CN108733076A - Method and device for grabbing target object by unmanned aerial vehicle and electronic equipment - Google Patents
Method and device for grabbing target object by unmanned aerial vehicle and electronic equipment Download PDFInfo
- Publication number
- CN108733076A CN108733076A CN201810507667.9A CN201810507667A CN108733076A CN 108733076 A CN108733076 A CN 108733076A CN 201810507667 A CN201810507667 A CN 201810507667A CN 108733076 A CN108733076 A CN 108733076A
- Authority
- CN
- China
- Prior art keywords
- target object
- uav
- drone
- grab
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明实施例公开了一种无人机抓取目标物体的方法、装置及电子设备,所述方法包括:实时获取目标物体与无人机之间的相对位置信息;根据所述相对位置信息确定无人机追踪目标物体的规划路径;控制所述无人机基于所述规划路径追踪所述目标物体;当无人机与所述目标物体之间的相对距离达到设定阈值时,控制无人机以及机械臂动作以抓取所述目标物体。通过采用上述技术方案,实现了无人机在没有动捕系统的环境下对目标物体进行有效抓取,尤其针对移动目标物体可以进行有效抓取。
The embodiment of the present invention discloses a method, device and electronic equipment for an unmanned aerial vehicle to grab a target object. The method includes: obtaining the relative position information between the target object and the unmanned aerial vehicle in real time; The UAV tracks the planned path of the target object; the UAV is controlled to track the target object based on the planned path; when the relative distance between the UAV and the target object reaches a set threshold, the UAV is controlled to The machine and the mechanical arm act to grab the target object. By adopting the above technical solution, the UAV can effectively grasp the target object in the environment without a motion capture system, especially for the effective grasp of the moving target object.
Description
技术领域technical field
本发明实施例涉及无人机领域,尤其涉及一种无人机抓取目标物体的方法、装置及电子设备。Embodiments of the present invention relate to the field of unmanned aerial vehicles, in particular to a method, device and electronic equipment for an unmanned aerial vehicle to grab a target object.
背景技术Background technique
随着以旋翼型飞行器为代表的无人机技术的飞速发展,无人机在航拍、侦察、农业、快递运输、灾难救援等领域得到了广泛应用。With the rapid development of UAV technology represented by rotorcraft, UAVs have been widely used in aerial photography, reconnaissance, agriculture, express transportation, disaster relief and other fields.
但是,目前的无人机在抓取目标物体方面技术尚不成熟,还局限于依赖室内动捕系统的抓取,而且主要针对室内静止物体的抓取,当目标物体处于室外且没有动捕系统的环境时则无法进行有效抓取,尤其当抓取物体是移动物体时,更无法进行准确抓取。However, the current drones are immature in capturing target objects, and are limited to relying on indoor motion capture systems, and are mainly aimed at capturing indoor stationary objects. When the target object is outdoors and there is no motion capture system It cannot be grasped effectively when it is in a different environment, especially when the grasped object is a moving object, it cannot be grasped accurately.
发明内容Contents of the invention
本发明提供一种无人机抓取目标物体的方法、装置及电子设备,以实现无人机在没有动捕系统的环境下对目标物体进行有效抓取。The present invention provides a method, device and electronic equipment for a drone to capture a target object, so as to realize the effective capture of the target object by the drone in an environment without a motion capture system.
为实现上述目的,本发明实施例采用如下技术方案:In order to achieve the above purpose, the embodiment of the present invention adopts the following technical solutions:
第一方面,本发明实施例提供了一种无人机抓取目标物体的方法,所述方法包括:In the first aspect, an embodiment of the present invention provides a method for a drone to grab a target object, the method comprising:
实时获取目标物体与无人机之间的相对位置信息;Real-time acquisition of relative position information between the target object and the UAV;
根据所述相对位置信息确定无人机追踪目标物体的规划路径;Determine the planned path of the UAV to track the target object according to the relative position information;
控制所述无人机基于所述规划路径追踪所述目标物体;controlling the UAV to track the target object based on the planned path;
当无人机与所述目标物体之间的相对距离达到设定阈值时,控制无人机以及机械臂动作以抓取所述目标物体。When the relative distance between the drone and the target object reaches a set threshold, the drone and the mechanical arm are controlled to grab the target object.
进一步的,所述实时获取目标物体与无人机之间的相对位置信息,包括:Further, the real-time acquisition of relative position information between the target object and the UAV includes:
分别确定目标物体在无人机装载的双目相机对应的左、右两个成像平面上的成像点对应的横坐标;Determine the abscissas corresponding to the imaging points of the target object on the left and right imaging planes corresponding to the binocular cameras loaded on the drone;
基于所述横坐标计算目标物体在所述左、右两个成像平面上的成像点之间的距离;calculating the distance between the imaging points of the target object on the left and right imaging planes based on the abscissa;
根据所述左、右两个成像平面之间存在的几何关系,结合双目相机的参数以及所述成像点之间的距离,计算所述目标物体与无人机之间的相对深度信息;According to the geometric relationship between the left and right imaging planes, in combination with the parameters of the binocular camera and the distance between the imaging points, calculate the relative depth information between the target object and the UAV;
其中,所述双目相机的参数包括相机焦距以及摄像头中心距。Wherein, the parameters of the binocular camera include camera focal length and camera center distance.
进一步的,所述根据所述相对位置信息确定无人机追踪目标物体的规划路径,包括:Further, the determining the planned path of the UAV tracking the target object according to the relative position information includes:
根据所述相对深度信息基于预先设计的动态轨迹规划,实时计算无人机追踪目标物体的规划路径;Based on the pre-designed dynamic trajectory planning based on the relative depth information, calculate the planned path of the UAV tracking the target object in real time;
其中,所述预先设计的动态轨迹规划为:Wherein, the pre-designed dynamic trajectory planning is:
xd(t)=Δx(t)exp(-w1*t)+∫vTxdtx d (t)=Δx(t)exp(-w 1 *t)+∫v Tx dt
yd(t)=Δy(t)exp(-w2*t)+∫vTydty d (t)=Δy(t)exp(-w 2 *t)+∫v Ty dt
zd(t)=Δz(t)exp(-w3*t)+∫vTzdt+ρ;z d (t)=Δz(t)exp(-w 3 *t)+∫v Tz dt+ρ;
xd(t)、yd(t)、zd(t)分别表示无人机在x、y、z方向上的规划路径,t表示时间,Δx(t)、Δy(t)、Δz(t)为目标物体与无人机之间的相对深度信息,w1、w2、w3为系统的控制参数,vTx、vTy、vTz分别为目标物体在x、y、z方向上的移动速度,当所述目标物体为静止目标物体时,vTx、vTy、vTz均为0,ρ为目标物体的高度。x d (t), y d (t), z d (t) represent the planned path of the UAV in the directions of x, y, and z respectively, t represents the time, Δx(t), Δy(t), Δz( t) is the relative depth information between the target object and the drone, w 1 , w 2 , and w 3 are the control parameters of the system, and v Tx , v Ty , v Tz are the target object in the x, y, and z directions, respectively. When the target object is a stationary target object, v Tx , v Ty , and v Tz are all 0, and ρ is the height of the target object.
进一步的,当所述目标物体为移动目标物体时,所述根据所述相对位置信息确定无人机追踪目标物体的规划路径之前,还包括:Further, when the target object is a moving target object, before determining the planned path of the UAV tracking the target object according to the relative position information, it also includes:
通过无人机装载的光流传感器计算得到目标物体在x、y、z方向上的移动速度。The moving speed of the target object in the x, y, and z directions is calculated by the optical flow sensor mounted on the drone.
进一步的,当无人机与所述目标物体之间的相对距离达到设定阈值时,控制无人机以及机械臂动作以抓取所述目标物体,包括:Further, when the relative distance between the UAV and the target object reaches a set threshold, the UAV and the mechanical arm are controlled to grasp the target object, including:
当无人机与所述目标物体之间在x方向以及y方向的相对距离达到第一设定阈值时,控制无人机的机械臂调整状态,以做好抓取准备;When the relative distance between the drone and the target object in the x direction and the y direction reaches a first set threshold, control the mechanical arm of the drone to adjust the state to prepare for grabbing;
当无人机的机械臂调整状态完成时,控制无人机下降;When the adjustment state of the robotic arm of the UAV is completed, the UAV is controlled to descend;
当无人机下降到设定高度,且无人机与所述目标物体之间在x方向以及y方向的相对距离达到第一设定阈值时,控制无人机及机械臂抓取所述目标物体。When the drone drops to a set height, and the relative distance between the drone and the target object in the x direction and the y direction reaches the first set threshold, control the drone and the mechanical arm to grab the target object.
进一步的,所述控制无人机及机械臂抓取所述目标物体,包括:Further, the control of the unmanned aerial vehicle and the mechanical arm to grab the target object includes:
基于自适应滑膜控制算法控制无人机及机械臂抓取所述目标物体,其中,控制无人机及机械臂抓取所述目标物体的控制量包括:Controlling the UAV and the robotic arm to grab the target object based on the adaptive sliding film control algorithm, wherein the control amount for controlling the UAV and the robotic arm to grab the target object includes:
qk′=qd′+λeq k ′=q d ′+λe
其中,F表示无人机的升力,τx、τy和τz分别表示无人机在无人机机体坐标系下关于x、y、z三轴的三个扭矩,τn×1为无人机机械臂上n个电机的转动角度的控制量、R、Q、I分别为系统的转换矩阵,为无人机的横滚角和俯仰角,Ψ为无人机的偏航角,为系统矩阵的预测估计,A,K为系统的正定增益矩阵,s表示滑膜面,qd为无人机机械臂复合系统的预期状态矩阵,λ为正定矩阵,e为无人机机械臂复合系统的实际状态与预期状态之间的误差矩阵。Among them, F represents the lift force of the UAV, τ x , τ y and τ z respectively represent the three torques of the UAV about the x, y, and z axes in the UAV body coordinate system, and τ n×1 is zero The control quantities, R, Q, and I of the rotation angles of the n motors on the human-machine manipulator are respectively the transformation matrix of the system, is the roll angle and pitch angle of the UAV, Ψ is the yaw angle of the UAV, is the prediction and estimation of the system matrix, A and K are positive definite gain matrices of the system, s is the synovial surface, q d is the expected state matrix of the UAV manipulator composite system, λ is a positive definite matrix, e is the UAV manipulator The error matrix between the actual state and the expected state of the composite system.
进一步的,当控制无人机抓到目标物体之后,还包括:Further, when the control drone captures the target object, it also includes:
控制无人机携带目标物体飞往预设位置。Control the UAV to carry the target object to the preset position.
第二方面,本发明实施例提供了一种无人机抓取目标物体的装置,所述装置包括:In the second aspect, an embodiment of the present invention provides a device for a drone to grab a target object, the device comprising:
获取模块,用于实时获取目标物体与无人机之间的相对位置信息;The obtaining module is used to obtain the relative position information between the target object and the UAV in real time;
确定模块,用于根据所述相对位置信息确定无人机追踪目标物体的规划路径;A determining module, configured to determine the planned path of the UAV tracking the target object according to the relative position information;
追踪模块,用于控制所述无人机基于所述规划路径追踪所述目标物体;a tracking module, configured to control the UAV to track the target object based on the planned path;
抓取模块,用于当无人机与所述目标物体之间的相对距离达到设定阈值时,控制无人机以及机械臂动作以抓取所述目标物体。The grabbing module is used to control the action of the drone and the mechanical arm to grab the target object when the relative distance between the drone and the target object reaches a set threshold.
第三方面,本发明实施例提供了一种电子设备,包括第一存储器、第一处理器及存储在存储器上并可在第一处理器上运行的计算机程序,所述第一处理器执行所述计算机程序时实现如上述第一方面所述的无人机抓取目标物体的方法。In a third aspect, an embodiment of the present invention provides an electronic device, including a first memory, a first processor, and a computer program stored in the memory and operable on the first processor, and the first processor executes the The computer program realizes the method for the drone to grab the target object as described in the first aspect above.
第四方面,本发明实施例提供了一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时实现如上述第一方面所述的无人机抓取目标物体的方法。In a fourth aspect, an embodiment of the present invention provides a storage medium containing computer-executable instructions, and when the computer-executable instructions are executed by a computer processor, the UAV captures the target object as described in the first aspect above. Methods.
本发明实施例提供的一种无人机抓取目标物体的方法,通过实时获取目标物体与无人机之间的相对位置信息,根据所述相对位置信息确定无人机追踪目标物体的规划路径,控制所述无人机基于所述规划路径追踪所述目标物体,当无人机与所述目标物体之间的相对距离达到设定阈值时,控制无人机以及机械臂动作以抓取所述目标物体的技术手段,实现了无人机在没有动捕系统的环境下对目标物体进行有效抓取,尤其针对移动目标物体可以进行有效抓取。A method for capturing a target object by a UAV provided in an embodiment of the present invention obtains the relative position information between the target object and the UAV in real time, and determines the planned path for the UAV to track the target object according to the relative position information , controlling the UAV to track the target object based on the planned path, and when the relative distance between the UAV and the target object reaches a set threshold, control the UAV and the mechanical arm to grab the target object The technical means of describing the target object realizes the effective capture of the target object by the UAV in the environment without a motion capture system, especially for the effective capture of the moving target object.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本发明实施例的内容和这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments of the present invention. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention , for those skilled in the art, other drawings can also be obtained according to the content of the embodiment of the present invention and these drawings without any creative effort.
图1为本发明实施例一提供的一种无人机抓取目标物体的方法流程示意图;FIG. 1 is a schematic flowchart of a method for a drone to grab a target object provided by Embodiment 1 of the present invention;
图2为本发明实施例一提供的一种像素坐标系与图像坐标系的示意图;FIG. 2 is a schematic diagram of a pixel coordinate system and an image coordinate system provided by Embodiment 1 of the present invention;
图3为本发明实施例一提供的一种相机成像原理图;FIG. 3 is a schematic diagram of a camera imaging principle provided by Embodiment 1 of the present invention;
图4为本发明实施例一提供的一种双目测距原理图;Fig. 4 is a principle diagram of binocular ranging provided by Embodiment 1 of the present invention;
图5为本发明实施例二提供的一种无人机抓取目标物体的方法流程示意图;5 is a schematic flowchart of a method for a drone to grab a target object according to Embodiment 2 of the present invention;
图6为本发明实施例二提供的一种无人机机械臂的结构示意图;FIG. 6 is a schematic structural diagram of a robotic arm of a drone provided by Embodiment 2 of the present invention;
图7为本发明实施例二提供的一种无人机与三自由度机械臂的结构示意图;FIG. 7 is a schematic structural diagram of a drone and a three-degree-of-freedom mechanical arm provided in Embodiment 2 of the present invention;
图8为本发明实施例二提供的另一种形式的无人机抓取目标物体的方法流程示意图;FIG. 8 is a schematic flowchart of another method for a drone to grab a target object provided by Embodiment 2 of the present invention;
图9为本发明实施例三提供的一种无人机抓取目标物体的装置结构示意图;FIG. 9 is a schematic structural diagram of a device for grabbing a target object by a drone provided in Embodiment 3 of the present invention;
图10为本发明实施例四提供的一种电子设备的结构示意图。FIG. 10 is a schematic structural diagram of an electronic device provided by Embodiment 4 of the present invention.
具体实施方式Detailed ways
为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本发明实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the technical problems solved by the present invention, the technical solutions adopted and the technical effects achieved clearer, the technical solutions of the embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings. Obviously, the described embodiments are only the technical solutions of the present invention. Some, but not all, embodiments. The embodiments of the present invention, and all other embodiments obtained by those skilled in the art without creative efforts, all belong to the protection scope of the present invention.
实施例一Embodiment one
图1为本发明实施例一提供的一种无人机抓取目标物体的方法流程示意图。本实施例公开的无人机抓取目标物体的方法可以适用于室外环境,且不依赖动捕系统,可以对静止物体或者移动物体进行有效抓取。该方法可以由无人机抓取目标物体的装置来执行,其中该装置可由软件和/或硬件实现,可集成在无人机机体中或者集成在专门服务于无人机的服务器中。具体参见图1所示,该方法可以包括如下步骤:FIG. 1 is a schematic flowchart of a method for a drone to grab a target object according to Embodiment 1 of the present invention. The method for grabbing a target object by a drone disclosed in this embodiment can be applied to an outdoor environment, and can effectively grab a stationary object or a moving object without relying on a motion capture system. The method can be executed by a device for grabbing a target object by a drone, wherein the device can be implemented by software and/or hardware, and can be integrated in the body of the drone or integrated in a server dedicated to serving the drone. Specifically referring to shown in Figure 1, the method may include the following steps:
110、实时获取目标物体与无人机之间的相对位置信息。110. Obtain the relative position information between the target object and the UAV in real time.
其中,实时获取目标物体与无人机之间的相对位置信息的目的是为了实时根据所述相对位置信息调整无人机追踪目标物体的路径,以使无人机不断地靠近目标物体。Wherein, the purpose of obtaining the relative position information between the target object and the UAV in real time is to adjust the path of the UAV tracking the target object according to the relative position information in real time, so that the UAV continuously approaches the target object.
具体的,可以通过如下方式实时获取目标物体与无人机之间的相对位置信息:Specifically, the relative position information between the target object and the UAV can be obtained in real time in the following ways:
分别确定目标物体在无人机装载的双目相机对应的左、右两个成像平面上的成像点对应的横坐标;Determine the abscissas corresponding to the imaging points of the target object on the left and right imaging planes corresponding to the binocular cameras loaded on the drone;
基于所述横坐标计算目标物体在所述左、右两个成像平面上的成像点之间的距离;calculating the distance between the imaging points of the target object on the left and right imaging planes based on the abscissa;
根据所述左、右两个成像平面之间存在的几何关系,结合双目相机的参数以及所述成像点之间的距离,计算所述目标物体与无人机之间的相对深度信息;According to the geometric relationship between the left and right imaging planes, in combination with the parameters of the binocular camera and the distance between the imaging points, calculate the relative depth information between the target object and the UAV;
其中,所述双目相机的参数包括相机焦距以及摄像头中心距,所述目标物体与无人机之间的相对深度信息表征了目标物体与无人机之间的相对位置关系。Wherein, the parameters of the binocular camera include the focal length of the camera and the center distance of the camera, and the relative depth information between the target object and the UAV represents the relative positional relationship between the target object and the UAV.
在双目相机的成像过程中,存在着四个坐标系,分别为:像素坐标系、图像坐标系、相机坐标系以及世界坐标系。参见图2所示的像素坐标系与图像坐标系的示意图,像素坐标系以图像的左上角为原点Oo,横纵坐标(u,v)分别表示该像素点在图像中的列数和行数;xO1y为图像坐标系,其原点O1为相机的光轴与图像平面的交点,一般为图像平面的中心,也称为图像的主点,根据像素坐标系与图像坐标系的关系,可以将两坐标系下的点进行相互转换。参见图3所示的相机成像原理图,O为相机的光心,ZC为相机的光轴,光轴和图像平面的交点为O1,坐标系O-XCYCZC为相机坐标系,OW-XWYWZW为世界坐标系,OO1之间的距离为相机的焦距f。In the imaging process of the binocular camera, there are four coordinate systems, namely: pixel coordinate system, image coordinate system, camera coordinate system and world coordinate system. Refer to the schematic diagram of the pixel coordinate system and the image coordinate system shown in Figure 2. The pixel coordinate system takes the upper left corner of the image as the origin O o , and the horizontal and vertical coordinates (u, v) respectively represent the number of columns and rows of the pixel in the image number; xO 1 y is the image coordinate system, and its origin O 1 is the intersection point of the optical axis of the camera and the image plane, generally the center of the image plane, also known as the principal point of the image, according to the relationship between the pixel coordinate system and the image coordinate system , the points in the two coordinate systems can be converted to each other. Referring to the camera imaging principle diagram shown in Figure 3, O is the optical center of the camera, Z C is the optical axis of the camera, the intersection point of the optical axis and the image plane is O 1 , and the coordinate system OX C Y C Z C is the camera coordinate system, O W -X W Y W Z W is the world coordinate system, and the distance between OO 1 is the focal length f of the camera.
对于实际场景中目标物体的三维估计可以通过双目立体视觉技术来确定,具体,参见图4所示的双目测距原理图,OL和OR分别为左、右相机的光心,左、右相机的光轴以及各自的成像平面如图4所示,左、右相机的光心之间的距离为B,即摄像头中心距为B,两台相机在同一平面,左、右相机的投影中心的Y坐标相等,同一时刻空间点P(x,y,z)在左、右相机成像平面上的成像点分别为XL和XR,根据三角几何关系有:The 3D estimation of the target object in the actual scene can be determined by binocular stereo vision technology. Specifically, refer to the schematic diagram of binocular distance measurement shown in Figure 4. OL and OR are the optical centers of the left and right cameras, respectively, and the left , the optical axis of the right camera and their respective imaging planes are shown in Figure 4, the distance between the optical centers of the left and right cameras is B, that is, the distance between the centers of the cameras is B, the two cameras are on the same plane, and the distance between the left and right cameras is B. The Y coordinates of the projection center are equal, and the imaging points of the space point P(x, y, z) on the left and right camera imaging planes at the same time are X L and X R respectively. According to the triangular geometric relationship:
其中,上述公式中各个量所在的坐标系为:XL、XR和Y分别在左、右相机的图像平面下,即在图像平面坐标系下的坐标,原点分别为左、右相机的光轴与像平面的交点,f和B为常量,分别为相机的焦距和摄像头中心距,x、y、z是在左相机坐标系下的坐标,原点为OL。视差d为成像点XL和XR之间的距离,且根据几何关系有:Among them, the coordinate system of each quantity in the above formula is: X L , X R and Y are respectively under the image planes of the left and right cameras, that is, the coordinates under the image plane coordinate system, and the origins are the light beams of the left and right cameras respectively. The intersection of the axis and the image plane, f and B are constants, respectively the focal length of the camera and the center distance of the camera, x, y, z are the coordinates in the left camera coordinate system, and the origin is OL . The parallax d is the distance between the imaging points X L and X R , and according to the geometric relationship:
d=B-(XL-XR)d=B-(X L -X R )
即得到空间点P的相对深度信息x、y和z。That is, the relative depth information x, y and z of the spatial point P are obtained.
120、根据所述相对位置信息确定无人机追踪目标物体的规划路径。120. Determine a planned path for the drone to track the target object according to the relative position information.
具体的,根据所述相对位置信息确定无人机追踪目标物体的规划路径,包括:Specifically, the planned path for the UAV to track the target object is determined according to the relative position information, including:
根据所述相对深度信息基于预先设计的动态轨迹规划,实时计算无人机追踪目标物体的规划路径;Based on the pre-designed dynamic trajectory planning based on the relative depth information, calculate the planned path of the UAV tracking the target object in real time;
其中,所述预先设计的动态轨迹规划为:Wherein, the pre-designed dynamic trajectory planning is:
xd(t)=Δx(t)exp(-w1*t)+∫vTxdtx d (t)=Δx(t)exp(-w 1 *t)+∫v Tx dt
yd(t)=Δy(t)exp(-w2*t)+∫vTydty d (t)=Δy(t)exp(-w 2 *t)+∫v Ty dt
zd(t)=Δz(t)exp(-w3*t)+∫vTzdt+ρ;z d (t)=Δz(t)exp(-w 3 *t)+∫v Tz dt+ρ;
其中,xd(t)、yd(t)、zd(t)分别表示无人机在x、y、z方向上的规划路径,t表示时间,Δx(t)、Δy(t)、Δz(t)为目标物体与无人机之间的相对深度信息,w1、w2、w3为系统的控制参数,w1、w2、w3通常取0.5,vTx、vTy、vTz分别为目标物体在x、y、z方向上的移动速度,当所述目标物体为静止目标物体时,vTx、vTy、vTz均为0,ρ为目标物体的高度。Among them, x d (t), y d (t), z d (t) represent the planned path of the UAV in the directions of x, y, and z respectively, t represents time, Δx(t), Δy(t), Δz(t) is the relative depth information between the target object and the UAV, w 1 , w 2 , and w 3 are the control parameters of the system, w 1 , w 2 , and w 3 usually take 0.5, and v Tx , v Ty , v Tz is the moving speed of the target object in the x, y, and z directions respectively. When the target object is a stationary target object, v Tx , v Ty , and v Tz are all 0, and ρ is the height of the target object.
所述目标物体在x、y、z方向上的移动速度vTx、vTy、vTz可以通过无人机装载的光流传感器计算得到目标物体在x、y、z方向上的移动速度。The moving speeds v Tx , v Ty , and v Tz of the target object in the x, y, and z directions can be calculated by the optical flow sensor mounted on the drone to obtain the moving speeds of the target object in the x, y, and z directions.
130、控制所述无人机基于所述规划路径追踪所述目标物体。130. Control the UAV to track the target object based on the planned path.
在控制无人机基于所述规划路径追踪所述目标物体的同时,不断地检测获取目标物体与无人机之间的实时相对位置信息,以实时调整无人机追踪目标物体的规划路径,从而实现无人机快速准确地追上目标物体。While controlling the UAV to track the target object based on the planned path, continuously detect and acquire real-time relative position information between the target object and the UAV, so as to adjust the UAV's planned path for tracking the target object in real time, thereby Realize that the drone can quickly and accurately catch up with the target object.
140、当无人机与所述目标物体之间的相对距离达到设定阈值时,控制无人机以及机械臂动作以抓取所述目标物体。140. When the relative distance between the drone and the target object reaches a set threshold, control the drone and the mechanical arm to grab the target object.
通常,所述无人机与所述目标物体之间的相对距离具体指在Z方向上的相对距离,即无人机首先在水平面上对目标物体进行追踪,当无人机与目标物体保持在相同的水平面上时,再在竖直方向上靠近目标物体。Usually, the relative distance between the UAV and the target object specifically refers to the relative distance in the Z direction, that is, the UAV first tracks the target object on the horizontal plane, and when the UAV and the target object are kept at When on the same horizontal plane, approach the target object in the vertical direction.
本实施例提供的无人机抓取目标物体的方法,通过双目相机实时获取目标物体与无人机之间的相对深度信息,然后根据所述深度信息按照预设的轨迹规划得到无人机追踪目标物体的路径,进而控制无人机追踪目标物体,当无人机靠近目标物体时,控制无人机以及机械臂动作,实现了无人机在没有动捕系统的环境下对目标物体进行有效抓取,且可针对移动目标物体可以进行有效抓取。The method for the UAV to capture the target object provided by this embodiment is to obtain the relative depth information between the target object and the UAV in real time through the binocular camera, and then obtain the UAV according to the preset trajectory planning according to the depth information. Track the path of the target object, and then control the drone to track the target object. When the drone is close to the target object, control the movement of the drone and the mechanical arm, so that the drone can track the target object without a motion capture system. Effective grasping, and effective grasping for moving target objects.
实施例二Embodiment two
图5为本发明实施例二提供的一种无人机抓取目标物体的方法流程示意图。在上述实施例的基础上,本实施例对上述步骤140进行了优化,优化的好处是进一步提高无人机抓取目标物体的准确性。具体参见图5所示,所述方法包括:。FIG. 5 is a schematic flowchart of a method for a drone to grab a target object according to Embodiment 2 of the present invention. On the basis of the above-mentioned embodiments, this embodiment optimizes the above-mentioned step 140, and the advantage of the optimization is to further improve the accuracy of the UAV grabbing the target object. Referring to FIG. 5 for details, the method includes: .
510、实时获取目标物体与无人机之间的相对位置信息。510. Acquiring relative position information between the target object and the drone in real time.
520、根据所述相对位置信息确定无人机追踪目标物体的规划路径。520. Determine a planned path for the drone to track the target object according to the relative position information.
530、控制所述无人机基于所述规划路径追踪所述目标物体。530. Control the UAV to track the target object based on the planned path.
540、当无人机与所述目标物体之间在x方向以及y方向的相对距离达到第一设定阈值时,控制无人机的机械臂调整状态,以做好抓取准备。540. When the relative distances between the drone and the target object in the x-direction and the y-direction reach a first set threshold, control the robotic arm of the drone to adjust its state so as to be ready for grasping.
具体的,此时主要控制无人机的机械臂调整为抓取状态。例如参见图6所示的无人机机械臂的结构示意图,在无人机追踪目标物体的过程中,为了减小空气阻力以及增强无人机的稳定性,通常机械臂的上臂61与下臂62是折叠在一起的,同时机械爪63和64也是收拢状态。当无人机在水平面追上目标物体时,即无人机与所述目标物体之间在x方向以及y方向的相对距离达到第一设定阈值时,控制机械臂的上臂61与下臂62伸展开,同时控制机械爪63和64张开。对机械臂状态的控制具体是通过控制机械臂的各电机的转动角度实现。Specifically, at this time, the mechanical arm that mainly controls the drone is adjusted to the grasping state. For example, refer to the structural schematic diagram of the UAV mechanical arm shown in FIG. 62 is folded together, and simultaneously mechanical claw 63 and 64 are also the state of gathering. When the UAV catches up with the target object on the horizontal plane, that is, when the relative distance between the UAV and the target object in the x direction and the y direction reaches the first set threshold, control the upper arm 61 and the lower arm 62 of the mechanical arm Stretch out, control mechanical claw 63 and 64 to open simultaneously. The control of the state of the mechanical arm is specifically realized by controlling the rotation angle of each motor of the mechanical arm.
此时调整机械臂的状态相比于无人机在z方向也很接近目标物体时再调整机械臂的状态,可进一步提高无人机抓取目标物体的准确性,若无人机在z方向也很接近目标物体时再调整机械臂,容易错过最佳抓取时机,尤其当目标物体是移动物体时,效果更明显。At this time, adjusting the state of the robotic arm compared to adjusting the state of the robotic arm when the drone is also very close to the target object in the z direction can further improve the accuracy of the drone grabbing the target object. If the drone is in the z direction It is also very close to the target object and then adjust the mechanical arm, it is easy to miss the best grasping time, especially when the target object is a moving object, the effect is more obvious.
550、当无人机的机械臂调整状态完成时,控制无人机下降。550. When the state adjustment of the mechanical arm of the drone is completed, control the drone to descend.
560、当无人机下降到设定高度,且无人机与所述目标物体之间在x方向以及y方向的相对距离达到第一设定阈值时,控制无人机及机械臂抓取所述目标物体。560. When the drone descends to a set height, and the relative distance between the drone and the target object in the x-direction and y-direction reaches the first set threshold, control the drone and the mechanical arm to grab the the target object.
具体的,所述控制无人机及机械臂抓取所述目标物体,包括:Specifically, the control of the drone and the mechanical arm to grab the target object includes:
基于自适应滑膜控制算法控制无人机及机械臂抓取所述目标物体,其中,控制无人机及机械臂抓取所述目标物体的控制量包括:Controlling the UAV and the robotic arm to grab the target object based on the adaptive sliding film control algorithm, wherein the control amount for controlling the UAV and the robotic arm to grab the target object includes:
qk′=qd′+λeq k ′=q d ′+λe
其中,F表示无人机的升力,τx、τy和τz分别表示无人机在无人机机体坐标系下关于x、y、z三轴的三个扭矩,τn×1为无人机机械臂上n个电机的转动角度的控制量、可以根据具体场景的需求,搭载不同自由度的机械臂,只需通过改变n的具体数值即可实现对机械臂的控制,使得系统具有较强的可扩展性;R、Q、I分别为系统的转换矩阵,为无人机的横滚角和俯仰角,Ψ为无人机的偏航角,为系统矩阵的预测估计,A,K为系统的正定增益矩阵,s表示滑膜面,qd为无人机机械臂复合系统的预期状态矩阵,λ为正定矩阵,e为无人机机械臂复合系统的实际状态与预期状态之间的误差矩阵,τ(3)表示矩阵τ中的第三个量,τ(n+6)表示矩阵τ中的第n+6个量,矩阵τ是一个多行一列的向量,sgn(x)是符号函数,当x>0时,sgn(x)=1;当x<0时,sgn(x)=-1;当x=0时,sgn(x)=0。图7示出了无人机与三自由度机械臂的结构示意图,其中,标号710表示无人机的机体,标号720表示机械臂,η1、η2和η3分别表示控制机械臂动作的电机的转动角度,θ为无人机的俯仰角,f表示无人机的总升力,f1和f2分别表示对应位置螺旋桨转动产生的升力,M3表示控制无人机俯仰角θ的扭矩,L1、L2和L3分别表示机械臂对应段的长度,P表示无人机在世界惯性坐标系下的位置,P1、P2和P3分别表示在世界惯性坐标系下对应机械臂的连杆位置。Among them, F represents the lift force of the UAV, τ x , τ y and τ z respectively represent the three torques of the UAV about the x, y, and z axes in the UAV body coordinate system, and τ n×1 is zero The control amount of the rotation angle of n motors on the man-machine manipulator can be equipped with manipulators with different degrees of freedom according to the needs of specific scenarios. The control of the manipulator can be realized only by changing the specific value of n, so that the system has Strong scalability; R, Q, I are the transformation matrix of the system, is the roll angle and pitch angle of the UAV, Ψ is the yaw angle of the UAV, is the prediction and estimation of the system matrix, A and K are positive definite gain matrices of the system, s is the synovial surface, q d is the expected state matrix of the UAV manipulator composite system, λ is a positive definite matrix, e is the UAV manipulator The error matrix between the actual state and the expected state of the composite system, τ (3) represents the third quantity in the matrix τ, τ (n+6) represents the n+6th quantity in the matrix τ, and the matrix τ is a A vector with multiple rows and one column, sgn(x) is a sign function, when x>0, sgn(x)=1; when x<0, sgn(x)=-1; when x=0, sgn(x )=0. Fig. 7 shows the schematic structural view of unmanned aerial vehicle and three-degree-of-freedom mechanical arm, wherein, label 710 represents the body of unmanned aerial vehicle, label 720 represents mechanical arm, η 1 , η 2 and η 3 represent respectively control mechanical arm action The rotation angle of the motor, θ is the pitch angle of the UAV, f represents the total lift of the UAV, f 1 and f 2 represent the lift generated by the propeller rotation at the corresponding position, and M3 represents the torque to control the pitch angle θ of the UAV, L 1 , L 2 and L 3 represent the length of the corresponding section of the manipulator, P represents the position of the UAV in the world inertial coordinate system, P 1 , P 2 and P 3 represent the corresponding manipulator arm in the world inertial coordinate system position of the linkage.
进一步的,当控制无人机抓到目标物体之后,还包括:Further, when the control drone captures the target object, it also includes:
控制无人机携带目标物体飞往预设位置,完成目标物体的抓取。Control the UAV to carry the target object to the preset position to complete the capture of the target object.
本实施例提供的无人机抓取目标物体的方法,当无人机在水平面追上目标物体时,开始控制无人机的机械臂调整状态,当无人机的机械臂调整状态完成之后,再控制无人机下降,当下降到设定高度时,控制无人机以及机械臂动作以抓取目标物体,提高了无人机抓取目标物体的准确性,通过利用自适应滑膜控制算法控制无人机及机械臂系统抓取目标物体,提高了整个系统的抗干扰性能和鲁棒性;且系统的可扩展性强,可根据具体场景的需求,搭载不同自由度的机械臂以及机械爪。The method for grabbing the target object by the drone provided in this embodiment, when the drone catches up with the target object on the horizontal plane, starts to control the adjustment state of the robotic arm of the drone, and when the adjustment state of the robotic arm of the drone is completed, Then control the UAV to descend. When it descends to the set height, control the movement of the UAV and the mechanical arm to grab the target object, which improves the accuracy of the UAV to grab the target object. By using the adaptive sliding film control algorithm Control the UAV and the robotic arm system to grab the target object, which improves the anti-interference performance and robustness of the entire system; and the system is highly scalable, and can be equipped with different degrees of freedom of robotic arms and robotic arms according to the needs of specific scenarios. claw.
在上述技术方案的基础上,以在空中移动的目标物体为例,图8提供了另一种形式的无人机抓取目标物体的方法流程示意图,如图8所示,所述方法包括:On the basis of the above technical solution, taking a target object moving in the air as an example, Figure 8 provides a schematic flow chart of another method for a UAV to grab a target object, as shown in Figure 8, the method includes:
810、无人机起飞。810. The drone takes off.
无人机首先起飞至设定高度,可悬停或者不悬停通过相机检测目标物,并预测目标物与无人机的相对位置,并将检测得到的数据信息反馈给控制器,以使控制器控制无人机在水平面上对目标物体进行追踪。The UAV first takes off to the set height, and can hover or not hover to detect the target through the camera, predict the relative position of the target and the UAV, and feed back the detected data information to the controller, so that the control The controller controls the UAV to track the target object on the horizontal plane.
820、相机检测目标物。820. The camera detects the target object.
830、预测相对位置。830. Predict the relative position.
840、无人机水平面追踪。840. UAV horizontal plane tracking.
850、判断无人机在水平面是否追上目标物,即判定是否Δx(t)≈0且Δy(t)≈0,若是,则继续执行步骤860,否则返回步骤820继续顺序执行。850. Determine whether the drone catches up with the target on the horizontal plane, that is, determine whether Δx(t)≈0 and Δy(t)≈0, if yes, continue to execute step 860, otherwise return to step 820 to continue sequential execution.
其中,Δx(t)表示无人机与目标物在x方向上的相对距离,Δy(t)表示无人机与目标物在y方向上的相对距离。Among them, Δx(t) represents the relative distance between the UAV and the target in the x direction, and Δy(t) represents the relative distance between the UAV and the target in the y direction.
860、机械臂状态调整。860. Adjust the state of the mechanical arm.
当无人机在水平面追上目标物时,维持无人机处于目标物的正上方(或正下方)调整机械臂状态。When the UAV catches up with the target on the horizontal plane, keep the UAV directly above (or directly below) the target and adjust the state of the mechanical arm.
870、判断机械状态调整是否完成,若是,则继续执行步骤880,否则返回步骤820继续顺序执行。870. Determine whether the mechanical state adjustment is completed, if yes, continue to execute step 880, otherwise return to step 820 to continue sequential execution.
880、无人机下降。880. The drone descends.
机械臂状态调整完成之后,无人机开始下降接近目标物体。After the state adjustment of the mechanical arm is completed, the UAV begins to descend and approach the target object.
890、判断无人机是否下降到设定高度且无人机与目标物处于相同的水平面,若是,则继续执行步骤8910,否则返回步骤820继续顺序执行。890. Determine whether the drone has descended to the set height and the drone is at the same level as the target, if yes, continue to execute step 8910, otherwise return to step 820 to continue sequential execution.
8910、机械臂抓取。8910. Robotic arm grabbing.
当无人机下降至设定高度时,再控制机械臂抓取目标物。When the drone descends to the set height, it controls the robotic arm to grab the target.
8920、飞往目标位置。8920. Fly to the target location.
最后无人机携带目标物飞往预设位置,从而完成无人机机械臂对移动目标的抓取。Finally, the drone carries the target and flies to the preset position, thereby completing the grabbing of the moving target by the robotic arm of the drone.
在控制机械臂抓取目标物的过程中,保持实时检测无人机与目标物之间的位置误差,即步骤8930、通过传感器实时检测无人机与目标物之间的位置误差,并由控制器根据该误差实时控制机械臂的抓取动作。In the process of controlling the robot arm to grab the target, keep real-time detection of the position error between the drone and the target, that is, step 8930, detect the position error between the drone and the target in real time through the sensor, and control The controller controls the grasping action of the robotic arm in real time according to the error.
本发明实施例通过设计一种基于视觉的无人机抓取目标物体的方法,使无人机不再受所处环境影响,能自主并准确抓取移动物体,且系统的稳定性和鲁棒性使得无人机能够自主适应各种恶劣场合。与此同时,无人机的运用范围也更加广泛,在能够抓取静止目标的同时,不仅能抓取地面移动目标,还能抓取空中的移动目标。如此,在人类或其他传统无人机无法操作的场合,例如洪水救灾,空中接物等领域,便可顺利使用本发明实施例提供的无人机机抓取目标物体的方法来解决。In the embodiment of the present invention, by designing a vision-based method for the UAV to grab the target object, the UAV is no longer affected by the environment, and can autonomously and accurately grab the moving object, and the stability and robustness of the system The flexibility enables the UAV to adapt to various harsh situations autonomously. At the same time, the scope of application of drones is also wider. While being able to capture stationary targets, it can not only capture moving targets on the ground, but also capture moving targets in the air. In this way, in situations where humans or other traditional UAVs cannot operate, such as flood relief, aerial pick-up and other fields, the method for grabbing target objects by UAVs provided by the embodiments of the present invention can be successfully used to solve the problem.
实施例三Embodiment three
图9为本发明实施例三提供的一种无人机抓取目标物体的装置结构示意图,参见图9所示,该装置包括:获取模块910、确定模块920、追踪模块930和抓取模块940;FIG. 9 is a schematic structural diagram of a device for grabbing a target object by a drone provided in Embodiment 3 of the present invention. Referring to FIG. 9 , the device includes: an acquisition module 910 , a determination module 920 , a tracking module 930 and a capture module 940 ;
其中,获取模块910用于实时获取目标物体与无人机之间的相对位置信息;确定模块920用于根据所述相对位置信息确定无人机追踪目标物体的规划路径;追踪模块930用于控制所述无人机基于所述规划路径追踪所述目标物体;抓取模块940用于当无人机与所述目标物体之间的相对距离达到设定阈值时,控制无人机以及机械臂动作以抓取所述目标物体。Wherein, the acquisition module 910 is used to acquire the relative position information between the target object and the drone in real time; the determination module 920 is used to determine the planned path of the drone to track the target object according to the relative position information; the tracking module 930 is used to control The drone tracks the target object based on the planned path; the grasping module 940 is used to control the drone and the mechanical arm when the relative distance between the drone and the target object reaches a set threshold to grab the target object.
本实施例提供的无人机抓取目标物体的装置,通过双目相机实时获取目标物体与无人机之间的相对深度信息,然后根据所述深度信息按照预设的轨迹规划得到无人机追踪目标物体的路径,进而控制无人机追踪目标物体,当无人机靠近目标物体时,控制无人机以及机械臂动作,实现了无人机在没有动捕系统的环境下对目标物体进行有效抓取,且可针对移动目标物体可以进行有效抓取。The device for grabbing a target object by a drone provided in this embodiment obtains the relative depth information between the target object and the drone in real time through a binocular camera, and then obtains the drone according to the preset trajectory planning according to the depth information. Track the path of the target object, and then control the drone to track the target object. When the drone is close to the target object, control the movement of the drone and the mechanical arm, so that the drone can track the target object without a motion capture system. Effective grasping, and effective grasping for moving target objects.
实施例四Embodiment Four
图10为本发明实施例四提供的一种电子设备的结构示意图。如图10所示,该电子设备包括:第一处理器1070、第一存储器1071及存储在第一存储器1071上并可在第一处理器1070上运行的计算机程序;其中,第一处理器1070的数量可以是一个或多个,图10中以一个第一处理器1070为例;第一处理器1070执行所述计算机程序时实现如上述实施例中所述的无人机抓取目标物体的方法。如图10所示,所述电子设备还可以包括第一输入装置1072和第一输出装置1073。第一处理器1070、第一存储器1071、第一输入装置1072和第一输出装置1073可以通过总线或其他方式连接,图10中以通过总线连接为例。FIG. 10 is a schematic structural diagram of an electronic device provided by Embodiment 4 of the present invention. As shown in Figure 10, the electronic device includes: a first processor 1070, a first memory 1071, and a computer program stored on the first memory 1071 and operable on the first processor 1070; wherein, the first processor 1070 The number can be one or more, and a first processor 1070 is taken as an example in FIG. method. As shown in FIG. 10 , the electronic device may further include a first input device 1072 and a first output device 1073 . The first processor 1070, the first memory 1071, the first input device 1072, and the first output device 1073 may be connected via a bus or in other ways, and connection via a bus is taken as an example in FIG. 10 .
第一存储器1071作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本发明实施例中无人机抓取目标物体的装置/模块(例如,无人机抓取目标物体的装置中的获取模块910和确定模块920等)。第一处理器1070通过运行存储在第一存储器1071中的软件程序、指令以及模块,从而执行电子设备的各种功能应用以及数据处理,即实现上述的无人机抓取目标物体的方法。As a computer-readable storage medium, the first memory 1071 can be used to store software programs, computer-executable programs and modules, such as the device/module for a drone to grab a target object in the embodiment of the present invention (for example, a drone grabs acquisition module 910 and determination module 920 etc. in the device for obtaining the target object). The first processor 1070 executes various functional applications and data processing of the electronic device by running the software programs, instructions and modules stored in the first memory 1071 , that is, realizes the above-mentioned method for the drone to grab the target object.
第一存储器1071可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,第一存储器1071可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,第一存储器1071可进一步包括相对于第一处理器1070远程设置的存储器,这些远程存储器可以通过网络连接至电子设备/存储介质。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The first memory 1071 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application required by a function; the data storage area may store data created according to the use of the terminal, and the like. In addition, the first memory 1071 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices. In some examples, the first storage 1071 may further include storages that are set remotely relative to the first processor 1070, and these remote storages may be connected to electronic devices/storage media through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
第一输入装置1072可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。第一输出装置1073可包括显示屏等显示设备。The first input device 1072 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the electronic device. The first output device 1073 may include a display device such as a display screen.
实施例五Embodiment five
本发明实施例五还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种无人机抓取目标物体的方法,该方法包括:Embodiment 5 of the present invention also provides a storage medium containing computer-executable instructions, and the computer-executable instructions are used to execute a method for a drone to grab a target object when executed by a computer processor. The method includes:
实时获取目标物体与无人机之间的相对位置信息;Real-time acquisition of relative position information between the target object and the UAV;
根据所述相对位置信息确定无人机追踪目标物体的规划路径;Determine the planned path of the UAV to track the target object according to the relative position information;
控制所述无人机基于所述规划路径追踪所述目标物体;controlling the UAV to track the target object based on the planned path;
当无人机与所述目标物体之间的相对距离达到设定阈值时,控制无人机以及机械臂动作以抓取所述目标物体。When the relative distance between the drone and the target object reaches a set threshold, the drone and the mechanical arm are controlled to grab the target object.
当然,本发明实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本发明任意实施例所提供的无人机抓取目标物体的相关操作。Of course, a storage medium containing computer-executable instructions provided by an embodiment of the present invention, the computer-executable instructions are not limited to the method operations described above, and can also perform the drone grabbing provided by any embodiment of the present invention. Operations related to the target object.
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本发明可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random AccessMemory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,存储介质,或者网络设备等)执行本发明各个实施例所述的。Through the above description about the implementation mode, those skilled in the art can clearly understand that the present invention can be realized by means of software and necessary general-purpose hardware, and of course it can also be realized by hardware, but in many cases the former is a better implementation mode . In this understanding, the technical solution of the present invention is essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disc, etc., including several instructions to make a computer device (which can be a personal computer, store media, or network equipment, etc.) to implement the various embodiments of the present invention.
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and that various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention, and the present invention The scope is determined by the scope of the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810507667.9A CN108733076B (en) | 2018-05-24 | 2018-05-24 | Method, device and electronic device for unmanned aerial vehicle to grab target object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810507667.9A CN108733076B (en) | 2018-05-24 | 2018-05-24 | Method, device and electronic device for unmanned aerial vehicle to grab target object |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108733076A true CN108733076A (en) | 2018-11-02 |
CN108733076B CN108733076B (en) | 2021-09-07 |
Family
ID=63935168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810507667.9A Expired - Fee Related CN108733076B (en) | 2018-05-24 | 2018-05-24 | Method, device and electronic device for unmanned aerial vehicle to grab target object |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108733076B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108563235A (en) * | 2018-05-24 | 2018-09-21 | 南方科技大学 | Multi-rotor unmanned aerial vehicle, method, device and equipment for grabbing target object |
CN117631691A (en) * | 2024-01-25 | 2024-03-01 | 安徽大学 | Multi-rotor unmanned aerial vehicle grabbing track design method, device, equipment and medium |
CN118584976A (en) * | 2024-07-29 | 2024-09-03 | 天津弘盛科技有限公司 | Autonomous positioning, tracking and monitoring method and equipment for UAVs of fault survey ships |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090294584A1 (en) * | 2008-06-02 | 2009-12-03 | Gilbert Lovell | Stabilized UAV recovery system |
CN104875882A (en) * | 2015-05-21 | 2015-09-02 | 合肥学院 | Quadrotor |
CN106064378A (en) * | 2016-06-07 | 2016-11-02 | 南方科技大学 | Control method and device for unmanned aerial vehicle mechanical arm |
CN107223275A (en) * | 2016-11-14 | 2017-09-29 | 深圳市大疆创新科技有限公司 | The method and system of multichannel sensing data fusion |
CN107656545A (en) * | 2017-09-12 | 2018-02-02 | 武汉大学 | A kind of automatic obstacle avoiding searched and rescued towards unmanned plane field and air navigation aid |
-
2018
- 2018-05-24 CN CN201810507667.9A patent/CN108733076B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090294584A1 (en) * | 2008-06-02 | 2009-12-03 | Gilbert Lovell | Stabilized UAV recovery system |
CN104875882A (en) * | 2015-05-21 | 2015-09-02 | 合肥学院 | Quadrotor |
CN106064378A (en) * | 2016-06-07 | 2016-11-02 | 南方科技大学 | Control method and device for unmanned aerial vehicle mechanical arm |
CN107223275A (en) * | 2016-11-14 | 2017-09-29 | 深圳市大疆创新科技有限公司 | The method and system of multichannel sensing data fusion |
CN107656545A (en) * | 2017-09-12 | 2018-02-02 | 武汉大学 | A kind of automatic obstacle avoiding searched and rescued towards unmanned plane field and air navigation aid |
Non-Patent Citations (8)
Title |
---|
ERDING ALTUK,等: "Quadrotor Control Using Dual Camera Visual Feedback", 《PROCEEDINGS OFTBR 2003 IEEE INLERO~TIOORL CONFERENCE ON ROBOTICS &AUTOMITION 》 * |
JUSTIN THOMAS,等: "Toward Image Based Visual Servoing for Aerial Grasping and Perching", 《PROCEEDINGS OF 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA)》 * |
XIANG T,等: "Adaptive Flight Control for Quadrotor UAVs with Dynamic Inversion and Neural Networks", 《2016 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS》 * |
于乃功,等: "仿人型机械臂抓取目标路径规划的研究", 《研究 开发》 * |
于振中,等: "基于Kinect 的移动机器人实时局部路径规划", 《计算机工程》 * |
张华,等: "一种动态参数更新的无人机三维路径规划方法", 《自动化仪表》 * |
肖珂,等: "基于Kinect视频技术的葡萄园农药喷施路径规划算法", 《农业工程学报》 * |
都业贵: "基于视觉伺服的飞行机械臂抓取控制", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108563235A (en) * | 2018-05-24 | 2018-09-21 | 南方科技大学 | Multi-rotor unmanned aerial vehicle, method, device and equipment for grabbing target object |
CN108563235B (en) * | 2018-05-24 | 2022-02-08 | 南方科技大学 | A multi-rotor unmanned aerial vehicle, method, device and equipment for grabbing a target object |
CN117631691A (en) * | 2024-01-25 | 2024-03-01 | 安徽大学 | Multi-rotor unmanned aerial vehicle grabbing track design method, device, equipment and medium |
CN117631691B (en) * | 2024-01-25 | 2024-04-12 | 安徽大学 | A multi-rotor unmanned aerial vehicle grasping trajectory design method, device, equipment and medium |
CN118584976A (en) * | 2024-07-29 | 2024-09-03 | 天津弘盛科技有限公司 | Autonomous positioning, tracking and monitoring method and equipment for UAVs of fault survey ships |
Also Published As
Publication number | Publication date |
---|---|
CN108733076B (en) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12103178B2 (en) | Generating a model for an object encountered by a robot | |
CN108563235A (en) | Multi-rotor unmanned aerial vehicle, method, device and equipment for grabbing target object | |
US9987744B2 (en) | Generating a grasp pose for grasping of an object by a grasping end effector of a robot | |
CN104842362B (en) | A kind of method of robot crawl material bag and robotic gripping device | |
CN109079799B (en) | Robot perception control system and control method based on bionics | |
CN108499054A (en) | A kind of vehicle-mounted mechanical arm based on SLAM picks up ball system and its ball picking method | |
US9992480B1 (en) | Apparatus and methods related to using mirrors to capture, by a camera of a robot, images that capture portions of an environment from multiple vantages | |
CN107995962A (en) | A kind of barrier-avoiding method, device, loose impediment and computer-readable recording medium | |
CN108733076A (en) | Method and device for grabbing target object by unmanned aerial vehicle and electronic equipment | |
WO2022193081A1 (en) | Method and apparatus for controlling unmanned aerial vehicle, and unmanned aerial vehicle | |
WO2022156447A1 (en) | Localization method and apparatus, and computer apparatus and computer-readable storage medium | |
CN117270580A (en) | Servo control method, system and equipment for tracking unmanned aerial vehicle photoelectric pod target | |
Dinaux et al. | FAITH: Fast iterative half-plane focus of expansion estimation using optic flow | |
Rogelio et al. | Alignment control using visual servoing and mobilenet single-shot multi-box detection (SSD): a review | |
WO2022227632A1 (en) | Image-based trajectory planning method and motion control method, and mobile machine using same | |
CN108170160A (en) | It is a kind of to utilize monocular vision and the autonomous grasping means of airborne sensor rotor wing unmanned aerial vehicle | |
CN111443733A (en) | Unmanned aerial vehicle flight control method and device and unmanned aerial vehicle | |
CN113467504B (en) | Method, system, equipment and storage medium for controlling flight stability of aircraft | |
Rocchi et al. | A practical vision-aided multi-robot autonomous navigation using convolutional neural network | |
Scherer et al. | DCTAM: Drift-corrected tracking and mapping for autonomous micro aerial vehicles | |
US20240377843A1 (en) | Location based change detection within image data by a mobile robot | |
Zhao et al. | Active visual mapping system for digital operation environment of bridge crane | |
CN114549592B (en) | A non-cooperative projectile trajectory prediction and capture method and device | |
US20220388174A1 (en) | Autonomous and teleoperated sensor pointing on a mobile robot | |
Gong et al. | The design and implementation of the visual location system based on beeline detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210907 |