CN108761186A - 一种针对软磁金属材料的反常能斯特电压的测量方法 - Google Patents

一种针对软磁金属材料的反常能斯特电压的测量方法 Download PDF

Info

Publication number
CN108761186A
CN108761186A CN201810548909.9A CN201810548909A CN108761186A CN 108761186 A CN108761186 A CN 108761186A CN 201810548909 A CN201810548909 A CN 201810548909A CN 108761186 A CN108761186 A CN 108761186A
Authority
CN
China
Prior art keywords
voltage
sample
soft magnetic
resistor
metallic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810548909.9A
Other languages
English (en)
Other versions
CN108761186B (zh
Inventor
马丽
张莹
赵欢
唐猛
杨黄林
田娜
游才印
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201810548909.9A priority Critical patent/CN108761186B/zh
Publication of CN108761186A publication Critical patent/CN108761186A/zh
Application granted granted Critical
Publication of CN108761186B publication Critical patent/CN108761186B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2503Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques for measuring voltage only, e.g. digital volt meters (DVM's)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明公开了一种针对软磁金属材料的反常能斯特电压的测量方法,具体为:S1:将片式电阻器的两个电极分别连接到电流源或电压源的两个输出端;S2:利用低温导热胶将被测样品粘于连接制冷端的Cu柱上;S3:将被测样品通过导线连接至电压测量表的两个输入端;S4:在被测样品上放置导热硅胶垫;S5:将加热器放置于导热硅胶垫之上;S6:用高温胶带将加热器固定;S7:将测量器件放置于磁场中;S8:利用电压源或电流源给电阻器施加电压或者电流,测量不同外加磁场大小时被测样品在同时垂直于温差和磁场方向产生的电压;S9:得到截距V+和V两个电压,反常能斯特电压VANE=(V+‑V)/2。该法的温差调控简单易操作。

Description

一种针对软磁金属材料的反常能斯特电压的测量方法
技术领域
本发明属于软磁金属材料技术领域,具体涉及一种针对软磁金属材料的反常能斯特电压的测量方法。
背景技术
反常能斯特效应是铁磁性材料的基本物理性质之一,它是指当给铁磁性材料施加温度梯度时,在同时垂直于温度梯度和磁矩方向会产生电压的现象。当前,利用铁磁材料的反常能斯特效应实现热能向电能的转换被认为是实现废热再利用的重要途径之一。且随着电子产品器件的持续小型化、集成度和运行速度的不断提高,合理利用器件的废热已成为发展绿色信息技术的关键。如何精确有效地测量反常能斯特电压,也成为研究的热点。
根据材料的磁化方向,反常能斯特电压的测量方法可以分为两种,一种是当磁化方向垂直于膜面时,则温差需在面内;而当磁化方向平行于膜面时,则温差需垂直膜面。前者主要针对具有垂直磁晶各向异性的磁性材料体系,后者主要针对易磁化方向位于面内的软磁金属材料。
现有技术中,可利用激光给样品表面加热以形成垂直膜面的温度梯度,该测量方法,施加温差和测量操作较复杂,温差可调控幅度小,加热不均匀。
发明内容
本发明的目的是提供一种针对软磁金属材料的反常能斯特电压的测量方法,该测量方法的温差调控简单易操作,调控幅度大。
本发明所采用的技术方案是,一种针对软磁金属材料的反常能斯特电压的测量方法,具体按照以下步骤实施:
步骤1:将电阻器的两个电极分别连接到电流源或电压源的两个输出端,给电阻器施加电流或者电压,电阻器发热,作为加热器;
步骤2:利用低温导热胶将被测样品粘于连接制冷端的Cu柱上;
步骤3:在被测样品沿长轴的两端分别通过导线连接至电压测量表的两个输入端,用以测量电压信号;
步骤4:在被测样品上放置导热硅胶垫;
步骤5:将步骤1制作好的加热器放置于导热硅胶垫之上;
步骤6:用高温胶带将加热器固定;
步骤7:将上述测量器件放置于磁场中,磁场方向平行于膜面,被测样品的长轴方向与磁场方向相互垂直;
步骤8:根据电阻器的额定功率,利用电压源或电流源给电阻器施加电压或者电流,待温差稳定后,利用电压测量表测量不同外加磁场大小时被测样品在同时垂直于温差和磁场方向产生的电压;
步骤9:将正/负磁场下的饱和电压信号外推至零场,分别得到截距V+和V-两个电压,反常能斯特电压VANE则可以根据公式VANE=(V+-V-)/2计算得到。
本发明的特点还在于,
被测样品为软磁金属薄膜材料或软磁金属块材。
被测样品的易磁化方向平行于膜面。
步骤4中,导热硅胶垫的厚度范围为0.5~2mm,其长度介于被测样品条上两个接线端之间。
被测样品的尺寸大小均不超过电阻器的尺寸大小。
步骤3中,电压测量表的精度高于10-8V。
本发明的有益效果是:本发明针对易磁化方向位于面内的软磁材料体系,给样品施加垂直于膜面的温度梯度进行反常能斯特电压的测量。相比于利用激光给样品表面加热以形成垂直膜面的温度梯度,本发明提出的测量方法优点在于施加温差和测量简单易操作,温差能得到大幅度调控,且样品受热均匀;另外,本发明提出的测量方法不仅适用于软磁金属薄膜材料,对软磁金属块材同样适用。
附图说明
图1为本发明中反常能斯特电压测量截面示意图;
图2为应用本发明方法给加热源施加8.5V电压时,在同时垂直于磁场和温度梯度方向测量到Fe薄膜的电压随外磁场的变化图;
图3为应用本发明方法给加热源施加4V电压时,在同时垂直于磁场和温度梯度方向测量到FexNi1-x薄膜的电压随外磁场的变化图;
图4为应用本发明方法给加热源施加不同电流时,在同时垂直于磁场和温度梯度方向测量到实施例4中样品的电压随外磁场的变化图;
图5为实施例4中样品的反常能斯特电压随加热器加热电流的平方的变化图。
图中,1.加热源,2.电阻器,3.导热硅胶垫,4.被测样品,5.Cu柱,6.电压测量表。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明提供一种针对软磁金属材料的反常能斯特电压的测量方法,如图1所示,具体按照以下步骤实施:
步骤1:将电阻器2的两个电极分别连接到加热源1的两个输出端,给电阻器施加电流或者电压,电阻器2发热,作为加热器;
其中,电阻器2为片式电阻器;加热源1为电流源或电压源,电流源由电流表提供,电压源由电压表提供;
步骤2:利用低温导热胶将被测样品4粘于连接制冷端的Cu柱5上;
步骤2中,被测样品4为软磁金属薄膜材料或软磁金属块材,其易磁化方向平行于膜面;
步骤3:在被测样品4沿长轴的两端分别通过导线连接至电压测量表6的两个输入端,用以测量电压信号;
步骤3中,电压测量表的精度高于10-8V;
步骤4:在被测样品4上放置导热硅胶垫3;
步骤4中,导热硅胶垫3的厚度范围为0.5~2mm,其长度介于被测样品4上两个接线端之间;
步骤5:将步骤1制作好的加热器放置于导热硅胶垫3之上;
步骤6:用高温胶带将加热器固定;
步骤7:将上述测量器件放置于磁场中,磁场方向平行于膜面,被测样品4的长轴方向与磁场方向相互垂直;
步骤8:根据电阻器2的额定功率,利用电压源或电流源给电阻器施加电压或者电流,待温差稳定后,利用电压测量表6测量不同外加磁场大小时被测样品在同时垂直于温差和磁场方向产生的电压;
步骤9:将正/负磁场下的饱和电压信号外推至零场,分别得到截距V+和V-两个电压,反常能斯特电压VANE则可以根据公式VANE=(V+-V-)/2计算得到;
其中,被测样品的尺寸大小均不超过电阻器的尺寸大小。
以下实施例中使用的片式电阻器、导热硅胶垫和仪器的规格型号如下:
片式电阻器:品牌Panasonic,型号ERJ1TN,电阻值:室温下电阻为100Ω,额定功率为1W;电阻器的长、宽、高分别为6.4mm,3.2mm和0.6mm。
导热硅胶垫:厚度0.5mm,导热系数12W/m·K
电流源或电压源:吉时利2400数字源表
电压测量仪表:吉时利2182纳伏表
磁场发生和测量装置:东方晨景EM5电磁铁、P7050磁铁电源、美国Lakeshore 420高斯计
试剂:Fe靶、Ni小片靶均购自于合肥科晶材料技术有限公司
实施例1:
本实施例用于说明利用本发明提供的方法,对厚度为20.42nm的Fe薄膜的反常能斯特电压进行测量。
本实施例中样品是通过直流磁控溅射的方法,在长宽高分别为8mm,1mm和0.7mm的石英玻璃衬底上生长制备的Fe薄膜,薄膜厚度为20.42nm。
将样品用低温导热胶粘于连接制冷端的Cu柱上,利用制冷机保持冷端温度稳定。样品沿长轴两端通过银胶和漆包线连于2182纳伏表的输入端,样品上方依次放置导热硅胶片和加热器,利用吉时利2400数字源表给加热器进行加热以产生垂直于膜面的温度梯度。用高温胶带将加热器固定。为了维持温差的稳定性,测量样品处于真空环境。测量过程中,外加磁场方向始终与膜面平行且垂直于样品条长轴方向,测量环境温度为室温。给加热器施加8.5V的电压对样品进行加热,保持5分钟后,沿着样品条方向测量电压。如图2所示为测量得到Fe薄膜样品在同时垂直于磁场和温度梯度方向测量得到的电压信号随外磁场的变化,测量环境温度为室温。将正负磁场下的饱和电压信号外推至零场,分别得到V+和V-两个电压,反常能斯特电压VANE则可以定义为:VANE=(V+-V-)/2。从图2可以看出,该样品此时的反常能斯特电压绝对值为1.47μV。
实施例2-4:
本实施例用于说明利用本发明所提供的方法,对面心立方结构的FexNi1-x(0≤x≤1)二元合金薄膜样品反常能斯特电压的测量效果。
样品制备信息:利用直流磁控溅射的方法,在MgO(001)单晶衬底上生长制备不同Fe/Ni含量的FexNi1-x二元合金薄膜,衬底的长宽高分别为8mm,1mm和0.5mm,合金成分是通过在Ni靶上放置不同数量的Fe小片子数目来调控。制备过程中,生长速率为0.12nm/s,氩气压为0.35Pa,生长温度为300℃,并在此温度退火半小时。样品信息如下表所示:
实施例 样品成分 样品厚度(nm)
2 Fe0.1Ni0.9 23.08
3 Fe0.35Ni0.65 27.22
4 Fe0.55Ni0.45 23.39
反常能斯特电压测量:
该系列实施例中样品反常能斯特电压测量方式与实施例1中的相同。如图3所示为利用2400数字源表给加热器施加4V的电压进行加热时,在样品同时垂直于温差和磁场方向测量得到的电压信号随外磁场的变化,测量环境温度为室温。实施例2-4的三个样品在外加磁场为100Oe时达到饱和。其反常能斯特电压分别为0.5μV,1.4μV和4.7μV。
图4所示为利用2400数字源表给加热器施加不同大小的电流,测量实施例4得到同时垂直于温度梯度和外磁场方向测得的电压信号随外磁场的变化,测量环境温度为室温。可以看出,随着给加热器施加的电流逐渐增大,所测量得到的反常能斯特电压也越大。图5为实施例4中样品,反常能斯特电压与给加热器施加电流的平方成正比,证明其与加热功率成正比。

Claims (6)

1.一种针对软磁金属材料的反常能斯特电压的测量方法,其特征在于,具体按照以下步骤实施:
步骤1:将电阻器的两个电极分别连接到电流源或电压源的两个输出端,给电阻器施加电流或者电压,电阻器发热,作为加热器;
步骤2:利用低温导热胶将被测样品粘于连接制冷端的Cu柱上;
步骤3:在被测样品沿长轴的两端分别通过导线连接至电压测量表的两个输入端,用以测量电压信号;
步骤4:在被测样品上放置导热硅胶垫;
步骤5:将步骤1制作好的加热器放置于导热硅胶垫之上;
步骤6:用高温胶带将加热器固定;
步骤7:将上述测量器件放置于磁场中,磁场方向平行于膜面,被测样品的长轴方向与磁场方向相互垂直;
步骤8:根据电阻器的额定功率,利用电压源或电流源给电阻器施加电压或者电流,待温差稳定后,利用电压测量表测量不同外加磁场大小时被测样品在同时垂直于温差和磁场方向产生的电压;
步骤9:将正/负磁场下的饱和电压信号外推至零场,分别得到截距V+和V-两个电压,反常能斯特电压VANE则可以根据公式VANE=(V+-V-)/2计算得到。
2.根据权利要求1所述的一种针对软磁金属材料的反常能斯特电压的测量方法,其特征在于,所述被测样品为软磁金属薄膜材料或软磁金属块材。
3.根据权利要求2所述的一种针对软磁金属材料的反常能斯特电压的测量方法,其特征在于,所述被测样品的易磁化方向平行于膜面。
4.根据权利要求1所述的一种针对软磁金属材料的反常能斯特电压的测量方法,其特征在于,步骤4中,所述导热硅胶垫的厚度范围为0.5~2mm,其长度介于被测样品条上两个接线端之间。
5.根据权利要求1所述的一种针对软磁金属材料的反常能斯特电压的测量方法,其特征在于,被测样品的尺寸大小均不超过电阻器的尺寸大小。
6.根据权利要求1所述的一种针对软磁金属材料的反常能斯特电压的测量方法,其特征在于,步骤3中,电压测量表的精度高于10-8V。
CN201810548909.9A 2018-05-31 2018-05-31 一种针对软磁金属材料的反常能斯特电压的测量方法 Expired - Fee Related CN108761186B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810548909.9A CN108761186B (zh) 2018-05-31 2018-05-31 一种针对软磁金属材料的反常能斯特电压的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810548909.9A CN108761186B (zh) 2018-05-31 2018-05-31 一种针对软磁金属材料的反常能斯特电压的测量方法

Publications (2)

Publication Number Publication Date
CN108761186A true CN108761186A (zh) 2018-11-06
CN108761186B CN108761186B (zh) 2019-04-26

Family

ID=64001142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810548909.9A Expired - Fee Related CN108761186B (zh) 2018-05-31 2018-05-31 一种针对软磁金属材料的反常能斯特电压的测量方法

Country Status (1)

Country Link
CN (1) CN108761186B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110275077A (zh) * 2019-06-28 2019-09-24 南京大学 一种宽温区强磁场中热电效应的电学测量方法
CN117706310A (zh) * 2023-06-30 2024-03-15 浙江大学 一种块体能斯特器件输出性能的测试装置和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150135802A1 (en) * 2012-05-15 2015-05-21 Robert Bosch Gmbh Method and control unit for compensating for a voltage offset of a two-point lambda sensor
CN105655474A (zh) * 2014-11-27 2016-06-08 丰田自动车株式会社 热电体
CN106784299A (zh) * 2017-02-10 2017-05-31 中国科学院物理研究所 多层膜异质结构、其制备方法及应用
CN107195721A (zh) * 2017-06-07 2017-09-22 昆明理工大学 一种基于能斯特效应和原子层热电堆的复合光热探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150135802A1 (en) * 2012-05-15 2015-05-21 Robert Bosch Gmbh Method and control unit for compensating for a voltage offset of a two-point lambda sensor
CN105655474A (zh) * 2014-11-27 2016-06-08 丰田自动车株式会社 热电体
CN106784299A (zh) * 2017-02-10 2017-05-31 中国科学院物理研究所 多层膜异质结构、其制备方法及应用
CN107195721A (zh) * 2017-06-07 2017-09-22 昆明理工大学 一种基于能斯特效应和原子层热电堆的复合光热探测器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S.Y. HUANG 等: "Transport Magnetic Proximity Effects in Platinum", 《PHYSICAL REVIEW LETTERS》 *
T. KIKKAWA 等: "Separation of longitudinal spin Seebeck effect from anomalous Nernst effect: Determination of origin of transverse thermoelectric voltage in metal/insulator junctions", 《PHYSICAL REVIEW》 *
T. MIYASATO 等: "Crossover Behavior of the Anomalous Hall Effect and Anomalous Nernst Effect in Itinerant Ferromagnets", 《PHYSICAL REVIEW LETTERS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110275077A (zh) * 2019-06-28 2019-09-24 南京大学 一种宽温区强磁场中热电效应的电学测量方法
CN117706310A (zh) * 2023-06-30 2024-03-15 浙江大学 一种块体能斯特器件输出性能的测试装置和方法

Also Published As

Publication number Publication date
CN108761186B (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
Sola et al. Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method
CN108761186B (zh) 一种针对软磁金属材料的反常能斯特电压的测量方法
CN105866715B (zh) 一种线性各向异性磁阻传感器的制备方法
WO2012139494A1 (zh) 采用半导体基片的磁阻器件及其制备方法
CN104561868B (zh) 一种非晶微丝具有极高巨磁阻抗效应的方法
CN102134691B (zh) 钴基非晶巨磁阻抗薄带的制备方法
CN104109822A (zh) 一种含Ni钴基非晶巨磁阻抗合金薄带及其制备方法
Van Thiel et al. Extraordinary Hall balance in ultrathin SrRuO3 bilayers
CN110186584B (zh) 一种利用磁隧道结自由层矫顽场测量温度的方法
CN110220608B (zh) 一种利用磁隧道结参考层矫顽场测量温度的方法
CN110196115B (zh) 一种利用磁隧道结磁电阻测量温度的方法
CN108682733B (zh) 一种增强反常能斯特效应的方法
Lepadatu Interaction of magnetization and heat dynamics for pulsed domain wall movement with Joule heating
Clime et al. Characterization of individual ferromagnetic nanowires by in-plane magnetic measurements of arrays
Onn et al. Specific heat and susceptibility of Ni‐based amorphous alloys with dilute Fe
Ghanaatshoar et al. Magnetoimpedance effect in current annealed Co-based amorphous wires
CN111293217B (zh) 一种基于应力增强铁磁/重金属薄膜体系中电荷流-自旋流有效转换效率的方法
Ayerdi et al. Ceramic pressure sensor based on tantalum thin film
CN206990123U (zh) 一种基于层状钴氧化物的低温测温元件
Chen et al. Temperature dependence of the electrical and thermal transport in FeCo/Cu/Ni80Fe20 spin valves
Aboaf et al. Magnetic properties of thin films of 3d transition metals alloyed with Cr
Endo et al. Effect of interface structure on exchange biased Heusler alloy films
CN110021481B (zh) 一种制备人工反铁磁体复合材料的方法
Aldridge et al. The Hall effect of thin iron films
Lewowski et al. Measurement of Curie temperature for gadolinium: a laboratory experiment for students

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190426

CF01 Termination of patent right due to non-payment of annual fee