CN108710348B - 一种无人机群控制系统及其无人机设备 - Google Patents

一种无人机群控制系统及其无人机设备 Download PDF

Info

Publication number
CN108710348B
CN108710348B CN201810456649.2A CN201810456649A CN108710348B CN 108710348 B CN108710348 B CN 108710348B CN 201810456649 A CN201810456649 A CN 201810456649A CN 108710348 B CN108710348 B CN 108710348B
Authority
CN
China
Prior art keywords
unmanned aerial
aerial vehicle
node
cluster
cluster head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810456649.2A
Other languages
English (en)
Other versions
CN108710348A (zh
Inventor
华翔
孙一阳
姜冰清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN201810456649.2A priority Critical patent/CN108710348B/zh
Publication of CN108710348A publication Critical patent/CN108710348A/zh
Application granted granted Critical
Publication of CN108710348B publication Critical patent/CN108710348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • G05B19/41855Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication by local area network [LAN], network structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于无人机群控制系统的无人机设备,包括单个无人机,所述无人机包括上层机架和下层机架;所述上层机架平行设置于所述下层机架上方,所述上层机架与所述下层机架之间通过若干竖向连接柱可拆卸固定连接;这种网络布局方式提供了一种动态的基于不同距离不同位置的即时分簇方法,为无人机网络的大规模采集、建立协同自治模型的研究提供了一个专业的、共享的、高性能的组网方式。

Description

一种无人机群控制系统及其无人机设备
技术领域
本发明属于无人机领域,尤其涉及一种无人机群控制系统及其无人机设备。
背景技术
目前传统的分簇算法大多是根据设定的概率选择簇头,并且簇头实行周期轮换,形成相同大小的簇或者使用固定簇半径的分簇协议,协议通过两次参数选择簇头,并实行多跳通信的机制。这两种分簇协议都会造成基站附近的节点能量消耗多余其他节点,即WSN网络中的“热点”问题。在无人机技术中热点问题成为无人机监测网络续航能力的一大阻碍。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种节约网络能耗、快速响应、大范围监测的一种无人机群控制系统及其无人机设备。
技术方案:为实现上述目的,本发明的一种基于无人机群控制系统的无人机设备,包括单个无人机,所述无人机包括上层机架和下层机架;所述上层机架平行设置于所述下层机架上方,所述上层机架与所述下层机架之间通过若干竖向连接柱可拆卸固定连接;
所述上层机架的中部固定安装有控制模块;所述控制模块的正上方还包括防雨帽,所述防雨帽为上部呈圆弧状突起的空心壳体结构;所述防雨帽底部通过若干防雨帽支撑与所述上层机架支撑连接;所述下层机架包括四个向四周延伸的机臂.,每个机臂.的末端上侧均安装有旋翼。
进一步的,每个所述机臂.的末端下方平行设置有导环,所述导环通过若干固定悬挂柱与所对应的机臂.固定悬挂连接;所述导环的中部同轴心设置有导柱孔;
还包括缓冲导柱,所述缓冲导柱同轴心穿过所述导柱孔,所述缓冲导柱外壁与所述导柱孔内壁间隙配合,所述缓冲导柱上端同轴心固定连接有弹簧顶压盘,弹簧顶压盘所在直径大于所述导柱孔,所述缓冲导柱下端连接有支撑脚;
还包括缓冲弹簧,所述缓冲弹簧的下端顶压连接所述弹簧顶压盘上表面,所述缓冲弹簧上端固定连接所述机臂.的下壁。
进一步的,还包括无人机地面控制台;所述无人机地面控制台包括履带式移动车体;所述履带式移动车体的车架顶部水平设置有箱体,所述箱体中活动设置有无人机容纳抽屉,所述车架上还安装有液压缸装置,所述液压缸装置的推杆末端与所述无人机容纳抽屉同步连接,所述液压缸装置可驱动所述无人机容纳抽屉从箱体中推出或从箱体外侧抽回至箱体内部;所述无人机容纳抽屉的容纳腔中停歇有若干无人机;所述车架上还安装有信号收发控制模块,所述信号收发控制模块与各所述无人机的控制模块相互通讯连接。
进一步的,无人机容纳抽屉的容纳腔中停歇的无人机全部飞出箱体状态下,各个无人机形成各个无人机节点,各控制模块之间相互通讯连接;
在每个控制模块内设置一个变量H,H表示本无人机与地面控制台的距离;在系统初始化时每个无人机先检测自身与地面控制台的距离,并以此为决定分簇的基础;
首先H值较小的节点优先成为预备簇头,然后每个预备簇头在本身通信范围内进行侦听,若没有收到其他通信范围内预备簇头的广播信息,则发送宣布自己成为簇头的广播,同时对自己进行簇的编号,并接收其他无人机作为簇的成员;
设置门限值switch_H,无人机的运动距离表示为ΔH;ΔH的值大于门限值switch_H 时,算法启动对于此节点的重新分簇,让其加入新的簇中,或者直接成为簇头;
在无人机移动后,相对位置发生改变,原本的分簇将不适用与网络中的无人机节点分布,此时进行无人机的重新分簇。
进一步的,所述无人机节点包括监测无人机节点和路由无人机节点;A监测无人机节点,B为处于无人机监测范围内的目标,C路由无人机节点;每个监测无人机节点拥有固定的监测范围半径Rc和通信半径Rd;路由无人机节点只拥有固定的通信半径Rd;监测无人机节点A发现目标B后,将信息传送至通信范围内的路由无人机节点C;无人机节点在同一时间内只能加入一个簇中,在工作周期中可以随时脱离当前簇加入其他的簇中;每一个无人机节点都有自身的目标捕捉区域,可相互重叠,互不影响;
控制模块硬件结构由供电模块,与无人机的交互模块,射频识别模块,处理模块以及存储模块构成;其中射频识别模块负责控制模块之间的相互通信,用于构成网络;无人机的交互模块则负责与所搭载的无人机之间的信息交互,向无人机发送位置信息;
进一步的,每个无人机节点的工作周期可分为三部分,t1表示决定簇头阶段,t2表示加入分簇的判决阶段,t3表示分簇完成后的正常工作阶段;三个阶段合起来为一个工作周期;
无人机在t1阶段通过H值来判定自身是否成为预备簇头节点,若是则在本身通信范围内进行侦听,若没有收到其他通信范围内预备簇头的广播信息,则发送宣布自己成为簇头的广播;否则直接进入t2阶段,此阶段对无人机本工作循环加入某个分簇进行判决,在t3阶段根据阶段2的输出来选择工作的簇;
首先在系统初始化之后,通过地面控制台向区域中的所有节点广播一条信息,中心节点以足够大的功率发送,以保证覆盖到网络中的所有无人机,根据RSSI计算公式,网络中的无人机以此确定与地面控制台的距离H;这里设定当无人机节点的H值小于节点通信半径Rd时,此无人机将成为预备簇头节点;
设定t时刻Ni节点与地面控制台的距离表示为H(i,t),每个监测无人机节点的通信范围为Rd;无人机节点Ni可根据下式来判断自己是否成为预备簇头节点;
当确定无人机Ni为预备簇头节点后,开始向周围发送簇头标识信号indentifcation,周边无人机在接收到此信号后将加入此分簇;若此时节点Ni并没有受到其他无人机所发送的标识信号,则自动成为簇头节点,若收到标识信号,则对比两个发送信号的无人机的H值,较小的节点成为簇头节点,另一个则加入此分簇;
设定t时刻预备簇头Ni是否成为簇头节点的标识为cluster head(i,t),通过下式可以判断无人机Ni是否成为了簇头节点。
当簇头判决完成后,网络中可以直接收到簇头节点广播的簇头标识信号indentifcation的无人机可以直接加入此分簇中,同时转发此簇头标识信号indentifcation,使其通信范围内的其他无人机也可以加入到这一分簇中
由于无人机处于运动中,因此分簇也不是一成不变的,在簇头节点的运动距离ΔH的值大于门限值switch_H时,网络进行簇重构;为了节省成簇时各种广播交换信息的能量消耗,只在初始准备阶段,所有节点采用预备簇头的成簇方式,在以后的簇重构周期中,都采用定时机制;这里设定d(Ni,Nj)为节点Ni与Nj间的距离。
将无人机节点感知范围内的邻居节点个数,表示为:
Ni.D={Ni|Nj∈V,d(Ni,Nj)≤Ni(R)}
其中V为所有监测节点的集合,若d(Ni,Nj)这个距离小于等于节点的竞争半径,即节点所能广播通信到的范围,则将此节点记为邻居节点,并累加为节点度;
每个无人机根据公式计算出自己的定时时间,若在时间内收到了其他无人机的簇头标识消息,就直接加入该簇,若没有收到,则确定自己为簇头并在通信范围内广播自己成为簇头的消息;到达最大竞争时间后,所有无人机根据收到的簇头广播消息加入响应的簇中,网络的簇重构完成;
设定定时时间公式为:
其中,α+β+γ=1,为各参数的权重调节系数,k为一个调节系数,设为(0.9, 1)之间的一个随机数,为了减少节点间传递簇头标识消息时,时间冲突的可能性;TCH0 为设定的最大竞争时间,H0为节点与中心节点的初始距离,H(Ni)为节点当前与中心节点的距离,Ni.D为节点的节点度,n为节点的总个数Ni(R)为节点的竞争半径;
这里采用定时机制,可以节省每轮簇重构时的的能量消耗,并且提高网络的效率。影响定时时间设定主要有三个参数,当无人机距离中心节点越接近,节点度越高,竞争半径越大时,所设定的定时时间越短,即越容易成为簇头节点;距离参数使得靠近地面控制台的无人机优先成簇。
有益效果:本发明的本发明组成一个无人机监控系统。系统由若干相互独立的无人机以及一个地面控制站台组成。无人机之间可以进行信息的交互,并最终将信息通过路由发送至地面控制台。系统中无人机采用分布式的部署方式,众多无人机被密集部署于监控区域。每个无人机在系统初始化的时候都会测量自身与地面控制台的距离,以此为根据来决定簇头节点与路由节点。通过簇头的变化构成一个分布式的自适应网络结构。
这种网络布局方式提供了一种动态的基于不同距离不同位置的即时分簇方法,为无人机网络的大规模采集、建立协同自治模型的研究提供了一个专业的、共享的、高性能的组网方式。本发明可用于解决各种无人机编队协作的目标跟踪、智能监控等监测网络的网络协同、节约网络能耗、快速响应、大范围监测需求问题。尤其在快速网络反映,全范围监控,节约网络能耗,延长网络寿命等方面具有优势。面向全社会为无人机组网协同技术的发展提供一个高效、节能、响应快速的技术方案。
附图说明
附图1为本发明的监控网络第一状态示意图;
附图2为本发明的监控网络第二状态示意图;
附图3为本发明的监控网络第三状态示意图;
附图4为控制模块通讯模型
附图5为控制模块硬件结构框图;
附图6为无人机节点之间相互通讯模型图;
附图7为本发明网络初始分簇流程图;
附图8为本发明周期分簇阶段流程图;
附图9为无人机具体结构第一示意图;
附图10为无人机具体结构第二示意图;
附图11为附图9的标记15处结构示意图;
附图12为无人机具体结构俯视图;
附图13为无人机地面控制台第一示意图;
附图14为无人机地面控制台第二示意图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如附图1至14所示,下面结合附图对本发明作更进一步的说明。
无人机以及地面控制平台的具体结构介绍:
如图9至14所示的一种基于无人机群控制系统的无人机设备,包括单个无人机17,所述无人机包括上层机架16和下层机架9;所述上层机架16平行设置于所述下层机架 9上方,所述上层机架16与所述下层机架9之间通过若干竖向连接柱10可拆卸固定连接;采用上层机架16和下层机架9结合的形式提高整体机架的结构强度,同时还有助于降低整体重量;
所述上层机架16的中部固定安装有控制模块14;所述控制模块14的正上方还包括防雨帽13,所述防雨帽13为上部呈圆弧状突起的空心壳体结构;所述防雨帽13底部通过若干防雨帽支撑12与所述上层机架16支撑连接;所述下层机架9包括四个向四周延伸的机臂9.1,每个机臂9.1的末端上侧均安装有旋翼1。
每个所述机臂9.1的末端下方平行设置有导环3,所述导环3通过若干固定悬挂柱2与所对应的机臂9.1固定悬挂连接;所述导环3的中部同轴心设置有导柱孔7;
还包括缓冲导柱4,所述缓冲导柱4同轴心穿过所述导柱孔7,所述缓冲导柱4外壁与所述导柱孔7内壁间隙配合,所述缓冲导柱4上端同轴心固定连接有弹簧顶压盘6,弹簧顶压盘6所在直径大于所述导柱孔7,所述缓冲导柱4下端连接有支撑脚5;还包括缓冲弹簧8,所述缓冲弹簧8的下端顶压连接所述弹簧顶压盘6上表面,所述缓冲弹簧8上端固定连接所述机臂9.1的下壁;该缓冲导柱4结构起到无人机以较快速度降落地面时,起到一定的缓冲作用,有效保护无人机上的电器件等设备受到冲击损坏。
还包括无人机地面控制台;所述无人机地面控制台包括履带式移动车体;所述履带式移动车体的车架18顶部水平设置有箱体23,所述箱体23中活动设置有无人机容纳抽屉21,所述车架18上还安装有液压缸装置19,所述液压缸装置19的推杆24末端与所述无人机容纳抽屉21同步连接,所述液压缸装置19可驱动所述无人机容纳抽屉21从箱体23中推出或从箱体23外侧抽回至箱体23内部;所述无人机容纳抽屉21的容纳腔 22中停歇有若干无人机17,在单纯无人机运输或者闲置过程中无人机可全部降落到无人机容纳抽屉21中,方便直接缩回收纳,集中运输;所述车架18上还安装有信号收发控制模块20,所述信号收发控制模块20与各所述无人机17的控制模块14相互通讯连接。
无人机容纳抽屉21的容纳腔22中停歇的无人机17全部飞出箱体23状态下,各个无人机形成各个无人机节点,各控制模块之间相互通讯连接;
控制系统简介
本发明设计了一种基于分簇算法的智能监测无人机控制模块。将模块搭载在无人机上,通过模块间的协同将无人机成组建一个监测系统,系统由若干个随机分布的无人机以及一个地面控制台组成,无人机通过非均匀分簇的方式进行信息的传递以实现网络协作;无人机在监测区域内通过非均匀分簇的协作方式实现对区域内的全面监控。
在监测网络中无目标出现时,系统中所有无人机处于随机运动状态,并在每个工作周期开始时,根据每个无人机节点与地面控制台的不同距离决定出若干个簇头节点,剩余无人机加入相距最近的分簇之中,如图1。其中实线箭头表示从无人机监测节点到簇头的数据传输路径,浅色箭头表示簇头到担任路由节点的无人机的数据传输路径,深色箭头代表路由无人机节点将数据发送给地面控制台的路径。C1,C2等浅色节点与深色的路由节点相距最近,成为簇头节点,其余监测节点根据距离远近分别加入不同的簇。经过非均匀分簇后,无人机监测节点既可以通过簇头节点将发送至路由无人机节点,也可以直接与路由无人机节点相连进行信息转发。
由于无人机处于持续运动中,在一个工作周期结束后,下一个周期时系统中无人机的相对位置与绝对位置都会发生改变。因此系统在每个工作周期都会重新分簇,形成新的拓扑结构,如图2。
当监测网络中出现目标后,最先感知到目标的无人机将会将监测数据上报给所属簇头,经由簇头节点将数据发送给路由无人机节点,最后转发到地面控制台,当同时出现多个目标时,由不同的簇来对不同的目标进行监控和数据上报。如图3,无人机A探测到目标T1后,通过簇头节点C2与路由无人机R2将信息上报给地面控制台,与此同时系统的另一区域中无人机B捕捉到目标T2,通过不同的簇头节点C4与路由无人机R4 将信息上报至地面控制台;
本方案的系统模型
一种基于分簇算法的智能监测无人机控制系统,无人机容纳抽屉21的容纳腔22中停歇的无人机17全部飞出箱体23状态下,各个无人机形成各个无人机节点,各控制模块之间相互通讯连接;
在每个控制模块内设置一个变量H,表示本无人机与地面控制台的距离;在系统初始化时每个无人机先检测自身与地面控制台的距离,并以此为决定分簇的基础;
同时,在系统工作过程中,由于控制模块搭载的无人机本身处于运动中,因此节点的H值也处于变化中;
分簇的具体实现方式同样是基于不同无人机间H值的对比,首先H值较小的节点优先成为预备簇头,然后每个预备簇头在本身通信范围内进行侦听,若没有收到其他通信范围内预备簇头的广播信息,则发送宣布自己成为簇头的广播,同时对自己进行簇的编号,并接收其他无人机作为簇的成员;
为了防止H值频繁变化影响系统分簇的稳定性,在这里引入门限值switch_H的概念;在某一时刻,无人机的运动距离可以表示为ΔH;只有ΔH的值大于门限值switch_H 时,算法才会启动对于此节点的重新分簇,让其加入新的簇中,或者直接成为簇头;
在无人机移动后,相对位置发生改变,原本的分簇将不适用与网络中的无人机节点分布,此时进行无人机的重新分簇,引入节点度与定时时间的概念,对整个网络进行周期性分簇,有效将网络资源最大化利用。
无人机控制模块模型:
首先,控制模块的通讯模型如图4所示,所述无人机节点包括监测无人机节点和路由无人机节点;A监测无人机节点,B为处于无人机监测范围内的目标,C路由无人机节点;每个监测无人机节点拥有固定的监测范围半径Rc和通信半径Rd;路由无人机节点只拥有固定的通信半径Rd;在实际情况中由于其他因素干扰通信半径一般呈不规则形状;
监测无人机节点A发现目标B后,将信息传送至通信范围内的路由无人机节点C;无人机节点在同一时间内只能加入一个簇中,在工作周期中可以随时脱离当前簇加入其他的簇中;每一个无人机节点都有自身的目标捕捉区域,可相互重叠,互不影响;
控制模块硬件结构框图5如下,由供电模块,与无人机的交互模块,射频识别模块,处理模块以及存储模块构成。其中射频识别模块负责控制模块之间的相互通信,用于构成网络。无人机的交互模块则主要负责与所搭载的无人机之间的信息交互,向无人机发送位置信息;
将此控制模块搭载在无人机上,通过模块之间的协作,控制多个无人机组建一个智能监测网络。实现以周期性的不均匀分簇的控制方式来进行协同工作的监测网络。搭载了控制模块的无人机节点具有以下特点:
(1).每个无人机节点采集传输信息,不能直接控制通信区域中的其他无人机;
(2).无人机节点在同一时间内只能加入一个簇中,但在工作周期中可以随时脱离当前簇加入其他的簇中;
(3).每一个无人机节点都有自身的目标捕捉区域,可相互重叠,互不影响。
其次,路由无人机节点通讯模型与监测无人机节点类似,区别在于路由节点并不拥有监测目标的的能力,只需要在通信半径Rd内对数据进行转发。路由节点与监测节点之间的相互作用如图6。其中A为监测无人机节点,在发现目标B后,将信息传送至通信范围内的路由无人机节点C。
地面控制台的模型在此不需要画图表示,在此无人机监测系统中,地面控制台只需要进行数据的接受,并不需要具有其他功能。
如图7和8所示,无人机节点的分簇工作机理:
每个无人机节点的工作周期可分为三部分,t1表示决定簇头阶段,t2表示加入分簇的判决阶段,t3表示分簇完成后的正常工作阶段。三个阶段合起来为一个工作周期。无人机在t1阶段通过H值来判定自身是否成为预备簇头节点,若是则在本身通信范围内进行侦听,若没有收到其他通信范围内预备簇头的广播信息,则发送宣布自己成为簇头的广播。否则直接进入t2阶段,此阶段对无人机本工作循环加入某个分簇进行判决,在t3阶段根据阶段2的输出来选择工作的簇。
首先在系统初始化之后,通过地面控制台向区域中的所有节点广播一条信息(中心节点会以足够大的功率发送,以保证覆盖到网络中的所有无人机,根据RSSI计算公式,网络中的无人机以此确定与地面控制台的距离H。这里设定当无人机节点的H值小于节点通信半径Rd时,此无人机将成为预备簇头节点;
设定t时刻Ni节点与地面控制台的距离表示为H(i,t),每个监测无人机节点的通信范围为Rd。无人机节点Ni可根据下式来判断自己是否成为预备簇头节点;
当确定无人机Ni为预备簇头节点后,开始向周围发送簇头标识信号indentifcation,周边无人机在接收到此信号后将加入此分簇。若此时节点Ni并没有受到其他无人机所发送的标识信号,则自动成为簇头节点,若收到标识信号,则对比两个发送信号的无人机的H值,较小的节点成为簇头节点,另一个则加入此分簇。
设定t时刻预备簇头Ni是否成为簇头节点的标识为cluster head(i,t),通过下式可以判断无人机Ni是否成为了簇头节点。
当簇头判决完成后,网络中可以直接收到簇头节点广播的簇头标识信号indentifcation的无人机可以直接加入此分簇中,同时转发此簇头标识信号indentifcation,使其通信范围内的其他无人机也可以加入到这一分簇中。图7为网络初始分簇流程图。
由于无人机处于运动中,因此分簇也不是一成不变的,在簇头节点的运动距离ΔH的值大于门限值switch_H时,网络进行簇重构。为了节省成簇时各种广播交换信息的能量消耗,只在初始准备阶段,所有节点采用预备簇头的成簇方式,在以后的簇重构周期中,都采用定时机制。这里设定d(Ni,Nj)为节点Ni与Nj间的距离,可以根据RSSI距离计算公式计算出来。
并且定义节点度的概念,即节点感知范围内的邻居节点个数,表示为:
Ni.D={Ni|Nj∈V,d(Ni,Nj)≤Ni(R)}
其中V为所有监测节点的集合,若d(Ni,Nj)这个距离小于等于节点的竞争半径,即节点所能广播通信到的范围,则将此节点记为邻居节点,并累加为节点度。
每个无人机根据公式计算出自己的定时时间,若在时间内收到了其他无人机的簇头标识消息,就直接加入该簇,若没有收到,则确定自己为簇头并在通信范围内广播自己成为簇头的消息。到达最大竞争时间后,所有无人机根据收到的簇头广播消息加入响应的簇中,网络的簇重构完成。
设定定时时间公式为:
其中,α+β+γ=1,为各参数的权重调节系数,k为一个调节系数,设为(0.9, 1)之间的一个随机数,为了减少节点间传递簇头标识消息时,时间冲突的可能性;TCH0 为设定的最大竞争时间,H0为节点与中心节点的初始距离,H(Ni)为节点当前与中心节点的距离,Ni.D为节点的节点度,n为节点的总个数Ni(R)为节点的竞争半径。
这里采用定时机制,可以节省每轮簇重构时的的能量消耗,并且提高网络的效率。影响定时时间设定主要有三个参数,当无人机距离中心节点越接近,节点度越高,竞争半径越大时,所设定的定时时间越短,即越容易成为簇头节点。距离参数会使得靠近地面控制台的无人机优先成簇。图8为周期分簇阶段的流程图。
1.硬件设计
建立无人机监测区域模型的问题。在设计分簇网络时,监测区域模型的正确建立将直接影响到后续研究成果的正确性。
首先在硬件上实现对无人机间距H值概念的存储,这里采用寄存器对不同时刻控制模块的H值进行储存。然后分析无人机节点与目标之间的相对速度,以及对目标感应的灵敏度,还有无人机间的距离,障碍物,天气环境等外部因素对通信质量和通信距离的影响。监测节点的信息传递方式选用广播方式,建立起真实的控制模型,并根据真实测试结果的统计参数进行修正。
在无人机技术中,多无人机编队重构包括队形切换及缺少一架或多架无人机时重新编队队形的重构。采用这种基于分簇算法的网络布局方式,可以实现在无人机的位置发生变化时,快速确定每个编队的领航机,同时实现多个无人机分组之间的快速协同。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种基于无人机群的控制系统,包括单个无人机(17),所述无人机包括上层机架(16)和下层机架(9);所述上层机架(16)平行设置于所述下层机架(9)上方,所述上层机架(16)与所述下层机架(9)之间通过若干竖向连接柱(10)可拆卸固定连接;
所述上层机架(16)的中部固定安装有控制模块(14);所述控制模块(14)的正上方还包括防雨帽(13),所述防雨帽(13)为上部呈圆弧状突起的空心壳体结构;所述防雨帽(13)底部通过若干防雨帽支撑(12)与所述上层机架(16)支撑连接;所述下层机架(9)包括四个向四周延伸的机臂(9.1),每个机臂(9.1)的末端上侧均安装有旋翼(1);
还包括无人机地面控制台;所述无人机地面控制台包括履带式移动车体;所述履带式移动车体的车架(18)顶部水平设置有箱体(23),所述箱体(23)中活动设置有无人机容纳抽屉(21),所述车架(18)上还安装有液压缸装置(19),所述液压缸装置(19)的推杆(24)末端与所述无人机容纳抽屉(21)同步连接,所述液压缸装置(19)可驱动所述无人机容纳抽屉(21)从箱体(23)中推出或从箱体(23)外侧抽回至箱体(23)内部;所述无人机容纳抽屉(21)的容纳腔(22)中停歇有若干无人机(17);所述车架(18)上还安装有信号收发控制模块(20),所述信号收发控制模块(20)与各所述无人机(17)的控制模块(14)相互通讯连接;
无人机容纳抽屉(21)的容纳腔(22)中停歇的无人机(17)全部飞出箱体(23)状态下,各个无人机形成各个无人机节点,各控制模块之间相互通讯连接;
其特征在于:
在每个控制模块内设置一个变量H,H表示本无人机与地面控制台的距离;在系统初始化时每个无人机先检测自身与地面控制台的距离,并以此为决定分簇的基础;
首先H值小的节点优先成为预备簇头,然后每个预备簇头在本身通信范围内进行侦听,若没有收到其他通信范围内预备簇头的广播信息,则发送宣布自己成为簇头的广播,同时对自己进行簇的编号,并接收其他无人机作为簇的成员;
设置门限值switch_H,无人机的运动距离表示为ΔH;ΔH的值大于门限值switch_H时,算法启动对于此节点的重新分簇,让其加入新的簇中,或者直接成为簇头;
在无人机移动后,相对位置发生改变,原本的分簇将不适用与网络中的无人机节点分布,此时进行无人机的重新分簇;
所述无人机节点包括监测无人机节点和路由无人机节点;A监测无人机节点,B为处于无人机监测范围内的目标,C路由无人机节点;每个监测无人机节点拥有固定的监测范围半径Rc和通信半径Rd;路由无人机节点只拥有固定的通信半径Rd;监测无人机节点A发现目标B后,将信息传送至通信范围内的路由无人机节点C;无人机节点在同一时间内只能加入一个簇中,在工作周期中随时脱离当前簇加入其他的簇中;每一个无人机节点都有自身的目标捕捉区域,相互重叠时,互不影响;
控制模块硬件结构由供电模块,与无人机的交互模块,射频识别模块,处理模块以及存储模块构成;其中射频识别模块负责控制模块之间的相互通信,用于构成网络;无人机的交互模块则负责与所搭载的无人机之间的信息交互,向无人机发送位置信息;
每个无人机节点的工作周期分为三部分,t1表示决定簇头阶段,t2表示加入分簇的判决阶段,t3表示分簇完成后的正常工作阶段;三个阶段合起来为一个工作周期;
无人机在t1阶段通过H值来判定自身是否成为预备簇头节点,若是则在本身通信范围内进行侦听,若没有收到其他通信范围内预备簇头的广播信息,则发送宣布自己成为簇头的广播;否则直接进入t2阶段,此阶段对无人机本工作循环加入某个分簇进行判决,在t3阶段根据阶段2的输出来选择工作的簇;
首先在系统初始化之后,通过地面控制台向区域中的所有节点广播一条信息,中心节点以足够大的功率发送,以保证覆盖到网络中的所有无人机,根据RSSI计算公式,网络中的无人机以此确定与地面控制台的距离H;这里设定当无人机节点的H值小于节点通信半径Rd时,此无人机将成为预备簇头节点;
设定t时刻Ni节点与地面控制台的距离表示为H(i,t),每个监测无人机节点的通信范围为Rd;无人机节点Ni根据下式来判断自己是否成为预备簇头节点;
当确定无人机Ni为预备簇头节点后,开始向周围发送簇头标识信号indentifcation,周边无人机在接收到此信号后将加入此分簇;若此时节点Ni并没有受到其他无人机所发送的标识信号,则自动成为簇头节点,若收到标识信号,则对比两个发送信号的无人机的H值,小的节点成为簇头节点,另一个则加入此分簇;
设定t时刻预备簇头Ni是否成为簇头节点的标识为cluster head(i,t),通过下式判断无人机Ni是否成为了簇头节点;
当簇头判决完成后,网络中直接收到簇头节点广播的簇头标识信号indentifcation的无人机直接加入此分簇中,同时转发此簇头标识信号indentifcation,使通信范围内的其他无人机也加入到这一分簇中;
由于无人机处于运动中,因此分簇也不是一成不变的,在簇头节点的运动距离ΔH的值大于门限值switch_H时,网络进行簇重构;为了节省成簇时各种广播交换信息的能量消耗,只在初始准备阶段,所有节点采用预备簇头的成簇方式,在以后的簇重构周期中,都采用定时机制;这里设定d(Ni,Nj)为节点Ni与Nj间的距离;
将无人机节点感知范围内的邻居节点个数,表示为:
Ni.D={Ni|Nj∈V,d(Ni,Nj)≤Ni(R)}
其中V为所有监测节点的集合,若d(Ni,Nj)这个距离小于等于节点的竞争半径,即节点所能广播通信到的范围,则将此节点记为邻居节点,并累加为节点度;
每个无人机根据公式计算出自己的定时时间,若在时间内收到了其他无人机的簇头标识消息,就直接加入该簇,若没有收到,则确定自己为簇头并在通信范围内广播自己成为簇头的消息;到达最大竞争时间后,所有无人机根据收到的簇头广播消息加入响应的簇中,网络的簇重构完成;
设定定时时间公式为:
其中,α+β+γ=1,为各参数的权重调节系数,k为一个调节系数,设为(0.9,1)之间的一个随机数,为了减少节点间传递簇头标识消息时,时间冲突的可能性;TCH0为设定的最大竞争时间,H0为节点与中心节点的初始距离,H(Ni)为节点当前与中心节点的距离,Ni.D为节点的节点度,n为节点的总个数Ni(R)为节点的竞争半径;
这里采用定时机制,节省每轮簇重构时的的能量消耗,并且提高网络的效率;影响定时时间设定主要有三个参数,当无人机距离中心节点越接近,节点度越高,竞争半径越大时,所设定的定时时间越短,即越容易成为簇头节点;距离参数使得靠近地面控制台的无人机优先成簇。
2.根据权利要求1所述的一种基于无人机群的控制系统的无人机设备,其特征在于:每个所述机臂(9.1)的末端下方平行设置有导环(3),所述导环(3)通过若干固定悬挂柱(2)与所对应的机臂(9.1)固定悬挂连接;所述导环(3)的中部同轴心设置有导柱孔(7);
还包括缓冲导柱(4),所述缓冲导柱(4)同轴心穿过所述导柱孔(7),所述缓冲导柱(4)外壁与所述导柱孔(7)内壁间隙配合,所述缓冲导柱(4)上端同轴心固定连接有弹簧顶压盘(6),弹簧顶压盘(6)所在直径大于所述导柱孔(7),所述缓冲导柱(4)下端连接有支撑脚(5);
还包括缓冲弹簧(8),所述缓冲弹簧(8)的下端顶压连接所述弹簧顶压盘(6)上表面,所述缓冲弹簧(8)上端固定连接所述机臂(9.1)的下壁。
CN201810456649.2A 2018-05-14 2018-05-14 一种无人机群控制系统及其无人机设备 Active CN108710348B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810456649.2A CN108710348B (zh) 2018-05-14 2018-05-14 一种无人机群控制系统及其无人机设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810456649.2A CN108710348B (zh) 2018-05-14 2018-05-14 一种无人机群控制系统及其无人机设备

Publications (2)

Publication Number Publication Date
CN108710348A CN108710348A (zh) 2018-10-26
CN108710348B true CN108710348B (zh) 2024-03-26

Family

ID=63868187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810456649.2A Active CN108710348B (zh) 2018-05-14 2018-05-14 一种无人机群控制系统及其无人机设备

Country Status (1)

Country Link
CN (1) CN108710348B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803344B (zh) * 2018-12-28 2019-10-11 北京邮电大学 一种无人机网络拓扑及路由联合构建方法
CN109857117B (zh) * 2019-03-07 2021-10-29 广东华中科技大学工业技术研究院 一种基于分布式模式匹配的无人艇集群编队方法
CN110673646A (zh) * 2019-11-06 2020-01-10 中国人民解放军国防科技大学 一种无人机群的控制切换的方法及系统
CN111601356B (zh) * 2020-04-17 2023-12-29 绍兴市上虞区舜兴电力有限公司 一种无线紫外光协作无人机隐秘动态分簇系统及方法
CN112859579B (zh) * 2021-01-25 2022-11-15 北京大学 一种无人机遥感组网冗余容错控制方法
CN113194502B (zh) * 2021-04-30 2022-06-21 哈尔滨工业大学 一种无人机集群的分布式中心选择和通信方法
CN113726410B (zh) * 2021-08-27 2023-03-17 酷黑科技(北京)有限公司 一种无人机群组网方法、装置及无人机集群作业系统
CN114245436B (zh) * 2021-12-30 2024-04-02 杭州电子科技大学 无人机辅助移动边缘网络分簇方法及装置
CN118042552B (zh) * 2024-04-12 2024-06-07 成都流体动力创新中心 一种基于半实物仿真系统的无人机集群自组网算法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123473A (zh) * 2011-01-06 2011-07-13 山东大学 无线传感器网络基于动态簇机制的目标跟踪方法
CN103052130A (zh) * 2012-11-20 2013-04-17 南京邮电大学 一种基于粗糙集的无线多媒体传感器网络数据融合方法
CN103188757A (zh) * 2011-12-31 2013-07-03 王佐明 基于分簇网络感知技术的火情趋势分析方法及系统
CN103744290A (zh) * 2013-12-30 2014-04-23 合肥工业大学 一种多无人机编队分层目标分配方法
CN103777640A (zh) * 2014-01-15 2014-05-07 北京航空航天大学 一种分布式控制无人机群集中分簇编队方法
CN104301864A (zh) * 2014-07-23 2015-01-21 浙江工业大学 电动汽车充电桩集群的无线通信组网方法
CN104853395A (zh) * 2014-12-16 2015-08-19 黄伟 一种多感知不等半径无线传感网络路由实现方法
CN105035300A (zh) * 2015-08-27 2015-11-11 深圳市恩孚电子科技有限公司 无人机避震系统
CN105323818A (zh) * 2015-11-04 2016-02-10 天津理工大学 基于网络区域划分和距离的节能分簇路由方法
CN105796088A (zh) * 2016-02-25 2016-07-27 张学魁 一种颅脑压力无创监测分析系统
CN106494291A (zh) * 2016-12-23 2017-03-15 合肥工业大学 一种搭载多旋翼无人机的军事车及其自调节方法
CN106741880A (zh) * 2016-12-25 2017-05-31 芜湖元航空科技有限公司 一种无人机减震机架
CN206623989U (zh) * 2017-03-16 2017-11-10 肖旺旺 一种户外探险用飞行器
CN206954522U (zh) * 2017-05-05 2018-02-02 西安工业大学 一种悬吊型载物无人机
CN107979846A (zh) * 2017-12-29 2018-05-01 中国人民解放军陆军工程大学 一种情景知觉下的重叠联盟博弈模型及空间自适应算法
CN208198804U (zh) * 2018-05-14 2018-12-07 西安工业大学 一种具有降落缓冲功能的无人机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312993B2 (en) * 2015-10-30 2019-06-04 The Florida International University Board Of Trustees Cooperative clustering for enhancing MU-massive-MISO-based UAV communication

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123473A (zh) * 2011-01-06 2011-07-13 山东大学 无线传感器网络基于动态簇机制的目标跟踪方法
CN103188757A (zh) * 2011-12-31 2013-07-03 王佐明 基于分簇网络感知技术的火情趋势分析方法及系统
CN103052130A (zh) * 2012-11-20 2013-04-17 南京邮电大学 一种基于粗糙集的无线多媒体传感器网络数据融合方法
CN103744290A (zh) * 2013-12-30 2014-04-23 合肥工业大学 一种多无人机编队分层目标分配方法
CN103777640A (zh) * 2014-01-15 2014-05-07 北京航空航天大学 一种分布式控制无人机群集中分簇编队方法
CN104301864A (zh) * 2014-07-23 2015-01-21 浙江工业大学 电动汽车充电桩集群的无线通信组网方法
CN104853395A (zh) * 2014-12-16 2015-08-19 黄伟 一种多感知不等半径无线传感网络路由实现方法
CN105035300A (zh) * 2015-08-27 2015-11-11 深圳市恩孚电子科技有限公司 无人机避震系统
CN105323818A (zh) * 2015-11-04 2016-02-10 天津理工大学 基于网络区域划分和距离的节能分簇路由方法
CN105796088A (zh) * 2016-02-25 2016-07-27 张学魁 一种颅脑压力无创监测分析系统
CN106494291A (zh) * 2016-12-23 2017-03-15 合肥工业大学 一种搭载多旋翼无人机的军事车及其自调节方法
CN106741880A (zh) * 2016-12-25 2017-05-31 芜湖元航空科技有限公司 一种无人机减震机架
CN206623989U (zh) * 2017-03-16 2017-11-10 肖旺旺 一种户外探险用飞行器
CN206954522U (zh) * 2017-05-05 2018-02-02 西安工业大学 一种悬吊型载物无人机
CN107979846A (zh) * 2017-12-29 2018-05-01 中国人民解放军陆军工程大学 一种情景知觉下的重叠联盟博弈模型及空间自适应算法
CN208198804U (zh) * 2018-05-14 2018-12-07 西安工业大学 一种具有降落缓冲功能的无人机

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一种LEACH的分簇优化策略;梁度;刘梦璐;章成驹;;北京联合大学学报(第01期);全文 *
基于农田无线传感网络的分簇路由算法;江冰;毛天;唐大卫;邬智俊;韩光洁;;农业工程学报;20170823(第16期);全文 *

Also Published As

Publication number Publication date
CN108710348A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
CN108710348B (zh) 一种无人机群控制系统及其无人机设备
CN108710382B (zh) 一种基于分簇算法的智能监测无人机控制系统
CN106900025B (zh) 一种基于双簇首的无线传感器网络分簇路由方法
CN113630838B (zh) 基于类异构蜂窝网络的立体空间蜂群组网架构构建方法
CN109660958B (zh) 一种电力抄表系统的组网方法及抄表方法
CN107148071B (zh) 基于低功耗广域网和Mesh融合的泛在接入方法及系统
CN108768494B (zh) 一种无人机接力测控方法
US20170366236A1 (en) Method and apparatus for paging using beamforming in wireless communication system
KR101569298B1 (ko) 무선랜 시스템에서 통신 방법
CA3096827C (en) Method and device for dynamic and seamless link selection
CN103222311B (zh) 用于无线直接链路操作的方法
CN101965743B (zh) 用于无线网络中的关联和重新关联的布置
CN108307489A (zh) 信息处理方法、装置、用户设备及基站
EP3491885B1 (en) Managing sleep cycles in a wireless communications system
CN106465369A (zh) 在无线通信系统中由终端执行的装置对装置(d2d)操作的方法及使用该方法的终端
CN104115512A (zh) 用于合作伙伴网络共享架构的系统和方法
CN101227367B (zh) 分布式无线传感器网络竞争接入周期多级配置方法
CN101013926A (zh) 一种无线传感器网络通信方法和系统
CN109714745B (zh) 输电线路监测数据传输系统
CN103167586A (zh) 一种基于ap集群的无线终端接入和重选方法
CN101848534B (zh) 基于定向天线的移动通信节点组网控制方法
CN108260099B (zh) 水下磁感应无线传感网络的媒体接入控制方法
EP3496497B1 (en) Method for controlling c-ran
CN103181216B (zh) 使用搁置模式扩展毫微微代理体系结构中的客户端集
CN110100471A (zh) 无线电网络节点以及在其中执行的用于处理无线通信网络中的通信的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant