017-08-22 | 2017-12-29 | 哈尔滨工程大学 | One kind motion passive TDOA-FDOA joint location method of multistation |
Non-Patent Citations (3)
Title |
---|
DEXIU HU,ETAL: "Coherent TDOA/FDOA estimation method for frequency-hopping", 《2016 8TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP)》 * |
Y. NOROUZI M. DERAKHSHANI: "Joint time difference of arrival/angle of arrival position finding in passive radar", 《IET RADAR, SONAR AND NAVIGATION》 * |
赵拥军 等: "正则化约束总体最小二乘的单站DOA-TDOA无源定位算法", 《电子与信息学报》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109782224A (en) * | 2018-12-04 | 2019-05-21 | 嘉兴国电通新能源科技有限公司 | A radiation source location and tracking method based on UAV platform |
CN109822571A (en) * | 2019-02-18 | 2019-05-31 | 中国铁建重工集团有限公司 | A kind of assembling machine Mechanical arm control method, device and equipment |
CN110132283A (en) * | 2019-05-28 | 2019-08-16 | 中国人民解放军火箭军工程大学 | A method and system for locating ground stationary targets by an unmanned aerial vehicle optoelectronic platform |
CN110988790A (en) * | 2019-12-16 | 2020-04-10 | 深圳大学 | Passive target positioning method and device |
CN110988790B (en) * | 2019-12-16 | 2023-04-11 | 深圳大学 | Passive target positioning method and device |
CN111239718B (en) * | 2020-01-17 | 2022-11-15 | 电子科技大学 | A multi-base station target location method based on a single-satellite radiation source |
CN111239718A (en) * | 2020-01-17 | 2020-06-05 | 电子科技大学 | A multi-base station target localization method based on single-star radiation source |
CN112526523A (en) * | 2020-10-30 | 2021-03-19 | 中国航空工业集团公司洛阳电光设备研究所 | Improved method for multi-base sonar positioning |
CN112394318A (en) * | 2020-10-30 | 2021-02-23 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Infield passive positioning test system for airborne single-station flight test |
CN112394318B (en) * | 2020-10-30 | 2023-08-15 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | In-situ passive positioning test system for airborne single-station flight test |
CN112526523B (en) * | 2020-10-30 | 2023-09-19 | 中国航空工业集团公司洛阳电光设备研究所 | Improved multi-base sound localization method |
CN112782647A (en) * | 2020-12-15 | 2021-05-11 | 中国人民解放军战略支援部队信息工程大学 | Information-combined quadratic equality constraint least square radiation source positioning method |
CN115508775A (en) * | 2022-10-20 | 2022-12-23 | 电子科技大学 | Using azimuth difference of incoming wave node positioning method for measurement |
CN116299393A (en) * | 2023-02-24 | 2023-06-23 | 烟台欣飞智能系统有限公司 | Stealth radar high-precision navigation positioning system based on multi-target detection |
Also Published As
Publication number | Publication date |
---|---|
CN108761399B (en) | 2020-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108761399B (en) | A passive radar target positioning method and device | |
Zhang et al. | Strong tracking SCKF based on adaptive CS model for manoeuvring aircraft tracking | |
CN110209180B (en) | Unmanned underwater vehicle target tracking method based on HuberM-Cubasic Kalman filtering | |
CN107688179A (en) | Combined chance data interconnection method based on doppler information auxiliary | |
CN106249197B (en) | The method for self-calibrating of receiver location error in a kind of multipoint location system | |
CN106405533A (en) | Radar target combined synchronization and positioning method based on constraint weighted least square | |
CN105137425A (en) | Scanning radar forward-looking angular superresolution method based on convolution inversion principle | |
CN106918810A (en) | A kind of microwave relevance imaging method when there is array element amplitude phase error | |
CN109212475A (en) | Two-shipper passive location method based on azimuth and pitch angle information | |
CN106353720A (en) | Multi-station continuous positioning model based on TDOA/GROA (time different of arrival/gain ratio of arrival) | |
CN113608165A (en) | Multi-station passive positioning method based on signal arrival time difference | |
CN106168662A (en) | The error registration method of passive sensor based on Maximum-likelihood estimation and device | |
CN106908760B (en) | Single-station passive positioning method based on array autocorrelation matrix | |
CN108717177A (en) | A kind of dual station TDOA-AOA two-step methods passive location method | |
CN113923590B (en) | A TOA positioning method under the condition of uncertain anchor node position | |
CN104050686B (en) | A Dense Space Target Tracking Method | |
CN108490429B (en) | TWS radar multi-target tracking method and system | |
Mušicki et al. | Correlated Doppler‐assisted target tracking in clutter | |
CN110132283A (en) | A method and system for locating ground stationary targets by an unmanned aerial vehicle optoelectronic platform | |
CN105116393A (en) | Method for estimating flight height of high-altitude object and radar sectional area based on position fingerprint | |
CN112710984A (en) | Passive positioning method and system based on homotopy continuation | |
CN113093092A (en) | Underwater robust self-adaptive single beacon positioning method | |
CN112782647A (en) | Information-combined quadratic equality constraint least square radiation source positioning method | |
Chen et al. | IMM tracking of a 3D maneuvering target with passive TDOA system | |
Sendall et al. | Detection state refinement in FM multistatic passive radar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |