CN108734661B - 基于图像纹理信息构建损失函数的高分辨率图像预测方法 - Google Patents
基于图像纹理信息构建损失函数的高分辨率图像预测方法 Download PDFInfo
- Publication number
- CN108734661B CN108734661B CN201810517138.7A CN201810517138A CN108734661B CN 108734661 B CN108734661 B CN 108734661B CN 201810517138 A CN201810517138 A CN 201810517138A CN 108734661 B CN108734661 B CN 108734661B
- Authority
- CN
- China
- Prior art keywords
- resolution image
- network
- image
- loss
- loss function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000012549 training Methods 0.000 claims abstract description 26
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 11
- 238000004364 calculation method Methods 0.000 claims abstract description 8
- 238000012937 correction Methods 0.000 claims abstract description 5
- 238000007781 pre-processing Methods 0.000 claims abstract description 5
- 238000012360 testing method Methods 0.000 claims abstract description 5
- 230000006870 function Effects 0.000 claims description 57
- 230000004913 activation Effects 0.000 claims description 11
- 238000010586 diagram Methods 0.000 claims description 7
- 238000011478 gradient descent method Methods 0.000 claims description 4
- 238000013528 artificial neural network Methods 0.000 claims description 2
- 238000004422 calculation algorithm Methods 0.000 abstract description 12
- 230000007547 defect Effects 0.000 abstract description 2
- 238000013135 deep learning Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 4
- 238000005034 decoration Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4053—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4046—Scaling of whole images or parts thereof, e.g. expanding or contracting using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810517138.7A CN108734661B (zh) | 2018-05-25 | 2018-05-25 | 基于图像纹理信息构建损失函数的高分辨率图像预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810517138.7A CN108734661B (zh) | 2018-05-25 | 2018-05-25 | 基于图像纹理信息构建损失函数的高分辨率图像预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108734661A CN108734661A (zh) | 2018-11-02 |
CN108734661B true CN108734661B (zh) | 2020-12-29 |
Family
ID=63936094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810517138.7A Active CN108734661B (zh) | 2018-05-25 | 2018-05-25 | 基于图像纹理信息构建损失函数的高分辨率图像预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108734661B (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109712183A (zh) * | 2018-11-28 | 2019-05-03 | 天津大学 | 基于深度学习的电子散斑干涉智能信息提取方法 |
CN109934773B (zh) * | 2019-03-13 | 2023-08-25 | 北京旷视科技有限公司 | 一种图像处理方法、装置、电子设备和计算机可读介质 |
CN110136061B (zh) * | 2019-05-10 | 2023-02-28 | 电子科技大学中山学院 | 一种基于深度卷积预测与插值的分辨率提升方法及系统 |
CN110334760B (zh) * | 2019-07-01 | 2021-06-08 | 成都数之联科技有限公司 | 一种基于resUnet的光学元器件损伤检测方法及系统 |
CN110991375B (zh) * | 2019-12-10 | 2020-12-15 | 北京航空航天大学 | 一种群体行为分析方法及装置 |
CN111192255B (zh) * | 2019-12-30 | 2024-04-26 | 上海联影智能医疗科技有限公司 | 指标检测方法、计算机设备和存储介质 |
CN111310666B (zh) * | 2020-02-18 | 2022-03-18 | 浙江工业大学 | 一种基于纹理特征的高分辨率影像地物识别与分割方法 |
CN111612721B (zh) * | 2020-05-22 | 2023-09-22 | 哈尔滨工业大学(深圳) | 一种图像修复模型训练、卫星图像修复方法及装置 |
CN111839574B (zh) * | 2020-09-08 | 2023-10-31 | 南京安科医疗科技有限公司 | Ct超低剂量自动三维定位扫描方法及系统 |
CN112581397B (zh) * | 2020-12-21 | 2023-08-08 | 华南农业大学 | 一种基于图像先验信息的退化图像修复方法、系统、介质和设备 |
CN115861099B (zh) * | 2022-11-24 | 2024-02-13 | 南京信息工程大学 | 一种引入物理成像先验知识约束的卫星云图图像复原方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104778659A (zh) * | 2015-04-15 | 2015-07-15 | 杭州电子科技大学 | 基于深度学习的单帧图像超分辨率重建方法 |
CN105960657A (zh) * | 2014-06-17 | 2016-09-21 | 北京旷视科技有限公司 | 使用卷积神经网络的面部超分辨率 |
CN106228512A (zh) * | 2016-07-19 | 2016-12-14 | 北京工业大学 | 基于学习率自适应的卷积神经网络图像超分辨率重建方法 |
CN107492070A (zh) * | 2017-07-10 | 2017-12-19 | 华北电力大学 | 一种双通道卷积神经网络的单图像超分辨率计算方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9836820B2 (en) * | 2016-03-03 | 2017-12-05 | Mitsubishi Electric Research Laboratories, Inc. | Image upsampling using global and local constraints |
-
2018
- 2018-05-25 CN CN201810517138.7A patent/CN108734661B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105960657A (zh) * | 2014-06-17 | 2016-09-21 | 北京旷视科技有限公司 | 使用卷积神经网络的面部超分辨率 |
CN104778659A (zh) * | 2015-04-15 | 2015-07-15 | 杭州电子科技大学 | 基于深度学习的单帧图像超分辨率重建方法 |
CN106228512A (zh) * | 2016-07-19 | 2016-12-14 | 北京工业大学 | 基于学习率自适应的卷积神经网络图像超分辨率重建方法 |
CN107492070A (zh) * | 2017-07-10 | 2017-12-19 | 华北电力大学 | 一种双通道卷积神经网络的单图像超分辨率计算方法 |
Non-Patent Citations (2)
Title |
---|
《Learning a Deep Convolutional Network for Image Super-Resolution》;Chao Dong 等;《ECCV 2014, Part IV, LNCS 8692》;20141231;第184-199页 * |
《基于卷积神经网络的图像纹理的超分辨率重建》;蒋雪;《中国优秀硕士学位论文全文数据库 信息科技辑》;20180115;第25-40页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108734661A (zh) | 2018-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108734661B (zh) | 基于图像纹理信息构建损失函数的高分辨率图像预测方法 | |
CN109087273B (zh) | 基于增强的神经网络的图像复原方法、存储介质及系统 | |
CN109949255B (zh) | 图像重建方法及设备 | |
Yang et al. | Coupled dictionary training for image super-resolution | |
CN109767386A (zh) | 一种基于深度学习的快速图像超分辨率重建方法 | |
CN110349087B (zh) | 基于适应性卷积的rgb-d图像高质量网格生成方法 | |
CN110060204B (zh) | 一种基于可逆网络的单一图像超分辨率方法 | |
CN109785279B (zh) | 一种基于深度学习的图像融合重建方法 | |
CN112489164B (zh) | 基于改进深度可分离卷积神经网络的图像着色方法 | |
CN112291570B (zh) | 一种基于轻量级可形变卷积神经网络的实时视频增强方法 | |
CN107103285A (zh) | 基于卷积神经网络的人脸深度预测方法 | |
CN103455988A (zh) | 基于结构自相似性与稀疏表示的超分辨率图像重构方法 | |
CN109949217A (zh) | 基于残差学习和隐式运动补偿的视频超分辨率重建方法 | |
CN113744136A (zh) | 基于通道约束多特征融合的图像超分辨率重建方法和系统 | |
CN113869503B (zh) | 一种基于深度矩阵分解补全的数据处理方法及存储介质 | |
Liang et al. | Multi-scale hybrid attention graph convolution neural network for remote sensing images super-resolution | |
CN116188509A (zh) | 一种高效率三维图像分割方法 | |
CN116385264A (zh) | 一种超分辨率遥感数据重构方法 | |
CN109819256B (zh) | 基于特征感知的视频压缩感知方法 | |
CN107403417A (zh) | 一种基于单目视觉的三次元图像校准方法 | |
CN108596831B (zh) | 一种基于AdaBoost实例回归的超分辨率重建方法 | |
CN111563844A (zh) | 一种遥感图像自适应融合方法 | |
CN117151998A (zh) | 一种基于支持向量回归的图像光照校正方法 | |
CN116630387A (zh) | 基于注意力机制的单目图像深度估计方法 | |
CN103226818A (zh) | 基于流形正则稀疏支撑回归的单帧图像超分辨率重建方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 210032 No. 219 Ning six road, Jiangbei new district, Nanjing, Jiangsu Applicant after: Nanjing University of Information Science and Technology Address before: 210044 Yu Ting square, 67 Wang Qiao Road, Liuhe District, Nanjing, Jiangsu Applicant before: Nanjing University of Information Science and Technology |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211220 Address after: 210012 19 / F, B1 building, Kechuang City, 34 Dazhou Road, Yuhuatai District, Nanjing City, Jiangsu Province Patentee after: Jiangsu Xinshiyun Science and Technology Co.,Ltd. Address before: No.219, ningliu Road, Jiangbei new district, Nanjing, Jiangsu Province, 210032 Patentee before: NANJING University OF INFORMATION SCIENCE & TECHNOLOGY |
|
TR01 | Transfer of patent right |