CN108710718B - 基于元胞自动机的山火蔓延模拟仿真方法及系统 - Google Patents

基于元胞自动机的山火蔓延模拟仿真方法及系统 Download PDF

Info

Publication number
CN108710718B
CN108710718B CN201810280959.3A CN201810280959A CN108710718B CN 108710718 B CN108710718 B CN 108710718B CN 201810280959 A CN201810280959 A CN 201810280959A CN 108710718 B CN108710718 B CN 108710718B
Authority
CN
China
Prior art keywords
spreading
cells
adjacent cells
cell
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810280959.3A
Other languages
English (en)
Other versions
CN108710718A (zh
Inventor
张炜
田宏强
王京景
杨铖
刘辉
徐海青
林济铿
陈是同
李杨月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Anhui Electric Power Co Ltd
Anhui Jiyuan Software Co Ltd
Original Assignee
State Grid Anhui Electric Power Co Ltd
Anhui Jiyuan Software Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Anhui Electric Power Co Ltd, Anhui Jiyuan Software Co Ltd filed Critical State Grid Anhui Electric Power Co Ltd
Priority to CN201810280959.3A priority Critical patent/CN108710718B/zh
Publication of CN108710718A publication Critical patent/CN108710718A/zh
Application granted granted Critical
Publication of CN108710718B publication Critical patent/CN108710718B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Abstract

本发明公开了一种基于元胞自动机的山火蔓延模拟仿真方法及系统,属于计算机处理技术领域,包括根据山火蔓延初始速度、可燃物调整系数、风调整系数以及坡度调整系数,计算邻域元胞对中心元胞的蔓延速度;根据元胞的面积和当前时刻元胞的燃烧面积,计算当前时刻元胞的燃烧状态;根据邻域元胞对中心元胞的蔓延速度、元胞的燃烧面积和中心元胞燃烧转换时间步长,计算两邻域元胞蔓延面积的重叠部分;基于设定的中心元胞的状态转换规则,对邻域元胞对中心元胞的蔓延速度、元胞的燃烧状态以及两邻域元胞蔓延面积的重叠部分进行处理,得到下一时刻中心元胞的燃烧状态。本方案去除重叠面积对中心元胞的状态影响,提高了模拟模型的精度和合理性。

Description

基于元胞自动机的山火蔓延模拟仿真方法及系统
技术领域
本发明涉及计算机处理技术领域,特别涉及一种基于元胞自动机的山火蔓延模拟仿真方法及系统。
背景技术
我国南方广大地区多为丘陵地貌及山区,植被茂密,夏秋季节高温干旱,空气相对干燥。因农作物烽烧、“炼山”等不规范的人为及非人为因素很容易导致不同规模的山火,使得经过该地区的输电线路因山火灾害导致的跳闸事故频发。山火灾害已经成为影响输电线路安全运行的最严重的自然灾害之一,因而以提高电网对于山火灾害的预警及防护能力的各种研究,成为近年来的研究热点之一。
山火蔓延模拟仿真模型可以有效预防山火灾害,有助于及时扑救山火灾害,显著降低山火发生率及灾害所带来的损失,使得对山火蔓延模拟仿真建模受到了关注。元胞自动机是一种时间、空间离散且空间相互作用和时间因果关系都为局部的网格动力学模型。其具有的自组织特性能够较好地模拟复杂系统时空演化过程,因此被广泛应用于山火蔓延模拟。对于一个物理模型,元胞自动机用规则网络中的有限个离散的元胞描述物理状态,元胞以确定的局部规则同步更新,元胞之间通过转换规则的相互作用、相互联系,完成系统的动态演化过程。
现有基于元胞自动机的山火蔓延模拟仿真方法视各个邻域元胞对中心元胞的蔓延是独立的,不受其他邻域元胞蔓延的影响,即均未详细考虑元胞的邻域元胞的燃烧情况的不同。在实际应用中,多个邻域元胞同时燃烧时对中心元胞的蔓延面积不可避免会有重叠部分,从而可能重复计算了各邻域元胞的山火蔓延重叠区域面积,导致其对于山火蔓延的模拟精度偏低。
发明内容
本发明的目的在于提供一种基于元胞自动机的山火蔓延模拟仿真方法及系统,以提高山火蔓延的模拟仿真精度。
为实现以上目的,本发明采用的技术方案为:
采用一种基于元胞自动机的山火蔓延模拟仿真方法,包括:
根据山火蔓延初始速度、可燃物调整系数、风调整系数以及坡度调整系数,计算邻域元胞对中心元胞的蔓延速度;
根据元胞的面积和当前时刻元胞的燃烧面积,计算当前时刻元胞的燃烧状态,该元胞包括中心元胞、相邻元胞和次相邻元胞;
根据邻域元胞对中心元胞的蔓延速度、元胞的燃烧面积和中心元胞燃烧转换时间步长,计算两邻域元胞蔓延面积的重叠部分;
基于设定的中心元胞的状态转换规则,对邻域元胞对中心元胞的蔓延速度、元胞的燃烧状态以及两邻域元胞蔓延面积的重叠部分进行处理,得到下一时刻中心元胞的燃烧状态。
进一步地,所述根据山火蔓延初始速度、可燃物调整系数、风调整系数以及坡度调整系数,计算邻域元胞对中心元胞的蔓延速度,具体包括:
根据公式
Figure BDA0001613720790000021
计算邻域元胞对中心元胞的蔓延速度R,其中R为山火蔓延速度,R0为山火初始蔓延速度,Ks为可燃物调整系数,Kw为风调整系数,
Figure BDA0001613720790000022
为坡度调整系数。
进一步地,所述的根据元胞的面积和元胞的燃烧面积,计算元胞的燃烧状态,包括:
根据状态计算公式,计算中心元胞(i,j)在t时刻的燃烧状态
Figure BDA0001613720790000023
公式为:
Figure BDA0001613720790000024
式中,S燃烧是中心元胞(i,j)燃烧的面积,S元胞是中心元胞(i,j)的面积,若中心元胞的边长为a,则S元胞=a2
Figure BDA0001613720790000025
表示t时刻中心元胞(i,j)未燃烧,
Figure BDA0001613720790000026
表示t时刻中心元胞(i,j)部分燃烧,
Figure BDA0001613720790000027
表示t时刻中心元胞(i,j)完全燃烧。
进一步地,所述根据邻域元胞对中心元胞的蔓延速度和中心元胞燃烧转换时间步长,计算两邻域元胞蔓延面积的重叠部分,包括:
根据两个元胞的位置,依据两元胞的燃烧状态以及元胞的蔓延面积,确定两邻域元胞蔓延面积重叠部分的计算规则;
基于两邻域元胞蔓延面积重叠部分的计算规则,根据邻域元胞对中心元胞的蔓延速度和两邻域元胞的时间间隔,计算两邻域元胞蔓延面积的重叠部分。
进一步地,在两个元胞的位置为相邻元胞时,所述根据两元胞的燃烧状态以及元胞的蔓延面积,确定两邻域元胞蔓延面积重叠部分的计算规则,包括:
两个相邻元胞完全燃烧时,该两相邻元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000031
式中:
Figure BDA0001613720790000032
表示两相邻元胞中的一个元胞在t时刻的蔓延速度,
Figure BDA0001613720790000033
表示两相邻元胞中的另一个元胞在t时刻的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长。
进一步地,在两个元胞的位置为次相邻元胞时,所述根据两元胞的燃烧状态以及元胞的蔓延面积,确定两邻域元胞蔓延面积重叠部分的计算规则,包括:
两个相邻的邻胞和次邻胞完全燃烧且邻胞蔓延面积不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000034
两个相邻的邻胞和次邻胞完全燃烧且邻胞蔓延面积完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000041
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000042
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000043
其中,
Figure BDA0001613720790000044
表示次邻胞在t时刻的蔓延速度,
Figure BDA0001613720790000045
表示邻胞在t时刻的蔓延速度,
Figure BDA0001613720790000046
分别为中心元胞(i,j)在t时刻向左下方元胞的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长。
进一步地,所述基于设定的中心元胞的状态转换规则,包括:
Figure BDA0001613720790000047
式中:
Figure BDA0001613720790000048
为中心元胞(i,j)在(t+1)时刻的燃烧状态,
Figure BDA0001613720790000049
为中心元胞(i,j)在t时刻的燃烧状态,
Figure BDA00016137207900000410
分别是中心元胞(i,j)上、下、左、右四个方向的相邻元胞,
Figure BDA00016137207900000411
分别是中心元胞(i,j)对角线方向上的四个次相邻元胞,Δt为中心元胞(i,j)从t时刻至(t+1)时刻的时间步长,a表示元胞的边长,S重叠表示邻域元胞蔓延面积的重叠部分。
第二方面,采用一种基于元胞自动机的山火蔓延模拟仿真系统,包括蔓延速度计算模块、燃烧状态计算模块、蔓延面积重叠部分计算模块以及状态转换模块,蔓延速度计算模块、燃烧状态计算模块的输出端分别与蔓延面积重叠部分计算模块连接,蔓延速度计算模块、燃烧状态计算模块、蔓延面积重叠部分计算模块的输出端分别与状态转换模块连接;
蔓延速度计算模块用于根据山火蔓延初始速度、可燃物调整系数、风调整系数以及坡度调整系数,计算邻域元胞对中心元胞的蔓延速度;
燃烧状态计算模块用于根据元胞的面积和当前时刻元胞的燃烧面积,计算当前时刻元胞的燃烧状态,该元胞包括中心元胞、相邻元胞和次相邻元胞;
蔓延面积重叠部分计算模块用于根据邻域元胞对中心元胞的蔓延速度、元胞的燃烧面积和中心元胞燃烧转换时间步长,计算两邻域元胞蔓延面积的重叠部分;
状态转换模块用于基于设定的中心元胞的状态转换规则,对邻域元胞对中心元胞的蔓延速度、元胞的燃烧状态以及两邻域元胞蔓延面积的重叠部分进行处理,得到下一时刻中心元胞的燃烧状态。
进一步地,蔓延面积重叠部分计算模块包括相邻元胞计算单元和次相邻元胞计算单元;
相邻元胞计算单元用于在两个相邻元胞完全燃烧时,计算两邻域元胞蔓延面积的重叠部分S重叠,计算规则为:
Figure BDA0001613720790000051
式中:
Figure BDA0001613720790000052
表示两相邻元胞中的一个元胞在t时刻的蔓延速度,
Figure BDA0001613720790000053
表示两相邻元胞中的另一个元胞在t时刻的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长。
所述次相邻元胞计算单元,用于在两个元胞的位置为次相邻元胞时,计算两邻域元胞蔓延面积重叠部分S重叠,计算规则分别为:
两个相邻的邻胞和次邻胞完全燃烧且邻胞蔓延面积不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000061
两个相邻的邻胞和次邻胞完全燃烧且邻胞蔓延面积完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000062
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000063
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000064
其中,
Figure BDA0001613720790000065
表示次邻胞在t时刻的蔓延速度,
Figure BDA0001613720790000066
表示邻胞在t时刻的蔓延速度,
Figure BDA0001613720790000067
分别为中心元胞(i,j)在t时刻向左下方元胞的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长。
进一步地,所述状态转换模块采用的基于设定的中心元胞的状态转换规则,包括:
Figure BDA0001613720790000071
式中:
Figure BDA0001613720790000072
为中心元胞(i,j)在(t+1)时刻的燃烧状态,
Figure BDA0001613720790000073
为中心元胞(i,j)在t时刻的燃烧状态,
Figure BDA0001613720790000074
分别是中心元胞(i,j)上、下、左、右四个方向的相邻元胞,
Figure BDA0001613720790000075
分别是中心元胞(i,j)对角线方向上的四个次相邻元胞,Δt为中心元胞(i,j)从t时刻至(t+1)时刻的时间步长,a表示元胞的边长,S重叠表示邻域元胞蔓延面积的重叠部分。
另一方面,采用一种基于元胞自动机的山火蔓延模拟仿真系统,包括存储器和处理器;
存储器,用于存储若干程序指令;
该若干程序指令适于由处理器加载并执行:
根据山火蔓延初始速度、可燃物调整系数、风调整系数以及坡度调整系数,计算邻域元胞对中心元胞的蔓延速度;
根据元胞的面积和当前时刻元胞的燃烧面积,计算当前时刻元胞的燃烧状态,该元胞包括中心元胞、相邻元胞和次相邻元胞;
根据邻域元胞对中心元胞的蔓延速度、元胞的燃烧面积和中心元胞燃烧转换时间步长,计算两邻域元胞蔓延面积的重叠部分;
基于设定的中心元胞的状态转换规则,对邻域元胞对中心元胞的蔓延速度、元胞的燃烧状态以及两邻域元胞蔓延面积的重叠部分进行处理,得到下一时刻中心元胞的燃烧状态。
与现有技术相比,本发明存在以下技术效果:本发明建立元胞自动机邻域元胞蔓延重叠面积计算方法,并在元胞燃烧状态转换规则中增加了重叠面积。所建立的模拟模型可去除重叠面积对中心元胞的状态影响,提高了模拟模型的精度和合理性。
附图说明
下面结合附图,对本发明的具体实施方式进行详细描述:
图1是一种基于元胞自动机的山火蔓延模拟仿真方法的流程示意图;
图2是一种基于元胞自动机的山火蔓延模拟仿真系统的结构示意图;
图3是在无风、平坦、均质的情况别模拟30的山火蔓延情况得到的模拟法仿真结果;
图4是在无风、平坦、均质的情况别模拟60的山火蔓延情况得到的模拟法仿真结果;
图5是在有风、坡度、非均质情况下,取风向角为45度,模拟风速为0.5m/s的山火蔓延情况得到的模拟法仿真结果;
图6是在有风、坡度、非均质情况下,取风向角为45度,模拟风速为2m/s的山火蔓延情况得到的模拟法仿真结果。
具体实施方式
为了更进一步说明本发明的特征,请参阅以下有关本发明的详细说明与附图。所附图仅供参考与说明之用,并非用来对本发明的保护范围加以限制。
如图1所示,本实施例公开了一种基于元胞自动机的山火蔓延模拟仿真方法,包括如下步骤S101至S104:
S101、根据山火蔓延初始速度、可燃物调整系数、风调整系数以及坡度调整系数,计算邻域元胞对中心元胞的蔓延速度;
S102、根据元胞的面积和当前时刻元胞的燃烧面积,计算当前时刻元胞的燃烧状态,该元胞包括中心元胞、相邻元胞和次相邻元胞;
S103、根据邻域元胞对中心元胞的蔓延速度、元胞的燃烧面积和中心元胞燃烧转换时间步长,计算两邻域元胞蔓延面积的重叠部分;
S104、基于设定的中心元胞的状态转换规则,对邻域元胞对中心元胞的蔓延速度、元胞的燃烧状态以及两邻域元胞蔓延面积的重叠部分进行处理,得到下一时刻中心元胞的燃烧状态。
作为进一步优选的方案,上述步骤S101中,邻域元胞对中心元胞的蔓延速度的计算过程为:
根据公式
Figure BDA0001613720790000091
计算邻域元胞对中心元胞的蔓延速度R,其中R为山火蔓延速度,R0为山火初始蔓延速度,Ks为可燃物调整系数,Kw为风调整系数,
Figure BDA0001613720790000092
为坡度调整系数,其中:
R0=bT+ch-D,
Kw=e0.1783Vcosθ
Figure BDA0001613720790000093
式中:T为温度,h为日最小湿度,b、c、D为常数(b=0.03、c=0.01、D=0.3),V为风速,θ为蔓延方向与风向的夹角,g为坡向标志,当坡向为上坡时g=0,当坡向为下坡时g=1,
Figure BDA0001613720790000094
为坡度角。
需要说明的是,本实施例中考虑了温度、湿度、风速、风向、坡度以及可燃物种类影响,元胞通过转换规则相互作用、相互联系,所有场地的元胞作同步更新,完成系统的动态演化过程。
作为进一步优选的方案,上述步骤S102:根据元胞的面积和当前时刻元胞的燃烧面积,计算当前时刻元胞的燃烧状态,该元胞包括中心元胞、相邻元胞和次相邻元胞,以中心元胞的燃烧面积的计算为例,对元胞的燃烧面积的计算进行说明:
中心元胞(i,j)在t时刻的燃烧状态
Figure BDA0001613720790000095
公式为:
Figure BDA0001613720790000096
式中,S燃烧是中心元胞(i,j)燃烧的面积,S元胞是中心元胞(i,j)的面积,若中心元胞的边长为a,则S元胞=a2
Figure BDA0001613720790000097
表示t时刻中心元胞(i,j)未燃烧,
Figure BDA0001613720790000098
表示t时刻中心元胞(i,j)部分燃烧,
Figure BDA0001613720790000099
表示t时刻中心元胞(i,j)完全燃烧,只有元胞完全燃烧才向邻域元胞蔓延。
应当理解的是,相邻元胞和次相邻元胞的燃烧状态也可以套用上述燃烧状态计算公式得到。相邻元胞是中心元胞上、下、左、右这4个相邻元胞,次相邻元胞是中心元胞对角线方向上的4个次相邻元胞。
作为进一步优选的方案,上述步骤S103具体包括:
根据两个元胞的位置,依据两元胞的燃烧状态以及元胞的蔓延面积,确定两邻域元胞蔓延面积重叠部分的计算规则;
基于两邻域元胞蔓延面积重叠部分的计算规则,根据邻域元胞对中心元胞的蔓延速度和两邻域元胞的时间间隔,计算两邻域元胞蔓延面积的重叠部分。
需要说明的是,本实施例中两个元胞的位置包括相邻元胞和次相邻元胞两种情况:
在两个元胞的位置为相邻元胞时,根据两元胞的燃烧状态以及元胞的蔓延面积,确定两邻域元胞蔓延面积重叠部分的计算规则,包括:
两个相邻元胞完全燃烧时,该两相邻元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000101
式中:
Figure BDA0001613720790000102
表示两相邻元胞中的一个元胞在t时刻的蔓延速度,
Figure BDA0001613720790000103
表示两相邻元胞中的另一个元胞在t时刻的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长。
在两个元胞的位置为次相邻元胞时,所述根据两元胞的燃烧状态以及元胞的蔓延面积,确定两邻域元胞蔓延面积重叠部分的计算规则,包括:
两个相邻的邻胞和次邻胞(即邻胞和次邻胞相邻)完全燃烧且邻胞蔓延面积不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000111
两个相邻的邻胞和次邻胞完全燃烧且邻胞蔓延面积完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000112
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000113
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000114
其中,
Figure BDA0001613720790000115
表示次邻胞在t时刻的蔓延速度,
Figure BDA0001613720790000116
表示邻胞在t时刻的蔓延速度,
Figure BDA0001613720790000117
分别为中心元胞(i,j)在t时刻向左下方元胞的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长。
作为进一步优选的方案,上述步骤S104中的基于设定的中心元胞的状态转换规则,具体为:
Figure BDA0001613720790000118
式中:
Figure BDA0001613720790000119
为中心元胞(i,j)在(t+1)时刻的燃烧状态,
Figure BDA00016137207900001110
为中心元胞(i,j)在t时刻的燃烧状态,
Figure BDA0001613720790000121
分别是中心元胞(i,j)上、下、左、右四个方向的相邻元胞,
Figure BDA0001613720790000122
分别是中心元胞(i,j)对角线方向上的四个次相邻元胞,Δt为中心元胞(i,j)从t时刻至(t+1)时刻的时间步长,a表示元胞的边长,S重叠表示邻域元胞蔓延面积的重叠部分。
如图2所示,本实施例公开了一种基于元胞自动机的山火蔓延模拟仿真系统,包括蔓延速度计算模块10、燃烧状态计算模块20、蔓延面积重叠部分计算模块30以及状态转换模块40,蔓延速度计算模块10、燃烧状态计算模块20的输出端分别与蔓延面积重叠部分计算模块30连接,蔓延速度计算模块10、燃烧状态计算模块20、蔓延面积重叠部分计算模块30的输出端分别与状态转换模块40连接;
蔓延速度计算模块10用于根据山火蔓延初始速度、可燃物调整系数、风调整系数以及坡度调整系数,计算邻域元胞对中心元胞的蔓延速度;
燃烧状态计算模块20用于根据元胞的面积和当前时刻元胞的燃烧面积,计算当前时刻元胞的燃烧状态,该元胞包括中心元胞、相邻元胞和次相邻元胞;
蔓延面积重叠部分计算模块30用于根据邻域元胞对中心元胞的蔓延速度、元胞的燃烧面积和中心元胞燃烧转换时间步长,计算两邻域元胞蔓延面积的重叠部分;
状态转换模块40用于基于设定的中心元胞的状态转换规则,对邻域元胞对中心元胞的蔓延速度、元胞的燃烧状态以及两邻域元胞蔓延面积的重叠部分进行处理,得到下一时刻中心元胞的燃烧状态。
进一步地,蔓延面积重叠部分计算模块30包括相邻元胞计算单元和次相邻元胞计算单元;
相邻元胞计算单元用于在两个相邻元胞完全燃烧时,计算两邻域元胞蔓延面积的重叠部分S重叠,计算规则为:
Figure BDA0001613720790000131
式中:
Figure BDA0001613720790000132
表示两相邻元胞中的一个元胞在t时刻的蔓延速度,
Figure BDA0001613720790000133
表示两相邻元胞中的另一个元胞在t时刻的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长。
所述次相邻元胞计算单元,用于在两个元胞的位置为次相邻元胞时,计算两邻域元胞蔓延面积重叠部分S重叠,计算规则分别为:
两个相邻的邻胞和次邻胞完全燃烧且邻胞蔓延面积不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000134
两个相邻的邻胞和次邻胞完全燃烧且邻胞蔓延面积完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000135
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000136
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure BDA0001613720790000137
其中,
Figure BDA0001613720790000138
表示次邻胞在t时刻的蔓延速度,
Figure BDA0001613720790000139
表示邻胞在t时刻的蔓延速度,
Figure BDA00016137207900001310
分别为中心元胞(i,j)在t时刻向左下方元胞的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长。
进一步地,所述状态转换模块40采用的基于设定的中心元胞的状态转换规则,包括:
Figure BDA0001613720790000141
式中:
Figure BDA0001613720790000142
为中心元胞(i,j)在(t+1)时刻的燃烧状态,
Figure BDA0001613720790000143
为中心元胞(i,j)在t时刻的燃烧状态,
Figure BDA0001613720790000144
分别是中心元胞(i,j)上、下、左、右四个方向的相邻元胞,
Figure BDA0001613720790000145
分别是中心元胞(i,j)对角线方向上的四个次相邻元胞,Δt为中心元胞(i,j)从t时刻至(t+1)时刻的时间步长,a表示元胞的边长,S重叠表示邻域元胞蔓延面积的重叠部分。
还公开了一种基于元胞自动机的山火蔓延模拟仿真系统,包括存储器和处理器;
存储器,用于存储若干程序指令;
该若干程序指令适于由处理器加载并执行:
根据山火蔓延初始速度、可燃物调整系数、风调整系数以及坡度调整系数,计算邻域元胞对中心元胞的蔓延速度;
根据元胞的面积和当前时刻元胞的燃烧面积,计算当前时刻元胞的燃烧状态,该元胞包括中心元胞、相邻元胞和次相邻元胞;
根据邻域元胞对中心元胞的蔓延速度、元胞的燃烧面积和中心元胞燃烧转换时间步长,计算两邻域元胞蔓延面积的重叠部分;
基于设定的中心元胞的状态转换规则,对邻域元胞对中心元胞的蔓延速度、元胞的燃烧状态以及两邻域元胞蔓延面积的重叠部分进行处理,得到下一时刻中心元胞的燃烧状态。
应当理解的是,本实施例公开的基于元胞自动机的山火蔓延模拟仿真系统中各模块的上述和其它操作和/或功能分别实现上述方法的相应流程,或者通过处理器执行上述方法中各步骤,为了简洁,此处不再赘述。
进一步地,为了验证上述方法及系统的有效性,通过建立考虑温度、湿度、风速、风向、坡度以及可燃物种类等影响因子的的仿真模型,由毛贤敏对王正非的修改模型求出山火蔓延速度,元胞通过转换规则相互作用、相互联系,所有场地的元胞作同步更新,完成系统的动态演化过程,过程如下:
选取正方形的场地,元胞边长设为2m,时间步长为0.5分钟,元胞个数为100×100,温度为30,相对湿度为0.3,由王正非初始蔓延速度计算公式,求得初始蔓延速度R0=0.6m/min。分别模拟无风、平坦、均质的情况和有风、坡度、非均质的情况。
(1)在无风、平坦、均质的情况,分别模拟30、60分钟的山火蔓延情况,下列图3、图4分别对应模拟60分钟、90分钟的山火蔓延结果。图3、图4中内侧的灰色线边界表示改进模型的山火蔓延边界,外侧的黑色线边界表示未改进模型的山火蔓延边界。由图3、图4可以看出,由本方案所得到的山火蔓延边界基本处于基于原来模型所得到的山火边界内,也就是证明原来的模型因重复计算了山火蔓延面积,而得到了过于冒进的山火蔓延面积。同时,也可以看出,本方案所得到的山火蔓延边界图形相对于基于原来模型所得到的山火边界图形更圆,畸变更小,随着模拟时间的增加,本方案所得到的山火蔓延边界及图形更符合实际,也更为有效。
(2)在有风、坡度、非均质情况下,取初始着火点元胞为(50,50),分别模拟风速为1m/s和2m/s,风向角度为45,模拟时间为60分钟的山火蔓延情形。两种方法得到的山火蔓延边界如图5、图6所示。
图5、图6中内侧的灰色线边界表示改进模型的山火蔓延边界,外侧的黑色线边界表示未改进模型的山火蔓延边界。由图5、图6可以看出,由本方法所得到的山火蔓延边界基本处于基于原来模型所得到的山火边界内,也就是证明原来的模型因重复计算了山火蔓延面积,而得到了过于冒进的山火蔓延面积。随着风速的增加,山火蔓延的边界变的更扁。因此,本文方法所得到的山火蔓延边界及图形更符合实际,也更为有效。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种基于元胞自动机的山火蔓延模拟仿真方法,其特征在于,包括以下步骤:
根据山火蔓延初始速度、可燃物调整系数、风调整系数以及坡度调整系数,计算邻域元胞对中心元胞的蔓延速度;
根据元胞的面积和当前时刻元胞的燃烧面积,计算当前时刻元胞的燃烧状态,该元胞包括中心元胞、相邻元胞和次相邻元胞;
根据邻域元胞对中心元胞的蔓延速度、元胞的燃烧面积和中心元胞燃烧转换时间步长,计算两邻域元胞蔓延面积的重叠部分;
基于设定的中心元胞的状态转换规则,对邻域元胞对中心元胞的蔓延速度、元胞的燃烧状态以及两邻域元胞蔓延面积的重叠部分进行处理,得到下一时刻中心元胞的燃烧状态;
其中,
所述根据邻域元胞对中心元胞的蔓延速度、元胞的燃烧面积和中心元胞燃烧转换时间步长,计算两邻域元胞蔓延面积的重叠部分,包括:
根据两个元胞的位置,依据两元胞的燃烧状态以及元胞的蔓延面积,确定两邻域元胞蔓延面积重叠部分的计算规则;
基于两邻域元胞蔓延面积重叠部分的计算规则,根据邻域元胞对中心元胞的蔓延速度和两邻域元胞的时间间隔,计算两邻域元胞蔓延面积的重叠部分;
在两个元胞的位置为相邻元胞时,所述依据两元胞的燃烧状态以及元胞的蔓延面积,确定两邻域元胞蔓延面积重叠部分的计算规则包括:
两个相邻元胞完全燃烧时,该两相邻元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000011
式中:
Figure FDA0003507802500000012
表示两相邻元胞中的一个元胞在t时刻的蔓延速度,
Figure FDA0003507802500000013
表示两相邻元胞中的另一个元胞在t时刻的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长;
在两个元胞的位置为次相邻元胞时,所述依据两元胞的燃烧状态以及元胞的蔓延面积,确定两邻域元胞蔓延面积重叠部分的计算规则,包括:
两个相邻的邻胞和次邻胞完全燃烧且邻胞蔓延面积不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000021
两个相邻的邻胞和次邻胞完全燃烧且邻胞蔓延面积完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000022
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000023
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000024
其中,
Figure FDA0003507802500000025
表示次邻胞在t时刻的蔓延速度,
Figure FDA0003507802500000026
表示邻胞在t时刻的蔓延速度,
Figure FDA0003507802500000027
分别为中心元胞(i,j)在t时刻向左下方元胞的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长;
所述基于设定的中心元胞的状态转换规则,包括:
Figure FDA0003507802500000031
式中:
Figure FDA0003507802500000032
为中心元胞(i,j)在(t+1)时刻的燃烧状态,
Figure FDA0003507802500000033
为中心元胞(i,j)在t时刻的燃烧状态,
Figure FDA0003507802500000034
分别是中心元胞(i,j)上、下、左、右四个方向的相邻元胞,
Figure FDA0003507802500000035
分别是中心元胞(i,j)对角线方向上的四个次相邻元胞,Δt为中心元胞(i,j)从t时刻至(t+1)时刻的时间步长,a表示元胞的边长,S重叠表示邻域元胞蔓延面积的重叠部分。
2.一种基于元胞自动机的山火蔓延模拟仿真系统,其特征在于,包括蔓延速度计算模块、燃烧状态计算模块、蔓延面积重叠部分计算模块以及状态转换模块,蔓延速度计算模块、燃烧状态计算模块的输出端分别与蔓延面积重叠部分计算模块连接,蔓延速度计算模块、燃烧状态计算模块、蔓延面积重叠部分计算模块的输出端分别与状态转换模块连接;
蔓延速度计算模块用于根据山火蔓延初始速度、可燃物调整系数、风调整系数以及坡度调整系数,计算邻域元胞对中心元胞的蔓延速度;
燃烧状态计算模块用于根据元胞的面积和当前时刻元胞的燃烧面积,计算当前时刻元胞的燃烧状态,该元胞包括中心元胞、相邻元胞和次相邻元胞;
蔓延面积重叠部分计算模块用于根据邻域元胞对中心元胞的蔓延速度、元胞的燃烧面积和中心元胞燃烧转换时间步长,再基于两邻域元胞蔓延面积重叠部分的计算规则,根据邻域元胞对中心元胞的蔓延速度和两邻域元胞的时间间隔,计算两邻域元胞蔓延面积的重叠部分;
其中,蔓延面积重叠部分计算模块包括相邻元胞计算单元和次相邻元胞计算单元;
相邻元胞计算单元用于在两个元胞的位置为相邻元胞时,且在两个相邻元胞完全燃烧时,计算两邻域元胞蔓延面积的重叠部分S重叠,计算规则为:
Figure FDA0003507802500000041
式中:
Figure FDA0003507802500000042
表示两相邻元胞中的一个元胞在t时刻的蔓延速度,
Figure FDA0003507802500000043
表示两相邻元胞中的另一个元胞在t时刻的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长;
次相邻元胞计算单元,用于在而在两个元胞的位置为次相邻元胞时,计算以下情形的两邻域元胞蔓延面积重叠部分S重叠,则计算规则为:
两个相邻的邻胞和次邻胞完全燃烧且邻胞蔓延面积不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000044
两个相邻的邻胞和次邻胞完全燃烧且邻胞蔓延面积完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000045
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000046
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000047
其中,
Figure FDA0003507802500000051
表示次邻胞在t时刻的蔓延速度,
Figure FDA0003507802500000052
表示邻胞在t时刻的蔓延速度,
Figure FDA0003507802500000053
分别为中心元胞(i,j)在t时刻向左下方元胞的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长;
所述状态转换模块用于基于设定的中心元胞的状态转换规则,对邻域元胞对中心元胞的蔓延速度、元胞的燃烧状态以及两邻域元胞蔓延面积的重叠部分进行处理,得到下一时刻中心元胞的燃烧状态,所述基于设定的中心元胞的状态转换规则,包括:
Figure FDA0003507802500000054
式中:
Figure FDA0003507802500000055
为中心元胞(i,j)在(t+1)时刻的燃烧状态,
Figure FDA0003507802500000056
为中心元胞(i,j)在t时刻的燃烧状态,
Figure FDA0003507802500000057
分别是中心元胞(i,j)上、下、左、右四个方向的相邻元胞,
Figure FDA0003507802500000058
分别是中心元胞(i,j)对角线方向上的四个次相邻元胞,Δt为中心元胞(i,j)从t时刻至(t+1)时刻的时间步长,a表示元胞的边长,S重叠表示邻域元胞蔓延面积的重叠部分。
3.一种基于元胞自动机的山火蔓延模拟仿真系统,其特征在于,包括存储器和处理器;
存储器,用于存储若干程序指令;
该若干程序指令适于由处理器加载并执行:
根据山火蔓延初始速度、可燃物调整系数、风调整系数以及坡度调整系数,计算邻域元胞对中心元胞的蔓延速度;
根据元胞的面积和当前时刻元胞的燃烧面积,计算当前时刻元胞的燃烧状态,该元胞包括中心元胞、相邻元胞和次相邻元胞;
根据邻域元胞对中心元胞的蔓延速度、元胞的燃烧面积和中心元胞燃烧转换时间步长,计算两邻域元胞蔓延面积的重叠部分;
基于设定的中心元胞的状态转换规则,对邻域元胞对中心元胞的蔓延速度、元胞的燃烧状态以及两邻域元胞蔓延面积的重叠部分进行处理,得到下一时刻中心元胞的燃烧状态,
其中,
所述根据邻域元胞对中心元胞的蔓延速度、元胞的燃烧面积和中心元胞燃烧转换时间步长,计算两邻域元胞蔓延面积的重叠部分,包括:
根据两个元胞的位置,依据两元胞的燃烧状态以及元胞的蔓延面积,确定两邻域元胞蔓延面积重叠部分的计算规则;
基于两邻域元胞蔓延面积重叠部分的计算规则,根据邻域元胞对中心元胞的蔓延速度和两邻域元胞的时间间隔,计算两邻域元胞蔓延面积的重叠部分;
在两个元胞的位置为相邻元胞时,所述依 据两元胞的燃烧状态以及元胞的蔓延面积,确定两邻域元胞蔓延面积重叠部分的计算规则,包括:
两个相邻元胞完全燃烧时,该两相邻元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000061
式中:
Figure FDA0003507802500000062
表示两相邻元胞中的一个元胞在t时刻的蔓延速度,
Figure FDA0003507802500000063
表示两相邻元胞中的另一个元胞在t时刻的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长;
在两个元胞的位置为次相邻元胞时,所述依 据两元胞的燃烧状态以及元胞的蔓延面积,确定两邻域元胞蔓延面积重叠部分的计算规则,包括:
两个相邻的邻胞和次邻胞完全燃烧且邻胞蔓延面积不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000071
两个相邻的邻胞和次邻胞完全燃烧且邻胞蔓延面积完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000072
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分不完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000073
两个相邻邻胞一个相邻次邻胞完全燃烧且邻胞蔓延面积重叠部分完全覆盖次邻胞蔓延面积时,两邻域元胞蔓延面积重叠部分S重叠的计算规则为:
Figure FDA0003507802500000074
其中,
Figure FDA0003507802500000075
表示次邻胞在t时刻的蔓延速度,
Figure FDA0003507802500000076
表示邻胞在t时刻的蔓延速度,
Figure FDA0003507802500000077
分别为中心元胞(i,j)在t时刻向左下方元胞的蔓延速度,Δt表示元胞燃烧从t时刻至(t+1)时刻的时间步长;
所述基于设定的中心元胞的状态转换规则,包括:
Figure FDA0003507802500000078
式中:
Figure FDA0003507802500000079
为中心元胞(i,j)在(t+1)时刻的燃烧状态,
Figure FDA00035078025000000710
为中心元胞(i,j)在t时刻的燃烧状态,
Figure FDA00035078025000000711
分别是中心元胞(i,j) 上、下、左、右四个方向的相邻元胞,
Figure FDA0003507802500000081
分别是中心元胞(i,j)对角线方向上的四个次相邻元胞,Δt为中心元胞(i,j)从t时刻至(t+1)时刻的时间步长,a表示元胞的边长,S重叠表示邻域元胞蔓延面积的重叠部分。
CN201810280959.3A 2018-03-30 2018-03-30 基于元胞自动机的山火蔓延模拟仿真方法及系统 Active CN108710718B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810280959.3A CN108710718B (zh) 2018-03-30 2018-03-30 基于元胞自动机的山火蔓延模拟仿真方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810280959.3A CN108710718B (zh) 2018-03-30 2018-03-30 基于元胞自动机的山火蔓延模拟仿真方法及系统

Publications (2)

Publication Number Publication Date
CN108710718A CN108710718A (zh) 2018-10-26
CN108710718B true CN108710718B (zh) 2022-05-17

Family

ID=63867074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810280959.3A Active CN108710718B (zh) 2018-03-30 2018-03-30 基于元胞自动机的山火蔓延模拟仿真方法及系统

Country Status (1)

Country Link
CN (1) CN108710718B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111967193B (zh) * 2020-08-25 2024-03-12 国网安徽省电力有限公司 一种山火条件下输电线路跳闸概率计算方法
CN113139272A (zh) * 2020-12-11 2021-07-20 西安天和防务技术股份有限公司 林火蔓延预测方法、装置、设备和存储介质
CN113344250A (zh) * 2021-05-17 2021-09-03 武汉烽火信息集成技术有限公司 基于火势预测的灭火方法、装置、设备及可读存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018158A2 (en) * 2002-08-21 2004-03-04 Neal Solomon Organizing groups of self-configurable mobile robotic agents
US8057235B2 (en) * 2004-08-12 2011-11-15 Purdue Research Foundation Agent based modeling of risk sensitivity and decision making on coalitions
CN100373378C (zh) * 2006-01-14 2008-03-05 中国海洋大学 海底热液活动探测数据处理和信息管理方法
CN102492882B (zh) * 2011-12-05 2013-08-07 大连理工大学 一种针对镁合金凝固组织模拟的捕捉和转换规则
CN103164587B (zh) * 2013-04-12 2015-07-08 南京大学 林火蔓延地理元胞自动机仿真方法
CN105590014B (zh) * 2014-10-22 2018-05-29 成都国科海博信息技术股份有限公司 一种多层元胞林火蔓延确定方法
CN105867709B (zh) * 2016-04-05 2019-03-29 信利(惠州)智能显示有限公司 触控面板架桥结构及触控面板
CN106021666B (zh) * 2016-05-10 2019-03-12 四川大学 一种架空输电线路的山火灾害预警方法
CN106021751B (zh) * 2016-05-26 2019-04-05 上海海洋大学 基于ca和sar的海岸带土地利用变化模拟方法
CN106682260A (zh) * 2016-11-18 2017-05-17 云南电网有限责任公司电力科学研究院 一种山火灾害发展趋势模拟预测方法及装置
CN106709994B (zh) * 2017-01-22 2020-10-09 北京航空航天大学 面向航空消防训练的森林火灾三维视景的构建方法

Also Published As

Publication number Publication date
CN108710718A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
CN108710718B (zh) 基于元胞自动机的山火蔓延模拟仿真方法及系统
CN111159960B (zh) 一种隧道内电缆故障致火灾的数值模拟方法
CN103018604A (zh) 一种电网设施雷击风险的评估方法及其装置
CN110766685A (zh) 一种基于遥感数据云检测的输电线路山火监测方法及系统
He et al. Numerical investigation of bushfire-wind interaction and its impact on building structure
CN111428918A (zh) 一种重金属衰减污染源的土壤污染范围预测方法及系统
CN107424078B (zh) 基于卫星遥感的火点数据导致输电线路闪络的计算方法
French et al. Graphical simulation of bushfire spread
CN116415754A (zh) 一种森林火灾火势蔓延预测方法及系统
CN113268800B (zh) 优化区域规划方法、装置、电子设备和可读存储介质
Ferragut et al. Modelling radiation and moisture content in fire spread
CN113805063B (zh) 电池储能系统火灾荷载计算方法、系统、设备和介质
CN110674583A (zh) 城市间大气污染传输矩阵的构建方法
CN113866542B (zh) 大区域电网对埋地金属管网电压干扰截断边界确定方法
Wang et al. Numerical investigation on the asymmetric flow characteristics of two propane fires of unequal heat release rate in open space
Nazemi et al. Parameterized Wildfire Fragility Functions for Overhead Power Line Conductors
CN112884310B (zh) 一种污染物扩散规律计算机辅助评估方法、系统及装置
CN113139272A (zh) 林火蔓延预测方法、装置、设备和存储介质
CN108399507A (zh) 一种台风致灾影响的评估方法和装置
CN116720388B (zh) 森林草原火场蔓延预测的方法、装置、设备和介质
Xu et al. Simulation Study on Spread Characteristics of Wildfire Near Transmission Lines
CN113838539B (zh) 一种变电站电气设备火灾残留物检测分析系统及分析方法
CN111243212A (zh) 基于射频技术的林火监测系统及方法
CN110457736A (zh) Rcrss中基于马尔科夫链的火势预测
Shariyari et al. Forest Fire Potential Modeling and Simulation of its Extension Using Remote Sensing Data and GIS:(A Protected Area of Arasbaran)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant