CN108700816A - 散射测量中的偏振调谐 - Google Patents

散射测量中的偏振调谐 Download PDF

Info

Publication number
CN108700816A
CN108700816A CN201680082112.3A CN201680082112A CN108700816A CN 108700816 A CN108700816 A CN 108700816A CN 201680082112 A CN201680082112 A CN 201680082112A CN 108700816 A CN108700816 A CN 108700816A
Authority
CN
China
Prior art keywords
radiation
substrate
measurement
polarization state
method described
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680082112.3A
Other languages
English (en)
Inventor
毛瑞特斯·范德查尔
帕特里克·沃纳阿
张幼平
A·J·登博夫
肖锋
M·埃伯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of CN108700816A publication Critical patent/CN108700816A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种方法包括:将辐射的照射束投影到衬底上的量测目标上;检测从衬底上的量测目标反射的辐射;和基于检测到的辐射来确定衬底上的特征的特性,其中,可控地选择检测到的辐射的偏振状态,以优化检测到的辐射的品质。

Description

散射测量中的偏振调谐
相关申请的交叉引用
本申请要求2015年12月17日递交的美国申请62/269,004的优先权,该美国申请的全部内容以引用的方式并入本文中。
技术领域
本发明总体上涉及在光刻设备中使用的量测方法和工具,更具体地涉及包括如下系统的方法和工具:所述系统可以提供可变的照射设定,以获得关于量测目标的信息。
背景技术
光刻设备是将期望的图案施加到衬底上(通常是衬底的目标部分上)的机器。例如,可以将光刻设备用于制造集成电路(IC)。在这种情况下,可以将图案形成装置(替代地,称为掩模或掩模版)用于产生待形成于IC的单层上的电路图案。可以将该图案转印到衬底(例如硅晶片)上的目标部分(例如,包括管芯的一部分、一个管芯或更多个管芯)上。通常,通过成像到设置在衬底上的辐射敏感材料(抗蚀剂)层上进行图案的转印。通常,单个衬底将包含被连续地形成图案的相邻目标部分的网络。公知的光刻设备包括所谓的步进器和所谓的扫描器:在步进器中,通过将全部图案一次曝光到目标部分上来辐射每一个目标部分;在扫描器中,通过辐射束沿给定方向(“扫描”方向)扫描所述图案且同时沿与该方向平行或反向平行的方向同步扫描所述衬底来辐射每一个目标部分。另外,能够通过将图案压印到衬底上而将图案从图案形成装置转印到衬底上。
发明内容
为了允许多个已形成图案的层定位在衬底上,期望相对于辐射束和图案形成装置准确地设定衬底的位置。这可以通过将衬底准确地定位于衬底台上并且相对于辐射束和图案形成装置定位衬底台而执行。
可以执行衬底的对准。在一个对准系统中,测量衬底上的多个对准标记以得出坐标系,将该坐标系与模型化栅格进行比较以得出衬底上的特征的位置。将衬底夹持到衬底台上或者在非光刻过程步骤中发生的晶片变形可能引起衬底的变形,这可以通过将测量与栅格进行比较而监测。可以产生在曝光晶片时使用的、描述晶片栅格的模型,以便补偿所述变形。
特别感兴趣的一个属性是重叠,即,形成在衬底上的连续层的对准。可以使用如上文所描述的模型化栅格进行重叠的测量。描述相对于先前层的衬底上方的重叠误差的栅格模型可以被生成并且用于控制回路中,以确保多个批次之间的一致性。
为了提供对于遍及衬底的衬底属性有用的模型,可能需要可以进行测量的多个位置。因此,当规划衬底的布局(即,待形成于衬底上的图案的布置)时,提供多个样本位置。必需的衬底属性可以在每个样本位置处测量或者从在每个样本位置处进行的测量中导出。
本说明书涉及用于在例如图案形成装置的图案和图案形成装置的照射的一个或更多个属性的优化中、在图案形成装置上的一个或更多个结构层的设计中和/或在计算光刻术中使用图案形成装置诱导相位的方法和设备。
在一方面中,提供一种方法,包括:将辐射的照射束投影到衬底上的量测目标上;检测从所述衬底上的量测目标反射的辐射;和基于检测到的辐射来确定所述衬底上的特征的特性,其中,可控地(以能够控制的方式选择)选择所述检测到的辐射的偏振状态,以优化所述检测到的辐射的品质。
在一方面中,提供一种制造器件的方法,其中,使用光刻过程将器件图案施加至一系列衬底,所述方法包括:使用本文中描述的方法准备所述器件图案,并且将所述器件图案曝光到所述衬底上。
在一方面中,提供一种包括机器可读指令的非暂时性计算机程序产品,所述机器可读指令配置成使得处理器执行本文中描述的方法。
在一方面中,提供一种制造器件的方法,其中,使用光刻过程将器件图案施加至一系列衬底,所述方法包括:使用本文中描述的方法调适图案形成装置的设计。
附图说明
现在将参考附图并且仅以示例的方式来描述实施例,其中:
图1示意性地描绘了光刻设备的实施例;
图2示意性地描绘了光刻单元或簇的实施例;
图3示意性地描绘了用作量测装置的散射仪的实施例;
图4示意性地描绘了用作量测装置的散射仪的另一个实施例;
图5描绘了形成于衬底上的复合量测目标;
图6是示出根据本发明的实施例的叠层敏感度响应于照射调谐的变化的曲线图;
图7是根据实施例的可变光瞳的示意图。
具体实施方式
在详细地描述实施例之前,有益的是呈现可以实施这些实施例的示例性环境。
图1示意性地描绘了光刻设备LA。该设备包括:
-照射系统(照射器)IL,配置成调节辐射束B(例如DUV辐射或EUV辐射);
-支撑结构(例如掩模台)MT,构造成支撑图案形成装置(例如掩模)MA并且连接到第一定位器PM,该第一定位器配置成根据某些参数来准确地定位图案形成装置;
-衬底台(例如晶片台)WTa,构造成保持衬底(例如涂覆有抗蚀剂的晶片)W并且连接到第二定位器PW,该第二定位器配置成根据某些参数来准确地定位衬底;和
-投影系统(例如折射型投影透镜系统)PS,配置成将由图案形成装置MA赋予辐射束B的图案投影到衬底W的目标部分C(例如,包括一个或更多个管芯)上。
照射系统可以包括多种类型的光学部件,诸如折射型、反射型、磁性型、电磁型、静电型或其它类型的光学部件,或者它们的任意组合,用以对辐射进行引导、成形或控制。
图案形成装置支撑结构以依赖于图案形成装置的方向、光刻设备的设计、以及诸如图案形成装置是否被保持在真空环境中等其它条件的方式保持图案形成装置。图案形成装置支撑结构可以采用机械的、真空的、静电的、或其它夹持技术来保持图案形成装置。图案形成装置支撑结构可以是框架或台,例如,它可以根据需要而是固定的或者是可移动的。图案形成装置支撑结构可以确保图案形成装置例如相对于投影系统位于期望的位置。可以认为本文中使用的任何术语“掩模版”或“掩模”都与更加上位的术语“图案形成装置”同义。
本文中使用的术语“图案形成装置”应该被宽泛地解释为表示下述任何装置:该装置能够用于将图案在辐射束的横截面中赋予辐射束,以便在衬底的目标部分中形成图案。应该注意的是,被赋予辐射束的图案可能不与在衬底的目标部分中期望的图案完全对应(例如,如果该图案包括相移特征或者所谓的辅助特征)。通常,被赋予辐射束的图案将会与在目标部分(例如集成电路)中形成的器件中的特定的功能层相对应。
图案形成装置可以是透射型的或反射型的。图案形成装置的示例包括掩模、可编程反射镜阵列和可编程LCD面板。掩模在光刻术中是公知的,并且包括诸如二元掩模、交替相移掩模、衰减相移掩模以及各种混合掩模类型的掩膜类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置,每一个小反射镜都可以独立地倾斜,以便在不同方向上反射入射辐射束。已倾斜的反射镜将图案赋予由反射镜矩阵反射的辐射束。
本文中使用的术语“投影系统”应该被宽泛地解释为包括任意类型的投影系统,包括折射型、反射型、反射折射型、磁性型、电磁型和静电型光学系统或者它们的任意组合,如对于所使用的曝光辐射或者诸如使用浸没液体或使用真空之类等其它因素所适合的。可以认为本文中使用的任何术语“投影透镜”与更加上位的术语“投影系统”同义。
如此处所示出的,所述光刻设备是透射型的(例如采用透射型掩模)。可替代地,所述光刻设备可以是反射型的(例如采用如上所述的类型的可编程反射镜阵列,或者采用反射型掩模)。
光刻设备可以是具有两个(双平台)或更多个台的类型(例如,两个或更多个衬底台,两个或更多个图案形成装置支撑结构,或者衬底台和测量台)。在这种“多平台”机器中,可以并行使用附加台,或者可以在一个或更多个台上执行预备步骤的同时一个或更多个其它台正被用于曝光。
光刻设备还可以是如下类型:其中衬底W的至少一部分可以被具有相对高折射率的液体(例如水)覆盖,以便填充投影系统和衬底之间的空间。浸没液体也可以被施加到光刻设备中的其它空间,例如掩模和投影系统之间的空间。在本领域众所周知浸没技术用于增加投影系统的数值孔径。本文中使用的术语“浸没”并不意味着诸如衬底的结构必须浸没在液体中,相反地,“浸没”仅意味着在曝光期间液体位于投影系统和衬底之间。
参照图1,照射器IL接收来自辐射源SO的辐射束。辐射源和光刻设备可以是分立的实体(例如当辐射源是准分子激光器时)。在这种情况下,不将辐射源视为形成光刻设备的一部分,并且借助包括例如合适的定向反射镜和/或扩束器的束传递系统BD来将辐射束从辐射源SO传到照射器IL。在其它情况下,辐射源可以是光刻设备的组成部分(例如当辐射源是汞灯时)。可以将辐射源SO和照射器IL以及必要时设置的束传递系统BD一起称作辐射系统。
照射器IL可以包括用于调整辐射束的角强度分布的调整器AD。通常,可以对照射器的光瞳平面中的强度分布的至少外部和/或内部径向范围(一般分别称为σ-外部和σ-内部)进行调整。此外,照射器IL可以包括各种其它部件,例如整合器IN和聚光器CO。可以将照射器用于调节辐射束,以便在其横截面中具有期望的均匀性和强度分布。
辐射束B入射到保持在图案形成装置支撑结构(例如掩模台MT)上的图案形成装置(例如掩模)MA上,并且通过图案形成装置形成图案。在穿过图案形成装置(例如掩模)MA之后,辐射束B通过投影系统PS,该投影系统将辐射束聚焦到衬底W的目标部分C上。借助于第二定位器PW和位置传感器IF(例如,干涉仪装置、线性编码器、2D编码器或电容传感器),可以准确地移动衬底台WTa,例如以便将不同的目标部分C定位在辐射束B的路径中。类似地,例如在从掩模库的机械获取之后或者在扫描期间,可以将第一定位器PM和另一个位置传感器(图1中未明确地示出)用于相对于辐射束B的路径准确地定位图案形成装置(例如掩模)MA。通常,可以借助形成第一定位器PM的一部分的长行程模块(粗定位)和短行程模块(精定位)来实现图案形成装置支撑结构(例如掩模台)MT的移动。类似地,可以使用形成第二定位器PW的一部分的长行程模块和短行程模块来实现衬底台WTa的移动。在步进器(与扫描器相对)的情况下,图案形成装置支撑结构(例如掩模台)MT可以仅与短行程致动器相连,或者可以是固定的。
可以使用掩模对准标记M1、M2和衬底对准标记P1、P2来对准图案形成装置(例如掩模)MA和衬底W。尽管图中所示的衬底对准标记占据了专用目标部分,但它们可以位于目标部分之间的空间(这些是公知的划线对齐标记)中。类似地,在将多于一个的管芯设置在图案形成装置(例如掩模)MA上的情况下,掩模对准标记可以位于管芯之间。小对准标记也可以被包括在管芯内、在器件特征中;在这种情况下,期望使标记尽可能地小并且无需与相邻特征不同的任何成像或过程条件。在下文中进一步描述检测对准标记的对准系统。
可以将图中所示的设备用于以下模式中的至少一种模式中:
-在步进模式中,在将图案形成装置支撑结构(例如掩模台)MT和衬底台WTa保持为基本静止的同时,将赋予辐射束的整个图案一次投影到目标部分C上(即,单一的静态曝光)。然后,使衬底台WTa沿着X方向和/或Y方向移动,使得不同的目标部分C能够被曝光。在步进模式中,曝光场的最大尺寸限制了在单一的静态曝光中成像的目标部分C的尺寸。
-在扫描模式中,在对图案形成装置支撑结构(例如衬底台)MT和衬底台WTa同步地进行扫描的同时,将赋予辐射束的图案投影到目标部分C上(即,单一的动态曝光)。衬底台WTa相对于图案形成装置支撑结构(例如衬底台)MT的速度和方向可以通过投影系统PS的放大(缩小)和图像反转特性来确定。在扫描模式中,曝光场的最大尺寸限制了单一动态曝光中目标部分(在非扫描方向上)的宽度,而扫描运动的长度决定了目标部分(在扫描方向上)的高度。
-在另一种模式中,将用于保持可编程图案形成装置的图案形成装置支撑结构(例如衬底台)MT保持为基本静止,并且在对衬底台WTa进行移动或扫描的同时,将赋予辐射束的图案投影到目标部分C上。在这种模式中,通常采用脉冲辐射源,并且在衬底台WTa的每一次移动之后或者在扫描期间的连续辐射脉冲之间,根据需要来更新可编程图案形成装置。这种操作模式能够容易地应用于利用可编程图案形成装置(例如上述类型的可编程反射镜阵列)的无掩模光刻术。
还可以采用上述使用模式的组合和/或变型或者完全不同的使用模式。
光刻设备LA是所谓的双平台类型,该双平台类型具有两个台WTa、WTb(例如两个衬底台)和两个站-曝光站和测量站-可以在所述两个站之间交换衬底台。例如,当一个台上的衬底在曝光站处进行曝光时,另一个衬底可以被装载到测量站处的另一个衬底台上并执行各种预备步骤。预备步骤可以包括使用水平传感器LS来绘制衬底的表面控制的地图,以及使用对准传感器AS来测量衬底上的对准标记的位置,这两个传感器都由参考框架RF支撑。若位置传感器IF在台处于测量站以及处于曝光站时不能够测量台的位置,则可以提供第二位置传感器以使得能够在两个站处追踪台的位置。作为另一个示例,在曝光站处曝光一个台上的衬底时,不具有衬底的另一个台可以在测量站处等待(其中,可选地可以发生测量活动)。这另一个台具有一个或更多个测量装置并且可选地具有其它工具(例如清洁设备)。当衬底已经完成曝光时,不具有衬底的台移动到曝光站以执行例如测量;并且,具有衬底的台移动到卸除该衬底并且装载另一个衬底的位置(例如测量站)。这些多台布置实现了设备的生产量的实质增加。
如图2所示,光刻设备LA可以形成光刻单元LC(有时也被称为光刻元或光刻簇)的一部分,光刻单元LC也包括用于对衬底执行一个或更多个曝光前处理和曝光后处理的设备。常规地,这些设备包括用于沉积抗蚀剂层的一个或更多个旋涂器SC、用于显影曝光后的抗蚀剂的一个或更多个显影器DE、一个或更多个激冷板CH和/或一个或更多个焙烤板BK。衬底处置器或机器人RO从输入/输出通口I/O1、I/O2拾取衬底,将该衬底在不同的处理设备之间移动并且将其递送至光刻设备的进料台LB。经常被统称为轨道的这些设备处于轨道控制单元TCU的控制下,该轨道控制单元TCU自身由管理控制系统SCS控制,该管理控制系统SCS也经由光刻控制单元LACU控制光刻设备。因此,可以操作不同的设备以最大化生产量和处理效率。
为了正确地并且一致地曝光由光刻设备曝光的衬底,需要检查曝光后的衬底以测量一个或更多个属性,诸如后续层之间的重叠误差、线厚度、临界尺寸(CD)等。若检测到了误差,则可以对一个或更多个后续衬底的曝光进行调整。例如,若可以足够迅速并且快速地完成检查使得该批次的其它衬底仍待曝光,则这可能是特别有用的。另外,已经曝光的衬底可以被剥离和返工(以改善良率)或者被舍弃,由此避免对已知有缺陷的衬底执行曝光。在衬底的仅一些目标部分有缺陷的情况下,可以仅对那些良好的目标部分执行进一步曝光。另一种可能性是调适后续过程步骤的设定以补偿误差,例如,修整蚀刻步骤的时间可以被调整为补偿由光刻过程步骤引起的衬底间CD变化。
在实施例中,图案形成装置MA可以设置有功能图案(即,将形成可操作装置的一部分的图案)。可替代地或另外,图案形成装置可以设置有测量图案,该测量图案不形成功能图案的一部分。测量图案可以例如定位在功能图案的一侧。测量图案可以用于例如测量图案形成装置相对于光刻设备的衬底台WT(参见图1)的对准,或者可以用于测量一些其它参数(例如,重叠)。本文中描述的技术可以应用于这种测量图案。
根据本发明的各种实施例,测量的或模拟的晶片特征和光刻设备属性可以用于更新掩模版的设计以改善性能。在一个示例中,可以根据测量的和/或模拟的晶片的特征来定位量测目标(测量图案)的位置,使得晶片特征和设备属性的影响减小。可替代地,晶片和/或光刻系统的类似特征可以用于更新功能图案的位置和/或方向。
以介绍的方式来描述使用量测目标的检查设备的操作。检查设备用于确定衬底的一个或更多个属性,尤其确定不同衬底的一个或更多个属性如何变化,或者同一衬底的不同层的一个或更多个属性如何逐层和/或遍及衬底而变化。检查设备可以集成到光刻设备LA或光刻元LC中,或者可以是独立的装置。为了实现最快速测量,需要使检查设备紧接在曝光之后测量曝光后的抗蚀剂层中的一个或更多个属性。然而,抗蚀剂中的潜像具有非常低的对比度(在已曝光到辐射的抗蚀剂的部分与尚未曝光到辐射的抗蚀剂的部分之间仅存在非常小的折射率差)而且并不是所有的检查设备都具有足够的敏感度来进行潜像的有用测量。因此,可以在曝光后焙烤步骤(PEB)之后进行测量,该曝光后焙烤步骤通常是对曝光后的衬底进行的第一个步骤并且增加抗蚀剂的已曝光部分与未曝光的部分之间的对比度。在这个阶段,抗蚀剂中的图像可以被称作半潜像。也有可能在抗蚀剂的已曝光部分或未曝光部分已经被移除时或者在诸如蚀刻的图案转印步骤之后进行显影后的抗蚀剂图像的测量。虽然后一种可能性限制了返工有缺陷衬底的可能性,但仍然可以提供有用的信息,例如为了过程控制的目的。
图3描绘了散射仪SM1的实施例。该散射仪包括将辐射投影到衬底6上的宽带(白光)辐射投影仪2。反射的辐射被传递到光谱仪检测器4,该光谱仪检测器测量镜面反射的辐射的光谱10(即,作为波长的函数的强度的测量)。根据该数据,可以通过例如严格耦合波分析(RCWA)和非线性回归或者通过与图3的底部处示出的模拟光谱库的比较而由处理单元PU重构生成已检测到的光谱的结构或轮廓。通常,对于重构而言,所述结构的一般形式是已知的,并且根据用于制造结构的过程的知识来假定一些参数,从而仅留下结构的少量参数用以根据散射测量的数据来确定。这种散射仪可以配置成正入射散射仪或斜入射散射仪。
图4示出了散射仪SM2的另一个实施例。在该装置中,由辐射源2发射的辐射通过使用透镜系统12而聚焦并且透射通过干涉滤光器13和偏振器17、由部分反射表面16反射并且经由显微镜物镜15而聚焦到衬底W上,该显微镜物镜具有高数值孔径(NA),理想地是至少0.9或至少0.95。浸没散射仪甚至可以具有数值孔径大于1的透镜。然后,反射的辐射通过部分反射表面16而传递到检测器18中,以使散射光谱被检测到。检测器可以位于后投影光瞳平面11中,该后投影光瞳平面处于透镜15的焦距处,然而,该光瞳平面可代替地使用辅助光学器件(未示出)而再成像到检测器18上。光瞳平面是辐射的径向位置限定入射角并且角位置限定辐射的方位角的平面。检测器理想地是二维检测器,以便能够测量衬底目标的二维角度散射光谱(即,作为散射角的函数的强度的测量)。检测器18可以是例如CCD或CMOS传感器阵列,并且可以具有例如每帧40毫秒的积分时间。
经常使用参考束来例如测量入射辐射的强度。为了进行该测量,当辐射束入射到部分反射表面16上时,辐射束的一部分透射通过该表面并且朝向参考反射镜14作为参考束。然后,将参考束投影到同一检测器18的不同部分上。
一个或更多个干涉滤光器13可以用于选择在例如405nm至790nm或甚至更小(例如200nm至300nm)的范围内的感兴趣的波长。干涉滤光器可以是可调谐的,而不是包括一组不同的滤光器。作为一个或更多个干涉滤光器的替代或者除了一个或更多个干涉滤光器以外,还可以使用光栅。
检测器18可以测量在单一波长(或窄波长范围)下的散射辐射的强度、分别在多个波长下的散射辐射的强度,或者在一波长范围上而积分的散射辐射的强度。另外,检测器可以分别测量横向磁(TM)偏振辐射和横向电(TE)偏振辐射的强度,和/或横向磁偏振辐射与横向电偏振辐射之间的相位差。
使用宽带辐射源2(即,具有宽范围的辐射频率或波长并且因此具有宽范围的颜色的辐射源)是可能的,由此给出较大的集光率,从而允许多个波长的混合。宽带中的多个波长理想地各自具有δλ的带宽和至少2δλ(即,波长带宽的两倍)的间隔。多个辐射“源”可以是已使用例如光纤束分开的延伸型辐射源的不同部分。这样,可以并行地在多个波长下测量角度分辨散射光谱。可以量测3D光谱(波长和两个不同的角度),它比2D光谱包含更多信息。这样允许测量更多信息,由此增加量测过程的稳固性。在美国专利申请公开案第US 2006-0066855号中对此进行了更详细的描述,该美国专利申请的全部内容以引用的方式并入本文中。
通过将束在其被目标改变方向之前与之后的一个或更多个属性进行比较,可以确定衬底的一个或更多个属性。例如,可以通过将改变方向的束与使用衬底的模型计算出的理论上改变方向的束进行比较以及搜索给出测量的改变方向的束与计算出的改变方向的束之间的最佳拟合的模型来进行上述确定。通常,使用参数化通用模型,并且改变该模型的参数(例如图案的宽度、高度和侧壁角)直至获得最佳匹配为止。
使用两种主要类型的散射仪。光谱散射仪将宽带辐射束导向到衬底上并且测量散射到特定窄角范围中的辐射的光谱(强度是波长的函数)。角度分辨散射仪使用单色辐射束并且测量作为角度的函数的散射辐射的强度(或者在椭圆测量配置的情况下,测量强度比率和相位差)。可替代地,不同波长的测量信号可以分别进行测量并且在分析阶段进行组合。偏振辐射可以用于从同一衬底产生一个以上的光谱。
为了确定衬底的一个或更多个参数,通常在由衬底的模型产生的理论光谱与由改变方向的束产生的作为波长(光谱散射仪)或角度(角度分辨散射仪)的函数的测量光谱之间找到最佳匹配。为了找到最佳匹配,存在可以组合的多种方法。例如,第一种方法是迭代搜索法,其中,使用第一组模型参数来计算第一光谱;将该第一光谱与测量的光谱进行比较。然后,选择第二组模型参数,计算第二光谱,并且将该第二光谱与测量的光谱进行比较。重复这些步骤,目的在于找到给出最佳匹配光谱的参数集合。通常,使用来自比较的信息来操控后续参数集合的选择。该过程被称为迭代搜索技术。具有给出最佳匹配的参数集合的模型被视为测量的衬底的最佳描述。
第二种方法是形成光谱库,每一个光谱对应于模型参数的特定集合。通常,模型参数的集合被选择为涵盖衬底属性的所有或几乎所有可能的变化。将测量的光谱与库中的光谱进行比较。类似于迭代搜索法,具有对应于给出最佳匹配的光谱的参数集合的模型被视为测量的衬底的最佳描述。内插技术可以用于更准确地确定这种库搜索技术中的最佳参数集合。
在任何方法中,应该使用计算出的光谱中的足够的数据点(波长和/或角度)以便实现准确匹配,通常针对每一个光谱使用介于80个直至800个之间的数据点或更多的数据点。通过使用迭代法,用于每一个参数值的每一次迭代都会涉及80个或更多个数据点处的计算。将此计算乘以迭代次数,以获得正确的剖面参数。因此,可能需要许多计算。实际上,这导致处理的准确度与速度之间的折衷。在库途径中,在设置库所需的准确度与时间之间存在类似的折衷。
在上文所描述的散射仪中的任一个中,衬底W上的目标可以是光栅,该光栅被印制成使得在显影之后由固体抗蚀剂线形成栅条。栅条可替代地蚀刻到衬底中。目标图案被选择成对诸如光刻投影设备中的聚焦、剂量、重叠、色像差等感兴趣的参数敏感,使得相关参数的变化将显现所印制的目标的变化。例如,目标图案可能对光刻投影设备(特别是投影系统PL)的色像差敏感,并且照射对称性和这种像差的存在将在印制的目标图案中的变化中显现。因此,印制的目标图案的散射测量数据被用于重构目标图案。可以根据印制步骤和/或其它散射测量过程的知识,将目标图案的参数(诸如线宽和形状)输入到由处理单元PU执行的重构过程中。目标中的线可以由子单元构成,包括共同限定光栅(例如在美国专利案第7,466,413号中描述的)的线的近似或次分辨率特征。
虽然本文中已经描述了散射仪的实施例,但在实施例中可以使用其它类型的量测设备。例如,可以使用诸如在美国专利案第8,797,554号中描述的暗场量测设备,该美国专利的全部内容以引用的方式并入本文中。此外,那些其它类型的量测设备可以使用与散射量测完全不同的技术。
例如,在本文中描述的目标可以是被设计成用于Yieldstar单独式或集成式量测工具中的重叠目标,和/或对准目标,诸如通常与TwinScan光刻系统一起使用的那些对准目标,所述量测工具和光刻系统都可以从荷兰费尔德霍芬(Veldhoven)的ASML公司购得。
通常,与这些系统一起使用的量测目标应该被印制在晶片上,其尺寸符合对待成像在该晶片上的特定微电子器件的设计规范。随着过程继续逼近先进过程节点中的光刻设备成像分辨率的限制,设计规则和过程兼容性要求为适当目标的选择带来压力。由于目标自身变得更加先进,所以经常需要使用分辨率增强技术,诸如相移掩模和光学邻近校正,过程设计规则内的目标的可印制性变得更不确定。结果,可能使所提出的标记经受测试,以便从可印制性和可检测性的角度两者确认其生存力。在商业环境中,良好的重叠标记可检测性可以被视为较低的总测量不确定度和较短的“移动-获取-移动”时间的组合,这是由于慢获取对生产线的总生产量不利。现代以微衍射为基础的重叠目标(μDBO)在一侧上可以是大约10μm,这与40×160μm2的目标(诸如用于监测器晶片的上下文中使用的目标)相比提供固有地较低的检测信号。
另外,一旦已选择符合以上准则的标记,就存在可检测性将相对于过程变化而改变的可能性,该过程变化例如是膜厚度变化、各种蚀刻偏置、以及通过蚀刻和/或抛光过程诱发的几何不对称性。因此,选择针对各种过程变化具有低可检测性变化和低重叠/对准变化的目标可能是有用的。同样地,通常,用于产生待成像的微电子器件的特定机器的指纹(印制特性,包括例如透镜像差)将影响目标标记的成像和产生。因此,确保标记耐受指纹的影响可能是有用的,这是由于一些图案将或多或少地被特定的光刻指纹影响。
图5描绘了根据已知的实际情况而形成在衬底上的复合量测目标。该复合目标包括四个光栅32、33、34、35,这些光栅紧密地定位在一起,使得它们都处于由量测设备的照射束形成的测量斑31内。因此,这四个目标都被同时地照射并且同时地成像在传感器4、18上。在专用于重叠测量的示例中,光栅32、33、34、35本身是由在形成于衬底W上的半导体器件的不同层中已形成图案的覆盖光栅形成的复合光栅。光栅32、33、34、35可以具有被不同地偏置的重叠偏移,以便促进形成有复合光栅的不同部分的层之间的重叠的测量。光栅32、33、34、35的方向也可以是不同的,如图所示,以便在X方向和Y方向上衍射入射的辐射。在一个示例中,光栅32和34是分别具有+d、-d的偏置的X方向光栅。这意味着光栅32使其覆盖部件布置成这样:若覆盖部件两者都确切地印制于其名义位置处,则所述部件中的一个将相对于另一个偏移达距离d。光栅34使其部件布置成这样:若所述部件被完美地印制,则将存在距离为d但是在与第一光栅等相反的方向上的偏移。光栅33和35可以是分别具有偏移+d和-d的Y方向光栅。尽管示出了四个光栅,但另一个实施例可以包括更大的矩阵以获得期望的准确度。例如,九个复合光栅的3×3阵列可以具有偏置-4d、-3d、-2d、-d、0、+d、+2d、+3d、+4d。可以在由传感器4、18捕获的图像中识别这些光栅的分离图像。
产品晶片上的测量焦点、重叠和CD可以用于确定产生产品晶片中的过程误差。另一方面,由于标记位置通常位于不同于功能结构的位置处,并且那些位置经受不同处理并且以其它方式具有影响确保在标记位置处的测量与实际功能结构属性充分相关的能力的不同属性。例如,在目标位于划线中的情况下,该目标可能处于不同于所产生的功能电路的当前功能层的高度的高度。同样地,在测量远离临界焦点、重叠或临界尺寸均匀性约束的情况下,测量可能没有反映其意图反映的信息。
如上文所提及的,检测器可以配置成使用TM或TE偏振光。将会想到的是,也有可能使用两种偏振的组合来获得额外的信息。实际上,光可以使用一对光纤从光源传输。一条光纤中的光是TE,而另一条光纤中的光是TM。可以将来自两条光纤的光进行组合,以获得具有两个状态的组合的光。
在实施例中,系统可以设计成提供额外的灵活性。在这种方法中,一条或两条光纤可以包括相关联的衰减器。通过对一个或更多个衰减器进行适当的调整,可以修改偏振状态TE+TM,以提供多种不同的状态。可以将组合状态参数化为α*TE+(1-α)*TM。
衰减器可以被实施为例如可以放置在光纤之前或之后(但在两条光纤被组合之前)的中性浓度滤光器。该中性浓度滤光器可以是可编程灰色滤光器。
为了确定α,可以分别测量两个信号并且计算比率,或者在正使用一个或更多个可编程滤光器的情况下,可以基于滤光器的编程状态在软件中计算比率。
在可替代的实施例中,可以针对一条或两条光纤引入半波片,而不使用衰减器。通过旋转所述板,照射的偏振状态也旋转。
图6示出了偏振调谐对模拟响应的影响的示例。具体地说,针对α的多种值示出了关于波长的叠层敏感度(线)和重叠误差(点)。技术人员将会理解的是,较大值的敏感度通常是优选的,如稳定性对波长的关系一样。可以根据通常所理解的原理对足够敏感并且足够稳定的叠层敏感度进行选择。
通常,可以选择α以使由缺陷引入的重叠误差的影响最小化。因此,在实施例中,为了减少残余误差而优化偏振状态。应该认识到,可以使用相同的偏振调谐方法(例如光栅变形)来优化其它参数。为特定测量任务挑选最佳的α将涉及选择提供足够高的叠层敏感度和足够高的稳定性对波长性能的关系,以允许期望的测量。应该认识到,所述要求将依赖于测量任务所需的性能,这将在晶片布局和设计规范中变化。这种优化可以基于模拟来执行,或者可以使用来自迭代设计过程中的中间设计成像的测量数据来进行,以用于方案选择。例如,叠层敏感度的稳定性也可以构成选择准则。
在实施例中,可以使用机器参数调整(诸如“钮”)或软件参数选择来实施偏振调整。在一个实施中,不能通过调谐偏振钮而特定地观察目标来测量特定目标或多个目标。
在实施例中,可能不需要针对偏振叠加的上述硬件解决方案中的任一者。作为替代,可以在系统软件中将使用第一偏振状态和第二偏振状态连续地获取的测量进行组合以产生叠加状态,由此可以确定关于目标的额外的信息。在这种方法中,将来自每一个测量的信息叠加而产生叠加的测量信息,而不是将偏振进行混合从而在进行测量之前形成新的偏振状态。
如上所述,该系统的光瞳平面11可以借助于辅助光学器件(未示出)成像到检测器18上。在实施例中,辅助光学器件可以包括可寻址器件,该可寻址器件配置成修改光瞳,使得能够在不使用全光摄影机的情况下获得角度分辨图像。同样地,这种可寻址器件可以配置成允许分别获取垂直和水平偏振状态。原则上,一系列测量中的每一个获取可以使用不同的光瞳布置。
在实施例中,可寻址器件可以包括具有分立的可寻址区域的液晶面板,如图7所示。尽管图中所示的实施例包含可编程区域的四乘四栅格,但应理解光瞳的可变地可寻址部分的更一般的情况。应该认识到,图7的示例可以用于诸如图5所示的目标,其中,该目标的每一个象限具有高度地偏振依赖结构,使得通过对用于每一个象限的适当偏振进行选择,总体图像品质可以得到改善。
如图所示,可寻址区域可以设定成优先传递为每一个区域选择的偏振状态H、V。所述区域可以被协作地使用,以形成针对每一个状态的较大区域。同样地,图中所示的四乘四栅格中的每一个区域可以被理解为包括多个更小的可寻址单元。在液晶面板的示例中,每一个区域可以包括多个像素,这些像素可以被组合以便在面板的区域内形成任何数目个区域。
因为可以获得具有约50Hz至60Hz的切换次数的液晶面板,并且测量次数是规模上是类似的,所以所述液晶面板特别良好地适合于本申请。
应该认识到,可以在时间邻近的数据采集之间改变可寻址器件的布局。即,第一获取可以具有第一照射轮廓,并且第二获取可以具有不同的第二照射轮廓。通过随着时间改变一系列获取中的照射轮廓,有可能产生多种偏振叠加,类似于使用上述可变偏振照射产生的叠加。在实施例中,不同偏振之间的加权平均可以用于对来自两个独立的偏振测量的信息的直接组合提供改善的性能。
此外,可以在不使用如在全光摄影机装置中使用的可移动针孔或微透镜阵列的情况下产生角度分辨图像。此外,可以在不重新配置该系统的其它方面的情况下快速地获取0度和90度偏振图像。
通过使用可寻址光瞳法,可以执行目标的重构,从而允许目标轮廓的近似,然后可以用于将目标不对称性模型化,而目标不对称性模型化又可以用于减小或消除这些不对称性对重叠误差的影响。
应该认识到,可寻址光瞳法和可变照射法可以独立地或组合地使用,从而产生用于目标测量的多种照射模式。
本文中论述的对比度对于空间图像而言包括图像对数斜率(ILS)和/或正规化图像对数斜率(NILS),并且对于抗蚀剂而言包括剂量敏感度和/或曝光宽容度。
本文所使用的术语“进行优化”和“优化”意思是调整用于光刻过程参数,使得光刻的结果和/或过程具有更多个期望的特性,诸如设计布局在衬底上的投影的较高的准确度、较大的过程窗口等。
本发明的实施例可以采取如下形式:计算机程序,包含描述本文所披露的方法的机器可读指令的一个或更多个序列;或数据存储介质(例如半导体存储器、磁盘或光盘),具有存储于其中的这种计算机程序。另外,可以将机器可读指令实施在两个或更多个计算机程序中。所述两个或更多个计算机程序可以存储在一个或更多个不同存储器和/或数据存储介质上。
例如,该计算机程序可以与图1的成像设备包括在一起或者可以包括在图1的成像设备内,和/或,与图2的控制单元LACU包括在一起或者可以包括在图2的控制单元LACU内。在例如图1和图2所示的类型的现有设备已经处于生产中和/或使用中的情况下,可以通过提供被更新的计算机程序产品以使设备的处理器执行本文中描述的方法来实施实施例。
在一个或更多个计算机程序被位于光刻设备的至少一个部件内的一个或更多个计算机处理器读取时,本文所描述的任何控制器能够各自地或组合地可操作。控制器可以各自地或组合地具有用于接收、处理和发送信号的任何适当的配置。一个或更多个处理器配置成与控制器中的至少一个通信。例如,每一个控制器可以包括用于执行包括用于上文所描述的方法的机器可读指令的计算机程序的一个或更多个处理器。控制器可以包括用于存储这些计算机程序的数据存储介质和/或用于容纳这种介质的硬件。因此,可以根据一个或更多个计算机程序的机器可读指令来操作一个或更多个控制器。
尽管上文可以具体地参考在使用辐射的光刻术的上下文中对实施例的使用,但应该认识到,本发明的实施例可以用于其它应用(例如压印光刻术),并且在上下文允许时不限于使用辐射的光刻术。在压印光刻术中,图案形成装置中的形貌限定了在衬底上产生的图案。图案形成装置的形貌可以被印制到提供给衬底的抗蚀剂层中,通过施加电磁辐射、热、压力或它们的组合而使抗蚀剂固化。将图案形成装置从抗蚀剂中移出,从而在抗蚀剂固化后留下图案。
此外,尽管本文具体地参考了光刻设备在制造IC中的应用,但应该理解的是,本文描述的光刻设备可以具有其它应用,例如制造集成光学系统、磁畴存储器的引导和检测图案、平板显示器、液晶显示器(LCD)、薄膜磁头等。本领域技术人员将会认识到,在这些可替代的应用的上下文中,这里使用的任何术语“晶片”或“管芯”都可以分别被认为是与更加上位的术语“衬底”或“目标部分”同义。这里所指的衬底可以在曝光之前或之后被处理,例如在轨道(一种典型地将抗蚀剂层施加到衬底上并且对已曝光的抗蚀剂进行显影的工具)、量测工具和/或检查工具中。在可应用的情况下,可以将本文所披露的内容应用于这种和其它衬底处理工具中。另外,衬底可以被处理一次以上,例如为了产生多层IC,使得本文中使用的术语“衬底”也可以指已经包含多个已处理层的衬底。
本文中描述的图案形成装置可以被称为光刻图案形成装置。因此,术语“光刻图案形成装置”可以被解释为意指适合供光刻设备使用的图案形成装置。
本文中使用的术语“辐射”和“束”涵盖所有类型的电磁辐射,包括紫外(UV)辐射(例如具有等于或约为365nm、355nm、248nm、193nm、157nm或126nm的波长)和极紫外(EUV)辐射(例如具有在5nm至20nm的范围内的波长)以及粒子束(例如离子束或电子束)。
术语“透镜”在上下文允许的情况下可以表示各种类型的光学部件中的任意一个或其组合,包括折射型、反射型、磁性型、电磁型和静电型光学部件。
可以使用以下方面来进一步描述本发明:
1.一种方法,包括:
将辐射的照射束投影到衬底上的量测目标上;
检测从所述衬底上的量测目标反射的辐射;和
基于检测到的辐射来确定所述衬底上的特征的特性,
其中,以能够控制的方式选择所述检测到的辐射的偏振状态,以优化所述检测到的辐射的品质。
2.根据方面1所述的方法,其中,所述以能够控制的方式选择包括:选择所述照射束中的TE与TM偏振的比率。
3.根据方面2所述的方法,其中,所述优化包括:对于多个偏振状态中的每一个偏振状态确定性能特性,和选择所述性能特性是最佳的偏振状态。
4.根据方面3所述的方法,其中,所述性能特性选自叠层敏感度、重叠误差、信噪比、以及稳定性对波长的关系。
5.根据方面1至4中任一个所述的方法,其中,所述以能够控制的方式选择包括:使用多个偏振状态来执行多个测量,和组合所述多个测量以获得具有与所述多个偏振状态的叠加相关的特性的组合测量。
6.根据方面5所述的方法,其中,每一个偏振状态选自TE和TM,并且使用每一个偏振状态的相应数量的测量限定所述照射束中的TE与TM偏振的比率。
7.根据方面2至4中任一个所述的方法,其中,通过使TE照射和TM照射中的一个或两个以能够控制的方式衰减而执行对TE与TM偏振的比率的选择。
8.根据方面7所述的方法,其中,所述以能够控制的方式衰减包括:利用中性浓度(neutral density)滤光器进行滤光。
9.根据方面7所述的方法,其中,所述以能够控制的方式衰减包括:使用可变比率的光组合器将TE照射与TM照射组合。
10.根据方面2至4中任一个所述的方法,其中,通过旋转半波片来执行对TE与TM偏振的比率的选择,所述半波片被配置和布置成改变所述照射的偏振状态。
11.根据方面1所述的方法,其中,所述以能够控制的方式选择所述检测到的辐射的偏振状态包括:使用偏振元件的可寻址阵列对所述辐射进行滤光,以使所述辐射的选定部分在用于执行所述方法的量测设备的光瞳平面处偏振。
12.根据方面11所述的方法,其中,所述偏振元件的可寻址阵列包括液晶面板。
13.一种包括机器可读指令的非暂时性计算机程序产品,所述机器可读指令配置成使得处理器执行根据方面1至12中任一个所述的方法。
14.一种制造器件的方法,其中,使用光刻过程将器件图案施加至一系列衬底,所述方法包括:使用根据方面1至12中任一个所述的方法调适图案形成装置的设计,和将所述图案形成装置的至少一部分曝光到所述衬底上。
15.根据方面14所述的制造方法,其中,所述方法还包括:在曝光所述图案形成装置的所述至少一部分之前确定成像参数。
16.一种散射仪,包括:
辐射源,被配置和布置成将辐射的照射束投影到衬底上的量测目标上;
检测器,被配置和布置成检测从所述衬底上的量测目标反射的辐射;和
偏振控制器,被配置和布置成以能够控制的方式选择所述检测到的辐射的偏振状态,所述检测到的辐射的偏振状态被以能够控制的方式选择以基于所述衬底上的特征的特性来优化所述检测到的辐射的品质,所述特性被基于所述检测到的辐射来确定。
17.根据方面16所述的散射仪,其中:
所述辐射源包括:
一对源,所述一对源中的一个源被配置和布置成产生所述辐射的照射束中的TE偏振光,所述一对源中的另一个源被配置和布置成产生所述辐射的照射束中的TM偏振光,和
光学元件,被配置和布置成以能够控制的方式选择所述照射束中的TE与TM偏振的比率。
18.根据方面17所述的散射仪,其中:
所述光学元件包括至少一个衰减器,所述衰减器被配置和布置成调整所述TE和TM偏振光的相对衰减。
19.根据方面18所述的散射仪,其中,所述衰减器包括中性浓度滤光器。
20.根据方面18所述的散射仪,其中,所述衰减器包括可变比率光组合器。
21.根据方面16所述的散射仪,其中,所述光学元件包括被配置和布置成改变所述照射的偏振状态的能够旋转的半波片。
22.一种光刻设备,包括根据方面16至21中任一个所述的散射仪。
虽然所描述的实施例和本说明书中对“实施例”、“示例”等的参考指示所描述的实施例可以包括特定特征、结构或特性,但每一个实施例可能未必包括该特定特征、结构或特性。此外,这些短语未必指相同的实施例。另外,当结合实施例描述特定特征、结构或特性时,应该理解的是,无论是否明确地描述,本领域技术人员都可以结合其它实施例实现该特征、结构或特性。
以上描述的意图是示例性的,而不是限制性的。因此,本领域技术人员将明白,在不背离下面阐述的权利要求的范围的情况下,可以对本发明进行修改。例如,一个或更多个实施例的一个或更多个方面可以适当地与一个或更多个其它实施例的一个或更多个方面组合,或者被一个或更多个其它实施例的一个或更多个方面取代。因此,基于本文所呈现的教导和指导,这些调整和修改意图处于所披露的实施例的等同物的意义和范围内。应该理解的是,这里的措辞或术语是出于举例描述的目的,而不是出于限制性的目的,因此本说明书中的术语或措辞应该由本领域技术人员根据所述教导和指导进行解释。本发明的广度和范围不应该受到上述任何示例性实施例的限制,而应该仅由随附的权利要求书及其等同物来限定。

Claims (15)

1.一种方法,包括:
将辐射的照射束投影到衬底上的量测目标上;
检测从所述衬底上的量测目标反射的辐射;和
基于检测到的辐射来确定所述衬底上的特征的特性,
其中,以能够控制的方式选择所述检测到的辐射的偏振状态,以优化所述检测到的辐射的品质。
2.根据权利要求1所述的方法,其中,所述以能够控制的方式选择包括:选择所述照射束中的TE与TM偏振的比率。
3.根据权利要求2所述的方法,其中,所述优化包括:对于多个偏振状态中的每一个偏振状态确定性能特性;和选择所述性能特性是最佳的偏振状态。
4.根据权利要求3所述的方法,其中,所述性能特性选自:叠层敏感度、重叠误差、信噪比、以及稳定性对波长的关系。
5.根据权利要求1所述的方法,其中,所述以能够控制的方式选择包括:使用多个偏振状态来执行多个测量;和组合所述多个测量以获得具有与所述多个偏振状态的叠加相关的特性的组合测量。
6.根据权利要求5所述的方法,其中,每一个偏振状态选自TE和TM,并且使用每一个偏振状态的相应数量的测量限定所述照射束中的TE与TM偏振的比率。
7.根据权利要求2所述的方法,其中,通过使TE照射和TM照射中的一个或两个以能够控制的方式衰减而执行对TE与TM偏振的比率的选择。
8.根据权利要求2所述的方法,其中,通过旋转半波片来执行对TE与TM偏振的比率的选择,所述半波片被配置和布置成改变所述照射的偏振状态。
9.根据权利要求1所述的方法,其中,所述以能够控制的方式选择所述检测到的辐射的偏振状态包括:使用偏振元件的可寻址阵列对所述辐射进行滤光,以使所述辐射的选定部分在用于执行所述方法的量测设备的光瞳平面处偏振。
10.根据权利要求9所述的方法,其中,所述偏振元件的可寻址阵列包括液晶面板。
11.一种包括机器可读指令的非暂时性计算机程序产品,所述机器可读指令配置成使得处理器执行根据权利要求1所述的方法。
12.一种制造器件的方法,其中,使用光刻过程将器件图案施加至一系列衬底,所述方法包括:使用根据权利要求1所述的方法调适图案形成装置的设计,和将所述图案形成装置的至少一部分曝光到所述衬底上。
13.一种散射仪,包括:
辐射源,被配置和布置成将辐射的照射束投影到衬底上的量测目标上;
检测器,被配置和布置成检测从所述衬底上的量测目标反射的辐射;和
偏振控制器,被配置和布置成以能够控制的方式选择所述检测到的辐射的偏振状态,所述检测到的辐射的偏振状态被以能够控制的方式选择以基于所述衬底上的特征的特性来优化所述检测到的辐射的品质,所述特性被基于所述检测到的辐射来确定。
14.根据权利要求13所述的散射仪,其中:
所述辐射源包括:
一对源,所述一对源中的一个源被配置和布置成产生所述辐射的照射束中的TE偏振光,所述一对源中的另一个源被配置和布置成产生所述辐射的照射束中的TM偏振光,和
光学元件,被配置和布置成以能够控制的方式选择所述照射束中的TE与TM偏振的比率。
15.根据权利要求13所述的散射仪,其中,所述光学元件包括被配置和布置成改变所述照射的偏振状态的能够旋转的半波片。
CN201680082112.3A 2015-12-17 2016-11-30 散射测量中的偏振调谐 Pending CN108700816A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562269004P 2015-12-17 2015-12-17
US62/269,004 2015-12-17
PCT/EP2016/079219 WO2017102327A1 (en) 2015-12-17 2016-11-30 Polarization tuning in scatterometry

Publications (1)

Publication Number Publication Date
CN108700816A true CN108700816A (zh) 2018-10-23

Family

ID=57421872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680082112.3A Pending CN108700816A (zh) 2015-12-17 2016-11-30 散射测量中的偏振调谐

Country Status (5)

Country Link
US (2) US20180364590A1 (zh)
KR (1) KR20180095605A (zh)
CN (1) CN108700816A (zh)
TW (1) TW201728868A (zh)
WO (1) WO2017102327A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11016396B2 (en) 2017-05-04 2021-05-25 Asml Holding N.V Method, substrate and apparatus to measure performance of optical metrology
EP3454123A1 (en) * 2017-09-06 2019-03-13 ASML Netherlands B.V. Metrology method and apparatus
EP3528047A1 (en) * 2018-02-14 2019-08-21 ASML Netherlands B.V. Method and apparatus for measuring a parameter of interest using image plane detection techniques
CN111356897B (zh) 2020-02-24 2021-02-19 长江存储科技有限责任公司 用于半导体芯片表面形貌计量的系统和方法
CN111406198B (zh) 2020-02-24 2021-02-19 长江存储科技有限责任公司 用于半导体芯片表面形貌计量的系统和方法
WO2021168610A1 (en) 2020-02-24 2021-09-02 Yangtze Memory Technologies Co., Ltd. Systems having light source with extended spectrum for semiconductor chip surface topography metrology
CN111356896B (zh) 2020-02-24 2021-01-12 长江存储科技有限责任公司 用于半导体芯片表面形貌计量的系统和方法
CN115516383A (zh) * 2020-05-14 2022-12-23 Asml荷兰有限公司 对产品特征使用at分辨率量测的晶片对准方法
US11353321B2 (en) * 2020-06-12 2022-06-07 Kla Corporation Metrology system and method for measuring diagonal diffraction-based overlay targets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080144036A1 (en) * 2006-12-19 2008-06-19 Asml Netherlands B.V. Method of measurement, an inspection apparatus and a lithographic apparatus
US20120224176A1 (en) * 2011-03-03 2012-09-06 Nanometrics Incorporated Parallel Acquisition Of Spectra For Diffraction Based Overlay
US20130141730A1 (en) * 2011-07-28 2013-06-06 Asml Netherlands B.V. Illumination Source for use in Inspection Methods and/or Lithography; Inspection and Lithographic Apparatus and Inspection Method
WO2014198516A1 (en) * 2013-06-12 2014-12-18 Asml Netherlands B.V. Method of determining critical-dimension-related properties, inspection apparatus and device manufacturing method
WO2015143378A1 (en) * 2014-03-20 2015-09-24 Kla-Tencor Corporation Compressive sensing with illumination patterning

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG108975A1 (en) 2003-07-11 2005-02-28 Asml Netherlands Bv Marker structure for alignment or overlay to correct pattern induced displacement, mask pattern for defining such a marker structure and lithographic projection apparatus using such a mask pattern
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US8681413B2 (en) 2011-06-27 2014-03-25 Kla-Tencor Corporation Illumination control
NL2010717A (en) 2012-05-21 2013-11-25 Asml Netherlands Bv Determining a structural parameter and correcting an asymmetry property.
US9879977B2 (en) 2012-11-09 2018-01-30 Kla-Tencor Corporation Apparatus and method for optical metrology with optimized system parameters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080144036A1 (en) * 2006-12-19 2008-06-19 Asml Netherlands B.V. Method of measurement, an inspection apparatus and a lithographic apparatus
US20120224176A1 (en) * 2011-03-03 2012-09-06 Nanometrics Incorporated Parallel Acquisition Of Spectra For Diffraction Based Overlay
US20130141730A1 (en) * 2011-07-28 2013-06-06 Asml Netherlands B.V. Illumination Source for use in Inspection Methods and/or Lithography; Inspection and Lithographic Apparatus and Inspection Method
WO2014198516A1 (en) * 2013-06-12 2014-12-18 Asml Netherlands B.V. Method of determining critical-dimension-related properties, inspection apparatus and device manufacturing method
WO2015143378A1 (en) * 2014-03-20 2015-09-24 Kla-Tencor Corporation Compressive sensing with illumination patterning

Also Published As

Publication number Publication date
KR20180095605A (ko) 2018-08-27
TW201728868A (zh) 2017-08-16
US20210055663A1 (en) 2021-02-25
WO2017102327A1 (en) 2017-06-22
US20180364590A1 (en) 2018-12-20
US11429029B2 (en) 2022-08-30

Similar Documents

Publication Publication Date Title
CN105874387B (zh) 用于设计量测目标的方法和设备
KR101898087B1 (ko) 메트롤로지 타겟의 디자인을 위한 장치 및 방법
CN106062634B (zh) 测量涉及光刻术的制造过程的过程参数
JP5280555B2 (ja) 検査装置および方法、リソグラフィ装置、リソグラフィ処理セル、およびデバイス製造方法
KR101457030B1 (ko) 오버레이 오차를 결정하는 장치 및 방법
CN101109910B (zh) 检查方法及设备与光刻设备及器件制造方法
CN108700816A (zh) 散射测量中的偏振调谐
TWI444781B (zh) 檢驗方法與裝置,微影裝置,微影處理單元及器件製造方法
TWI616716B (zh) 用於調適圖案化器件之設計的方法
CN105874389B (zh) 用于设计量测目标的方法和设备
WO2017108411A1 (en) Metrology method and apparatus
US7724370B2 (en) Method of inspection, a method of manufacturing, an inspection apparatus, a substrate, a mask, a lithography apparatus and a lithographic cell
CN105934717B (zh) 可操作以对衬底执行测量操作的设备、光刻设备以及对衬底执行测量操作的方法
TW201708985A (zh) 基於配方間一致性的配方選擇
JP4875685B2 (ja) ターゲットパターンのパラメータを割り出す方法、ライブラリを生成する方法、検査装置、リソグラフィ装置、リソグラフィセル、及びコンピュータプログラム
WO2017097532A1 (en) A flexible illuminator
WO2024099740A1 (en) Method and apparatus for inspection focus measurement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181023