CN108697500A - 使用内源性干细胞/祖细胞的晶状体再生 - Google Patents

使用内源性干细胞/祖细胞的晶状体再生 Download PDF

Info

Publication number
CN108697500A
CN108697500A CN201680081391.1A CN201680081391A CN108697500A CN 108697500 A CN108697500 A CN 108697500A CN 201680081391 A CN201680081391 A CN 201680081391A CN 108697500 A CN108697500 A CN 108697500A
Authority
CN
China
Prior art keywords
lens
cataract
cases
application
capsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680081391.1A
Other languages
English (en)
Inventor
张康
侯睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beautiful Biotechnology Co Ltd
Youhealth Biotech Ltd
University of California
Original Assignee
Beautiful Biotechnology Co Ltd
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beautiful Biotechnology Co Ltd, University of California filed Critical Beautiful Biotechnology Co Ltd
Publication of CN108697500A publication Critical patent/CN108697500A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3616Blood, e.g. platelet-rich plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • A61F9/00745Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/16Blood plasma; Blood serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1825Fibroblast growth factor [FGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0621Eye cells, e.g. cornea, iris pigmented cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • C12N5/0692Stem cells; Progenitor cells; Precursor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/367Correlation of different images or relation of image positions in respect to the body creating a 3D dataset from 2D images using position information
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/373Surgical systems with images on a monitor during operation using light, e.g. by using optical scanners
    • A61B2090/3735Optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • A61F2009/00851Optical coherence topography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/0087Lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00887Cataract
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00887Cataract
    • A61F2009/00889Capsulotomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/21Acids
    • A61L2300/214Amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Zoology (AREA)
  • Vascular Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Virology (AREA)

Abstract

本文的公开内容包括使用内源性干细胞进行白内障去除和晶状体再生的应用及系统,其导致改善的结果。

Description

使用内源性干细胞/祖细胞的晶状体再生
交叉引用
本申请要求于2015年12月8日提交的美国临时申请号62/264,828的权益,该申请通过引用而以其全文并入本文。
序列表
本申请含有经由EFS-Web以ASCII格式提交的序列表,并通过引用而以其全文并入于此。所述ASCII副本创建于2016年12月7日,命名为49697-702.601_SL.txt且大小为7,505字节。
背景技术
白内障是世界上主要的失明之原因。视轴被定义为光线进入眼睛的法向通道,其可能由于白内障晶状体或剩余的晶状体上皮干细胞/祖细胞(LEC)的术后无序生长而经历视轴浑浊化(VAO),导致视力丧失。先天性白内障当前的治疗标准涉及具有较大中央撕囊术开口的白内障晶状体的手术去除,以及植入人工眼内晶状体(IOL)以替代缺失的屈光介质。
发明内容
根据本公开内容的一个方面,本文提供了使用内源性晶状体上皮干细胞和祖细胞进行白内障去除和晶状体再生的方法。在一些实施方案中,所述方法包括以下步骤:在患有白内障的受试者的眼睛的晶状体前囊的周边区内制造撕囊术开口;以及去除所述晶状体的内容物,从而保留所述晶状体囊和多个内源性晶状体上皮干细胞和祖细胞,由其再生得到透明双凸晶状体。在一些实施方案中,本文公开的方法是微创的。
在本文公开的方法的一个改进中,所述撕囊术开口的直径为约1.0到2.0mm。
在本文公开的方法的一个改进中,所述撕囊术开口位于远离眼睛的中央视轴的位置处。
在本文公开的方法的一个改进中,所述受试者为动物或人。
在本文公开的方法的一个改进中,所述人为成人或婴儿。
在本文公开的方法的一个改进中,所述人类婴儿患有先天性白内障。
在本文公开的方法的一个改进中,所述晶状体上皮干细胞和祖细胞表达Pax6和Bmi-1。
在本文公开的方法的一个改进中,所述方法导致选自角膜水肿、前房炎症和视轴浑浊化的并发症事件减少。
根据本公开内容的另一方面,本文提供了执行新的微创撕囊术手术的装置和系统。在一些实施方案中,用于执行白内障去除的微创方法的系统包含成像单元、用于乳化白内障物质的晶状体乳化单元、用于去除白内障物质的抽吸单元以及用于将生物材料组合物经由晶状体囊开口递送到囊袋中的生物材料递送单元。在一些实施方案中,所述成像单元、晶状体乳化单元、抽吸单元和生物材料递送单元中的至少一个可操作地连接到计算机。在一些实施方案中,所有所述成像单元、晶状体乳化单元、抽吸单元和生物材料递送单元均可操作地连接到计算机。
在本文公开的系统的一个改进中,所述晶状体乳化单元包括超声探头或激光探头,所述探头配备有经设计成插入眼睛的晶状体前囊的周边区域的尖端。
在本文公开的系统的一个改进中,所述尖端被配置成执行制造直径为约1.0至2.0mm的开口和从眼睛去除白内障中的一项或两者。
在本文公开的系统的一个改进中,所述尖端被配置成防止对内源性晶状体上皮干细胞和祖细胞的损伤。
在本文公开的系统的一个改进中,所述成像单元采用选自3D成像、光学相干断层扫描、MRI、CT和超声的成像技术。
在本文公开的系统的一个改进中,所述生物材料组合物包含交联剂、营养物、生长因子、血清补充剂和细胞外基质组分中的一种或多种。
根据本公开内容的另一方面,本文提供了培养内源性晶状体上皮祖细胞的方法。在一些实施方案中,所述方法包括以下步骤:从受试者分离晶状体上皮祖细胞;以及在涂有细胞外基质组分的表面上培养所述晶状体上皮祖细胞,其中所述祖细胞增殖并分化成晶状体纤维细胞以形成晶状体。
在本文公开的方法的一个改进中,所述细胞外基质组分包括一种或多种选自下组的分子:哺乳动物羊膜如人羊膜、胶原蛋白(例如,胶原蛋白IV)、纤维蛋白原、串珠蛋白聚糖、层粘连蛋白、纤连蛋白、蛋白聚糖、前胶原、透明质酸、巢蛋白、硫酸乙酰肝素、生腱蛋白、聚L-赖氨酸、明胶、聚L-鸟氨酸、血小板衍生生长因子(PDGF)、细胞外基质蛋白(Fischer或Life Tech)、纤维蛋白原和凝血酶片(Reliance Life)和MatrigelTM(BD Biosciences)、人羊膜、人源纤连蛋白、重组纤连蛋白基质(Sigma,St.Louis,MO,USA)、使用已知重组DNA技术产生的细胞外基质、其等同物及其组合。
在本文公开的方法的一个改进中,所述祖细胞在交联剂、营养物、生长因子和血清补充剂中的一种或多种的存在下培养。
在本文公开的方法的一个改进中,所述受试者为动物或人。
在本文公开的方法的一个改进中,所述晶状体上皮祖细胞的分离包括选择或富集表达Pax6和Bmi-1的祖细胞。
根据本公开内容的另一方面,本文提供了使用内源性晶状体上皮干细胞和祖细胞进行晶状体再生的方法。在一些实施方案中,所述方法包括以下步骤:刺激内源性晶状体干细胞和祖细胞的增殖;诱导内源性晶状体干细胞和祖细胞分化为晶状体纤维细胞;以及促进成熟为完整晶状体。
在本文公开的方法的一个改进中,所述促进步骤通过操纵生长因子(诸如FGF)、细胞外基质、生物材料、3D打印来进行。
在一些实施方案中,本文公开了生物材料组合物在维持受试者眼睛的晶状体前囊的结构完整性及原位诱导晶状体上皮干细胞和祖细胞的扩充中的应用,其中将所述生物材料组合物通过位于所述晶状体前囊的周边区域的撕囊术开口施用于所述晶状体前囊中,并且其中在施用所述生物材料组合物之前去除所述晶状体的内容物。
在一些实施方案中,所述生物材料组合物包含人血清和成纤维细胞生长因子(FGF)。
在一些实施方案中,所述生物材料组合物还包含营养物、添加剂或其组合。
在一些实施方案中,所述营养物包括氨基酸的组合物和可选的一种或多种营养物。
在一些实施方案中,所述添加剂包括氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠、磷酸钠或其组合。
在一些实施方案中,以足以替代由于从所述晶状体前囊去除所述晶状体内容物导致的体积损失的量来施用所述生物材料组合物。
在一些实施方案中,所述撕囊术开口的直径为约1.0至2.0mm。
在一些实施方案中,所述撕囊术开口的直径为约1.0至1.5mm。
在一些实施方案中,所述撕囊术开口位于远离眼睛的中央视轴的位置处。
在一些实施方案中,所述受试者患有白内障。
在一些实施方案中,所述受试者为动物或人。
在一些实施方案中,所述人为18岁或更年长。
在一些实施方案中,所述人为17岁或更年轻。
在一些实施方案中,所述人患有小儿白内障。
在一些实施方案中,所述人为成人或婴儿。
在一些实施方案中,所述人类婴儿患有先天性白内障。
在一些实施方案中,白内障被去除。
在一些实施方案中,所述晶状体上皮干细胞和祖细胞表达Pax6和/或Bmi-1。
在一些实施方案中,所述应用不涉及人工眼内晶状体(IOL)的植入。
在一些实施方案中,相对于包括包含中央撕囊术开口的撕囊术过程和人工眼内晶状体植入的应用,所述应用导致视轴浑浊化(VAO)减轻。
在一些实施方案中,所述应用导致选自角膜水肿、前房炎症和视轴浑浊化的并发症事件减少。
在一些实施方案中,本文公开了用于执行白内障去除的微创方法的系统,该系统包含成像单元、用于乳化白内障物质的晶状体乳化单元、用于去除白内障物质的抽吸单元以及用于将生物材料组合物经由晶状体囊开口递送到囊袋中的生物材料递送单元,其中所有所述单元均可操作地连接到计算机。
在一些实施方案中,所述晶状体乳化单元包括超声探头或激光探头,所述探头配备有经设计成插入眼睛的晶状体前囊的周边区域的尖端。
在一些实施方案中,所述尖端被配置成执行制造直径为约1.0至2.0mm的开口和从眼睛去除白内障中的一项或两者。
在一些实施方案中,所述尖端被配置成执行制造直径为约1.0至1.5mm的开口和从眼睛去除白内障中的一项或两者。
在一些实施方案中,所述尖端被配置成防止对内源性晶状体上皮干细胞和祖细胞的损伤。
在一些实施方案中,所述成像单元采用选自3D成像、光学相干断层扫描、MRI、CT和超声的成像技术。
在一些实施方案中,所述生物材料组合物包含人血清和成纤维细胞生长因子(FGF)。
在一些实施方案中,所述生物材料组合物进一步包含营养物、添加剂或其组合。
在一些实施方案中,所述营养物包括氨基酸的组合物和可选的一种或多种营养物。
在一些实施方案中,所述添加剂包括氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠、磷酸钠或其组合。
在一些实施方案中,以足以替代由于从所述囊袋去除所述白内障物质导致的体积损失的量来施用所述生物材料组合物。
附图说明
本发明的新颖特征在所附的权利要求书中具体阐述。通过参考以下对利用本发明原理的说明性实施方案加以阐述的详细描述以及附图,将获得对本发明的特征和优点的更好的理解,在这些附图中:
图1A-图1C图示了用于先天性白内障的手术方法和晶状体再生。图1A-图1B例示了在使用当前的手术方法治疗后的不同时间点的“甜甜圈状”晶状体再生的裂隙灯照相。手术后2年(图1A),再生的透明晶状体组织含有密封的囊开口,其中中央有白色不透明瘢痕。由红色箭头指示的虚线圆圈之间的区域是再生的晶状体组织。手术后4年(图1B),与手术后2年所观察到的相比,囊开口收缩,表明再生晶状体持续生长。还存在虹膜晶状体粘连的并发症。图1C图示了用于小儿白内障的当前手术方法的示意图:当前实施的小儿ACCC在前囊的中心处产生直径为6mm的开口,去除其下方的LEC并留下28mm2的相对较大的伤口区域。所形成的瘢痕经常导致术后VAO。此外,通常在随访时进行PCCC和前玻璃体切除术。
图2A-图2E图示了人LEC的BrdU脉冲标记。图2A图示了通过酶免疫组织学和二氨基联苯胺染色显示BrdU+细胞(棕色)的人晶状体囊的整装制片(whole mount)。图2B图示了显示BrdU+LEC的人供体晶状体的高放大率图像。图2C图示了显示BrdU+细胞的定量的条形图。BrdU+细胞的数目呈年龄依赖性下降(8个月:38.7±10.9,30岁:19.0±9.4,40岁:6.0±2.2,8个月相比于40岁,*P<0.05)。使用每个囊的3个随机选择的区域进行分析,每组3个样品。图2D图示了有或没有损伤的人晶状体囊的整装制片染色的高放大率图像,显示损伤后BrdU+细胞的数目显著增加。图2E图示了显示BrdU+细胞的定量的条形图。使用来自相应供体的对侧眼作为对照。损伤后的变化倍数:11.3±0.8,*P<0.05。使用每个囊的萌发区内的3个随机选择的区域进行分析,每组3个样品。数据以平均值±s.d.来表示。
图3A-图3C图示了小鼠中Pax6+LEC的谱系追踪。图3A图示,Pax6引导的GFP在出生后P1、P14和P30天在小鼠LEC核中表达;显示了P0-3.9-GFPCre小鼠晶状体的矢状切面。蓝色和绿色分别代表DAPI和抗GFP抗体荧光。图3B图示了在P1、P14和P30的ROSAmTmG;P0-3.9-GFPCre小鼠中Pax6+LEC的谱系追踪,显示晶状体纤维细胞表达膜GFP荧光;因此,PAX6+LEC能够产生晶状体纤维细胞。图3C图示了作为另外的对照,单独的ROSAmTmG等位基因在非重组部位展现出番茄染色。所有比例尺:100μm。
图4A-图4C例示了兔LEC的表征和分化。图4A图示,LEC对PAX6(绿色)和SOX2(红色)呈阳性。图4B图示了在LEC分化的第15天具有阳性αA-晶体蛋白和β-晶体蛋白染色的透镜状构造(绿色箭头)。图4C左图:第30天的透镜状体的相差照片;中图:显示放大特性的透镜状体;右图,蛋白质印迹分析照片(左)和定量照片(右),右图显示成熟晶状体纤维标志物αA-晶体蛋白(2.6±0.5)、β-晶体蛋白(10.2±1.3)和γ-晶体蛋白(2.3±0.4)的表达显著增加,n=3个生物学重复,数据以平均值±s.d.来表示。所有比例尺,100μm。
图5A-图5B图示了人LEC的表征。图5A图示,培养的人胎儿LEC对BMI1呈阳性(绿色,右上图);PAX6(红色)和Ki67(绿色)的共染色,中图;SOX2(红色)和Ki67(绿色)的共染色,下图。图5B图示了人胎儿LEC的PAX6(红色)和SOX2(绿色)的共染色。所有比例尺,100μm。
图6A-图6D图示,Bmi-1的条件性缺失导致Pax6+和Sox2+细胞的减少以及白内障形成。图6A图示,Bmi-1的缺失减少了Pax6+和Sox2+LEC群。示出了来自Bmi-1fl/fl对照小鼠和巢蛋白-Cre;Bmi-1fl/fl小鼠的H&E染色的晶状体切片的代表性图像(a')。示出了LEC中Bmi-1(红色)染色的代表性图像(b')。示出了Pax6(红色)和Sox2(绿色)免疫染色(c')。示出了阳性Pax6(Bmi-1fl/fl:88.5±2.9%,巢蛋白-Cre;Bmi-1fl/fl:2.4±2.3%)和Sox2(Bmi-1fl/fl:82.7±3.9%,巢蛋白-Cre;Bmi-1fl/fl:4.9±1.5%)细胞的百分比(d',*P<0.001)。图6B图示,Bmi-1的条件性缺失导致LEC增殖减少。示出了每只眼睛的BrdU+LEC的百分比(2M:Bmi-1fl/fl:2.6±0.9%;巢蛋白-Cre;Bmi-1fl/fl:3.0±0.4%,n=4。7M:Bmi-1fl/fl:1.5±0.2%;巢蛋白-Cre;Bmi-1fl/fl:0.6±0.4%,n=6。12M:Bmi-1fl/fl:1.8±0.6%,巢蛋白-Cre;Bmi-1fl/fl:0.2±0.2%,n=8),每只眼睛计数2个切片。使用双尾student t检验来评估统计显著性。*P<0.05。数据以平均值±s.d.来表示。图6C图示了E13.5、E18.5和2月龄的野生型小鼠中的巢蛋白(绿色)染色。所有比例尺,100μm。图6D图示了来自巢蛋白-Cre;Bmi-1fl/fl和Bmi-1fl/fl对照小鼠(a')的晶状体的代表性图像,显示白内障在7月龄和12月龄的巢蛋白-Cre;Bmi-1fl/fl小鼠(箭头)中是明显的。使用巢蛋白-CreER在6周龄时删除Bmi-1未在他莫昔芬治疗后10个月重现白内障表型(b')。还显示了相同眼睛的H&E染色切片。所有比例尺,100μm。
图7A-图7B图示,BMI-1的缺失降低了LEC的增殖能力。图7A图示了人LEC的相差照片(上图),以及与对照相比,Ki67+增殖人胎儿LEC经BMI1敲低(shBMI1)的定量(两种shRNA得到相似的结果,n=3,LEC系,每个shRNA实验重复3次,P<0.05)。蓝色指示DAPI染色。图7B图示,BMI-1降低了↓3.6倍(n=3,P<0.05)。LEC中的基因表达变化:PAX6↑1.6倍,SOX2↑1.1倍,C-MAF↑1.3倍,E-钙黏着蛋白↑1.0倍(均为n=3,P<0.05);晶状体纤维细胞中的基因表达变化:晶状体纤维蛋白↑1.7倍,CP49↑0.9倍,CRYBA2↓1.5倍(两种shRNA得到相似的结果,均为n=3,LEC系,每个shRNA实验重复3次,P<0.05)。
图8A-图8C图示了Pax6+LEC中Bmi1、Sox2和Ki67的更高表达水平。图8A图示,在萌发区处观察到Pax6+-GFP+LEC。左图,P1时Pax6P0-3.9-GFPCre小鼠晶状体的切片。中间和右图:左图中加框区域的更高的放大率。蓝色指示DAPI染色。图8B,上图:明视场照片显示在6个月时Pax6P0-3.9-GFPCre小鼠的晶状体囊的平装制片(flat mount);两个红色圆圈之间的晶状体囊物质被解剖以富集Pax6+-GFP+LEC;下图:来自上图中加框区域的GFP+LEC的荧光图像。AC,前囊;PC,后囊。图8C图示了6月龄小鼠的前晶状体囊中的Pax6+-GFP+LEC与GFP-LEC的基因表达水平的比较,观察到以下基因的表达增强(Pax6↑10.1倍(P<0.005),Ki67↑8.2倍(P<0.005),Bmi1↑4.3倍(P<0.005),并且Sox2↑2.6倍(P<0.005),均为n=5)。
图9A-图9G图示了兔子的晶状体再生。图9A图示了新的微创手术方法。撕囊的直径减小到1.0mm-1.5mm,导致伤口区域大大减少到仅1.2mm2。撕囊术的位置移动到晶状体的周边区域。图9B图示了裂隙灯显微检查,显示在手术后1天,前囊和后囊粘附。手术后4-5周,再生晶状体组织以曲线模式从周边向中央生长。手术后7周,再生晶状体组织形成透明的双凸晶状体结构。图9C图示了手术后7周的兔眼的眼底检查,显示视网膜清晰可见。显示通过正常健康晶状体的眼底检查以供比较。图9D图示了在手术后不同时间点的兔眼中的屈光度的测量(M,月;D=屈光度)。眼睛的屈光度在手术后随着时间的推移而增加,证明了再生晶状体的功能性(ANOVA,*P<0.01)。将手术后即刻的屈光力定义为0。1M=0.0D,3M=11.0±0.8D且5M=15.8±2.2D,n=3,在每个时间点随机选择兔子,数据以平均值±s.d.来表示。图9E-图9F图示了正常兔晶状体(图9E)和手术后7周的再生兔晶状体(图9F)的萌发区中的Ki67染色。下图显示更高的放大率。图9G图示了手术后7周再生兔晶状体的萌发区的PAX6(红色)和BrdU(绿色)染色。比例尺,100μm。
图10A-图10I图示了兔子的晶状体再生手术。使用3.2mm角膜刀在11-12点钟位置处制造角膜缘隧道切口进入前房(图10A)。由撕囊术针制造囊开口(图10B)。在囊开口区域(黄色箭头)附近使用前连续曲线撕囊术(ACCC)技术进行直径为1-2mm的前囊切开术(图10C)。使用钝针注射平衡盐溶液以便从前囊水分离皮质(图10D)。使用晶状体乳化装置除去皮质(图10E)。使用冲洗和抽吸去除剩余的皮质(图10F)。使用弯头I/A手柄来清除赤道皮层(图10G)。图10H-图10I图示,用间断的10-0尼龙缝合线缝合角膜缘伤口。发现伤口不再渗水。
图11A-图11C图示了兔子的晶状体再生。图11A图示了手术后不同时间点的再生晶状体的H&E染色。手术后第1天,可见前囊与后囊之间的单层LEC(箭头)。手术后第4天,LEC增殖并覆盖后囊。手术后第7天,后囊中的LEC开始伸长并分化。图11B图示,手术后第28天,后囊中的LEC进一步伸长,形成原始晶状体纤维。图11C图示了兔子中再生晶状体的透明度和形状。上图:手术后不同时间点再生晶状体的裂隙灯照相。下图:上图中裂隙灯照片的示意图。手术后第1天,在周边前囊中清楚地看到囊开口,并且指示了在手术期间LEC缺失的区域。手术后7周,LEC的缺失导致前囊与后囊之间的粘连以及该区域中晶状体再生的抑制。
图12A-图12B图示了微创手术后猕猴模型中的晶状体再生。图12A例示,裂隙灯显微术显示再生的晶状体组织在手术后2-3个月以圆形对称模式从晶状体周边向中央生长,在手术后5个月到达中央。手术后5个月,直接照明显示视轴保持半透明。图12B图示,Pentacam横截面扫描显示在手术后5个月形成双凸结构(黄色箭头)。直接照明和眼底照相显示视轴保持透明,并且视网膜清晰可见。(n=6)
图13A-图13C图示了再生人眼晶状体的功能特征。图13A图示,手术后晶状体厚度增加。Pentacam显示,手术后3个月,再生的晶状体组织从囊袋周边向中央生长。密封的囊袋仅部分填充,在横截面扫描中呈现纺锤形。眼底在检眼镜检查中清晰可见。箭头指示再生的晶状体结构。图13B图示,在手术后六个月,囊袋充满再生的晶状体组织,并且在Pentacam的横截面扫描中看上去为双凸的。前-后囊粘连消失了。使用具有18屈光度透镜的检眼镜可以清楚地看到眼底。图13C显示,在手术前测量视敏度以及手术后1周、3个月和6个月测量视敏度。对照组中的大多数眼睛在手术后3个月经历了额外的激光囊切开术,在手术前和手术后测量视敏度。接受微创手术的眼睛(n=24)与使用当前手术技术治疗的眼睛(n=50)之间的视敏度无显著差异,除了在对照组进行激光囊切开术前的3个月以外(t检验,***P<0.001)。(注释:OD=右眼,OS=左眼,OU=双侧眼)
图14A-图14E图示了再生人眼晶状体的功能特征。图14A例示,晶状体厚度在手术后6个月和8个月显著增加(分别为1.9±0.3mm和3.7±0.3mm,*P<0.01)。图14B例示,晶状体屈光力在手术后6个月和8个月显著增加(分别为5.1±0.5D和19.0±0.6D,*P<0.01)。图14C图示,视敏度在手术后得到提高。进行成对分析以比较手术前和手术后的视敏度(OD:2.1±0.0,1.6±0.1,1.3±0.1,1.0±0.1;OS:2.1±0.0,1.6±0.1,1.3±0.1,1.0±0.1;OU:2.1±0.1,1.4±0.1,1.1±0.1,0.8±0.1;P<0.05)。图14D图示调节力从手术后1周(对照OD:0.1±0.1D,对照OS:0.1±0.1D;OD:0.1±0.1D,OS:0.1±0.1D)到8个月(对照OD:0.2±0.1D,对照OS:0.2±0.1D;OD:2.5±0.2D,OS:2.5±0.2D)显著增加(*P<0.001)。数据以平均值±s.d.来表示并使用双尾student t检验来评估统计显著性。(注释:OD=右眼,OS=左眼,OU=双眼)图14E图示,微创手术后在几乎所有白内障婴儿眼中实现了视轴透明度(95.8%)。前囊上伤口的瘢痕组织的直径<1.5mm并且位于远离视轴的周边。除非瞳孔扩张,否则瘢痕不可见。未观察到紊乱的组织再生。与当前的标准手术方法相比,新的手术技术使VAO降低为1/20以下。
图15图示了用于人类婴儿中晶状体再生的微创撕囊术保留的LEC。上图:裂缝灯检查显示了与基线(白内障手术前)相比,微创手术后6个月的人类婴儿眼睛的视轴透明度。下图:后照射显示撕囊术的大小减小(白色箭头)。
图16A-图16B、图17、图18和图19例示了在组织工程中使用一些细胞外基质、通道、框架来创建引导晶状体干细胞和祖细胞在晶状体再生过程中迁移、分化为成熟的晶状体纤维细胞的方式。它们还示出了本文公开的LEC保护方法。
图20A-图20B例示了临床试验配对(consort)流程图(图20A)和两组中视敏度平均反应曲线的比较(图20B)。观察到两组之间平均反应的非平行模式主要是由于对照组中激光手术前3个月的视力丧失(左图),而使用包括激光手术后3个月在内的时间点观察到两组之间平均反应的平行模式(右图);n=25对照,n=12实验。数据以平均值±s.d.来表示。
图21A-图21B图示,BMI-1的缺失降低了LEC的增殖能力。图21A图示了人LEC的相差照片(上图),以及与对照相比,Ki67+增殖人胎儿LEC经BMI1敲低(shBMI1)的定量(两种shRNA得到相似的结果,n=5,P<0.05)。数据以平均值±s.d.来表示。蓝色指示DAPI染色。图21B图示,BMI-1降低了↓3.3倍(均为n=3,P<0.05);LEC标志物的基因表达变化:PAX6↑1.3倍,SOX2↑1.1倍,C-MAF↑1.3倍,E-钙黏着蛋白↑1.1倍;分化的晶状体纤维细胞标志物的基因表达变化:晶状体纤维蛋白↑1.6倍,CP49↑0.9倍,CRYBA2↓1.4倍。(两种不同的shRNA得到相似的结果;n=5,P<0.05)数据以平均值±s.d.来表示。
图22图示了本文所述的系统的概念示意图。
图23图示了本文公开的计算机系统的简图。
具体实施方式
每年,全世界有超过2000万名白内障患者接受晶状体摘出术和人工眼内晶状体(IOL)植入的治疗。在一些情形下,已经观察到与IOL有关的并发症,例如IOL脱位、非最优的生物相容性、适应性不足和视觉结果不佳。在一些情况下,还观察到IOL植入引起的不可逆的失明。因此,亟需使用天然再生的晶状体治疗先天性白内障的新策略。
在一些实施方案中,用于小儿白内障的手术过程包括在前囊的中心处产生直径约5-6mm的开口。开口的大小延长了恢复时间并增加了炎症的发病率,而伤口愈合可能形成瘢痕并引起术后视轴浑浊化(VAO)。在一些情况下,手术过程去除了大部分前囊下晶状体上皮干细胞/祖细胞(LEC),其亚群可用于晶状体再生。在另外的情况下,残留的LEC的异常增殖在许多情况下导致术后VAO,这需要通过进行激光囊切开术或后囊连续环形撕囊术(PCCC)和前玻璃体切除术来打开后囊。手术过程通过破坏晶状体囊和LEC的完整性大大降低了晶状体再生的可能性。
本公开内容认识到,干细胞疗法在再生医学上极具希望。虽然针对多能干细胞及其衍生物用于治疗目的的用途已经有许多关注,但本公开内容认识到,包括致瘤性和免疫排斥等在内的许多不确定因素阻碍了它们的临床应用。此外,本公开内容认识到了利用内源性祖细胞的潜力直接用于修复和再生的替代方案。至于眼睛晶状体,已经认识到成功再生具有生物功能的完整哺乳动物晶状体尚未实现,并且晶状体再生基础的机制仍无定论,尽管在婴儿的先天性白内障去除后已经观察到不同程度的甜甜圈状晶状体组织的无序再生长(图1A-图1B)。
本公开内容还认识到,虽然人造IOL广泛用于小儿白内障手术,但它们因并发症而受限,并且大多数小儿患者在白内障手术后继续需要一些形式的屈光矫正诸如眼镜。此外,本公开内容认识到IOL在小于两岁的患者中是有争议的,因为它们未显示防止斜视或弱视,并且在这个年龄正常晶状体屈光力尚未完全发育好。
本公开内容进一步认识到当前的白内障治疗和手术具有局限性,并且在患有白内障的患者中有造成并发症的显著风险。因此,本公开内容认识到需要功能性晶状体的原位再生的改进方法。
如本公开内容中所提供的,对PAX6+/SOX2+LEC进行体外研究,并且通过条件性敲除实验将BMI-1鉴别为维持哺乳动物眼中的LEC库的必要因素。还研究了LEC在体外分化成晶状体纤维细胞的能力。此外,通过首先建立新的微创撕囊手术方法进行体内动物研究,该方法在概念上不同于当前通过小伤口开口摘出白内障晶状体的实践,而是保持晶状体囊完整性并因此也保留LEC。使用该方法研究了兔和猕猴的晶状体再生情况,并在人类婴儿中进行了临床试验。不但在兔和猕猴中观察到功能性晶状体再生,而且在患有先天性白内障的人类患者中也观察到功能性晶状体再生。因此,本公开内容提供了使用内源性干细胞的晶状体再生的新型方法,其导致改善的结果。
根据本公开内容的一些实施方案,本文提供了使用内源晶状体上皮祖细胞进行白内障去除和晶状体再生的方法。在一些实施方案中,该方法包括以下步骤:在患有白内障的受试者的眼睛的晶状体前囊的周边区内制造撕囊术开口;以及去除晶状体的内容物,从而保留晶状体囊和多个内源性晶状体上皮祖细胞,由其再生透明双凸晶状体。在一些实施方案中,本文公开的方法是微创的。
在本文公开的方法的一些实施方案中,撕囊术开口的直径为约1.0至2.0mm。
在本文公开的方法的一些实施方案中,撕囊术开口位于远离眼睛的中央视轴的位置处。
在本文公开的方法的一些实施方案中,受试者为动物或人。
在本文公开的方法的一些实施方案中,所述人为成人或婴儿。
在本文公开的方法的一些实施方案中,所述人类婴儿患有先天性白内障。
在本文公开的方法的一些实施方案中,晶状体上皮祖细胞表达Pax6和Bmi-1。
在本文公开的方法的一些实施方案中,所述方法导致选自角膜水肿、前房炎症和视轴浑浊化的并发症事件减少。
在本公开内容的一些实施方案中,本文提供了执行新的微创撕囊术手术的装置和系统。在一些实施方案中,用于执行白内障去除的微创方法的系统包含成像单元、用于乳化白内障物质的晶状体乳化单元、用于去除白内障物质的抽吸单元以及用于将生物材料经由晶状体囊开口递送到囊袋中的生物材料递送单元。在一些实施方案中,成像单元、晶状体乳化单元、抽吸单元和生物材料递送单元中的至少一个可操作地连接到计算机。在一些实施方案中,所有的成像单元、晶状体乳化单元、抽吸单元和生物材料递送单元均可操作地连接到计算机。
在本文公开的系统的一些实施方案中,晶状体乳化单元包括超声探头或激光探头,所述探头配备有经设计成插入眼睛的晶状体前囊的周边区域的尖端。
在本文公开的系统的一些实施方案中,将所述尖端配置成执行制造直径为约1.0至2.0mm的开口和从眼睛去除白内障中的一项或两者。
在本文公开的系统的一些实施方案中,将所述尖端配置成防止对内源性晶状体上皮祖细胞的损伤。
在本文公开的系统的一些实施方案中,成像单元采用选自3D成像、光学相干断层扫描、MRI、CT和超声的成像技术。
在本文公开的系统的一些实施方案中,生物材料组合物包含交联剂、营养物、生长因子、血清补充剂和细胞外基质组分中的一种或多种。
在本公开内容的一些实施方案中,本文提供了培养内源性晶状体上皮祖细胞的方法。在一些实施方案中,所述方法包括以下步骤:从受试者分离晶状体上皮祖细胞;以及在涂有细胞外基质组分的表面上培养晶状体上皮祖细胞,其中该祖细胞增殖并分化成晶状体纤维细胞以形成晶状体。
在本文公开的方法的一些实施方案中,细胞外基质组分包括一种或多种选自下组的分子:哺乳动物羊膜如人羊膜、胶原蛋白(例如,胶原蛋白IV)、纤维蛋白原、串珠蛋白聚糖、层粘连蛋白、纤连蛋白、蛋白聚糖、前胶原、透明质酸、巢蛋白、硫酸乙酰肝素、生腱蛋白、聚L-赖氨酸、明胶、聚L-鸟氨酸、血小板衍生生长因子(PDGF)、细胞外基质蛋白(Fischer或Life Tech)、纤维蛋白原和凝血酶片(Reliance Life)和MatrigelTM(BD Biosciences)、人羊膜、人源纤连蛋白、重组纤连蛋白基质(Sigma,St.Louis,MO,USA)、使用已知重组DNA技术产生的细胞外基质、其等同物及其组合。
在本文公开的方法的一些实施方案中,祖细胞在交联剂、营养物、生长因子和血清补充剂中的一种或多种的存在下培养。
在本文公开的方法的一些实施方案中,受试者为动物或人。
在本文公开的方法的一些实施方案中,晶状体上皮祖细胞的分离包括选择或富集表达Pax6和Bmi-1的祖细胞。
在本公开内容的一些实施方案中(如图16-图19中所示),本文提供了使用内源性晶状体上皮祖细胞进行晶状体再生的方法。在一些实施方案中,所述方法包括以下步骤:刺激内源性晶状体祖细胞的增殖;诱导内源性晶状体祖细胞分化为晶状体纤维细胞;以及促进成熟为完整晶状体。
在本文公开的方法的一些实施方案中,所述促进步骤通过操控生长因子(诸如FGF)、细胞外基质、生物材料或3D打印来进行。
晶状体结构和晶状体上皮干细胞/祖细胞
晶状体是透明的双凸结构,这有助于将光线聚焦在视网膜上。在一些情形下,晶状体属于眼睛的前段并且通过晶状体的悬韧带(一种纤维组织环)连接到睫状体。晶状体后方是玻璃体,其与前表面的房水一起浸泡晶状体。在成年人中,晶状体通常具有约10mm的直径和约4mm的轴向长度。
在一些实施方案中,晶状体囊是围绕晶状体的光滑透明基膜。在一些情形下,囊主要由胶原蛋白组成,其中IV型胶原蛋白和硫酸化糖胺聚糖(GAG)作为主要组分。在一些情况下,晶状体囊通过小带纤维连接到睫状体。
在一些情形下,晶状体包括晶状体上皮和晶状体纤维。在一些情况下,晶状体上皮包括单层立方上皮,其为包含单层立方形(立方体状)细胞的上皮细胞类型。在一些实施方案中,晶状体上皮位于晶状体囊与晶状体纤维之间的晶状体的前部,其中上皮细胞主要位于萌发区,这是朝向前晶状体表面的周边的环绕晶状体上皮的窄细胞区域。在一些情形下,萌发区内新形成的细胞伸长并沿内囊表面向晶状体赤道移动,在其继续伸长并向后移动超过赤道时形成新的晶状体纤维细胞。在一些情况下,这些新的纤维细胞会添加到现有纤维细胞团的周边,使较老的纤维细胞向扩张的晶状体的内部移动。在一些情况下,中央纤维细胞终生保留。
在一些实施方案中,晶状体上皮包含晶状体上皮干细胞和祖细胞(本文也称为晶状体上皮干细胞/祖细胞、晶状体上皮干细胞/祖细胞样细胞或LEC)。在一些情况下,LEC增殖并分化成晶状体纤维细胞。
白内障
白内障是一种难治性眼病,由于长期紫外线暴露、放射、糖尿病、高血压等多种因素而发生和发展,其中最常见的原因是年龄。大多数白内障在老化或损伤改变构成眼睛晶状体的组织时发展。根据世界卫生组织(WHO)的说法,全世界48%的失明由白内障引起,或者超过1800万人具有一定的白内障发展。该疾病随后导致因晶状体浑浊引起的视力下降。白内障的症状包括但不限于视线浑浊、模糊或朦胧、夜间视物难度增加、对光线和眩光敏感、阅读和其他活动需要更亮的光线、在灯光周围看到“光晕”、频繁更换眼镜或隐形眼镜、颜色褪色或变黄以及单眼复视。起初,由白内障引起的视线浑浊仅影响眼睛晶状体的一小部分并且引起未觉察的任何视力丧失。随着白内障变大,它会使更多的晶状体浑浊,并使穿过晶状体的光线变形。这导致更明显的症状。
白内障的形成
在一些实施方案中,眼睛中的晶状体随着年龄增长变得柔性差、透明度不佳且更厚。在一些情况下,年龄相关和其他医疗条件导致晶状体内的组织分解并聚集在一起,使晶状体内的小区域浑浊。随着白内障继续发展,浑浊变得更加密集。白内障在光线通过晶状体时散射并阻挡光线,阻止边界清楚的图像到达视网膜。结果是视力变得模糊。在一些情况下,白内障会在一只或两只眼睛中发展,并且可能不均衡发展。
白内障的类型
在一些实施方案中,白内障的类型包括部分或完全白内障、静止或进行性白内障或者硬性或软性白内障,并且可以分类为以下类别。
核性白内障——最常见的白内障类型,涉及晶状体的中央或“核”部分。核性白内障最初可能导致更加近视或甚至暂时改善阅读视力。但随着时间的推移,晶状体逐渐变成更加浓密的黄色并进一步使视线浑浊。随着白内障缓慢发展,晶状体甚至可能变成棕色。在晚期阶段,其被称为棕色白内障。晶状体的晚期变黄或变棕会导致难以区分颜色的深浅。这种类型的白内障可能会呈现向近视的转变并导致远视障碍,而阅读受影响较小。
皮质性白内障——皮质性白内障是影响晶状体边缘的白内障,由于晶状体皮质(外层)变得不透明而引起。它们在晶状体周边内含有的流体变化导致开裂时发生。皮质性白内障在晶状体皮质的外缘开始发白,有楔形的浊斑或条纹。随着其缓慢发展,条纹延伸到中心并干扰穿过晶状体中心的光线。症状通常包括夜间眩光和光散射的问题。
后囊下白内障——后囊下白内障在晶状体背面与晶状体所在的囊(或袋)相邻处是浑浊的。后囊下白内障始于小的浑浊区域,通常在晶状体后部附近、正好在光路中形成。后囊下白内障经常干扰阅读视力,使明亮光线下的视力变差,并在夜间引起眩光或灯光周围的光晕。这些类型的白内障往往比其他类型进展得更快。
继发性白内障——在其他眼部问题如青光眼的手术后形成的白内障。白内障也会在具有其他健康问题如糖尿病的人身上发生。白内障有时与类固醇的使用有关,或者还可由于接近有毒物质、紫外光或辐射而引起,或者因服用皮质类固醇或利尿剂等药物而引起。
外伤性白内障——在眼睛受伤后形成的白内障,这种白内障有时在眼睛受伤多年后形成。
辐射性白内障——暴露于一些类型的辐射后发展的白内障。
小儿白内障
在一些实施方案中,白内障还包括小儿白内障。在儿童中,白内障比任何其他形式的可治疗的失明导致更多的视觉障碍。患有外观明显的、未经治疗的白内障的儿童面临一生的失明,生活质量变化巨大,且对该儿童、其家庭和社会造成社会经济负担。超过200,000名儿童因未经手术的白内障、白内障手术的并发症或与白内障相关的眼部异常而失明。更多儿童罹患可能随着时间推移而缓慢进展的部分性白内障,视力困难随着儿童成长而增加。成长期间白内障的累积风险高达1/1000。
儿童白内障可以使用多种方法进行分类,包括发病年龄、病因和形态学。
发病年龄:
先天性或婴儿白内障——先天性白内障是一种天生的白内障。一些婴儿先天患有白内障或在儿童时期发展为白内障,通常发生在双眼中。这些白内障是遗传性的,或者与宫内感染或外伤相关。这些白内障还可起因于某些病况,诸如肌强直性营养不良、半乳糖血症、2型神经纤维瘤病或风疹。先天性白内障并不总是影响视力,但如果影响视力,通常会在检测后立即消除。可在成年期检测到的先天性白内障具有不同的分类,包括板层白内障、极性白内障和缝状白内障。一些形态类别的白内障,如前极、中央胎核和后极清楚地指示为先天性发作,而其他形态类别如皮质性或板层可能与后发相关或者先天性相关。
获得性和幼年性白内障——获得性白内障是来自外因如一种晶体基因的突变的白内障,其与原因是遗传决定的白内障相反。在一些情形下,获得性白内障用于指示婴儿期后的发作,这不一定表示非遗传性原因。幼年性白内障是在婴儿期后的童年发作的白内障,不论其潜在病因如何。
病因学:
遗传——约50%的童年白内障由编码涉及晶状体结构或透明度的蛋白质的基因突变引起。引起先天性或早期获得性白内障的疾病的实例包括但不限于高铁蛋白血症-白内障综合征、Coppock样白内障、Volkmann型先天性白内障、带有缝状浊斑的小带白内障、后极白内障1(CTPP1)、后极白内障2(CTPP2)、后极白内障3(CTPP3)、后极白内障4(CTPP4)、后极白内障5(CTPP5)、小带粉状白内障1(CZP1)、小带粉状白内障3(CZP3)、前极白内障1、前极白内障2、天蓝色白内障1型(CCA1)、天蓝色白内障2型(CCA2)、天蓝色白内障3型(CCA3)、晶体皮刺状白内障、非核多形性先天性白内障、带有点状和天蓝色浊斑的缝状白内障、肌强直性营养不良1(DM1)、多形性和板层白内障、白内障、常染色体显性白内障、多发性1型白内障、先天性白内障、面部畸形和神经病(CCFDN)、马-舍综合征(Marinesco-syndrome)、Warburg微小综合征1、Warburg微小综合征1、Warburg微小综合征2、Warburg微小综合征3、Martsolf综合征、哈勒曼-斯特雷夫综合征(Hallermann-Streiff syndrome)(Francois头面骨畸形综合征)、罗-汤综合征(Rothmund-Thomson syndrome)、史-莱-奥综合征(Smith-Lemli-Opitz syndrome)、先天性核性白内障2、诺里病(Norrie disease)和Nance Horan综合征。
继发性
(a)葡萄膜炎——在由于慢性眼部炎症或继发于长期使用类固醇而导致的葡萄膜炎的患者中发展的白内障。针对这样的白内障的手术并发有严重的术后炎症。许多患者具有覆盖晶状体并附着于虹膜的瞳孔膜。在手术时将这样的膜从前晶状体囊剥离以便于去除晶状体。
幼年特发性关节炎:儿童前葡萄膜炎的常见原因之一。全身性抗代谢物的使用已导致更好地控制此类患者中的葡萄膜炎并降低白内障的发病率。
其他类型的葡萄膜炎也可由于炎症或作为使用类固醇的并发症而引起白内障。
(b)眼内肿瘤——由于眼内肿瘤而发展白内障非常罕见。在未治疗的视网膜母细胞瘤患者中,晶状体呈典型的清晰状态。肿瘤的治疗如放疗有时会导致白内障的发展,在这种情况下,必须非常小心地考虑白内障去除的时机,并且仅在眼睛中的所有肿瘤都已根除时进行手术。患有辐射性白内障的患者可具有显著的眼表面干燥并且将无法容忍隐形眼镜。
(c)慢性视网膜脱落——这些白内障见于受伤的条件下或与施蒂克勒综合征(Stickler syndrome)相关。如果晶状体完全浑浊,则进行术前超声检查以排除慢性视网膜脱落。存在传入瞳孔缺陷是不良预后指征。
(d)母体感染(风疹)——这种类型的白内障在风疹已被根除的国家未出现,但在世界有些地方仍然存在。
医源性
(a)辐射——视网膜母细胞瘤患者避免外照射。如果对大脑或头部和颈部的其他部分进行辐射,则通常对眼睛进行屏蔽。
(b)全身性类固醇是在儿童中出现的非常罕见的白内障起因。典型的类固醇诱发的白内障是后囊下的。
(c)玻璃体切除术——经受玻璃体切除术的儿童很大比例发展了白内障。这些主要是后囊下的。
(d)激光用于早产儿视网膜病变——当出现明显的晶状体血管膜时,可能因晶状体的热损伤而发展出白内障。
形态学:
弥漫性/全白内障——这不是罕见类型的先天性白内障。弥漫性白内障或全白内障没有特定原因。
前部
(a)前极——浑浊在囊本身内,并且可以作为小的乳头状凸起突出到前房中。可能存在潜在的皮质浑浊的圆形层,其略大于白色极性浑浊。虽然大部分是稳定的并且不干扰视力,但是一些可能发展并需要手术去除。其可以是显性遗传的,特别是在双侧病例中。单侧病例可能与屈光参差症(散光或远视)相关,即使白内障本身并非明显可见的,但如果不治疗也会引起弱视。
(b)锥体——这些通常比极性白内障更大,且更有可能发展成明显可见的。其使用玻璃体切除术器械难以去除,并且可能需要在抽吸晶状体的其余部分之前进行切除并用镊子去除。
(c)前圆锥晶状体——这是指中央前囊变薄,具有或没有前皮质浑浊。前圆锥晶状体据称是奥尔波特综合征(Alport syndrome)的特征。可发生晶状体的自发破裂,导致水合的全白内障。
皮质板层
在该类型的白内障中,浑浊化是板层的(皮质的卵圆形层),可以在相邻的透明板层间予以目测。这通常与径向的“骑状(rider)”浑浊相关。家族性板层白内障主要是常染色体显性的,并且通常在去除后与良好的视觉预后相关。它们可以是稳定的,或者可与介入皮质的逐渐浑浊化相关,有必要进行去除。
胎核
这些浊斑占据了晶状体的最中央部分。它们可以是点状的或可非常密集。它们通常测量为2-3.5mm,可与小眼相关。它们据说是由于相关的小眼和在婴儿期早期需要手术而与青光眼术后更高的发病率相关。
后极
在这种类型的白内障中,浊斑在囊本身之中。有必要将后极白内障与后囊下白内障相区分。后极白内障是由遗传决定的,一些与PITX3中的突变相关。
后球形晶状体(圆锥晶状体)
在本病况组中,中央(有时候旁中央)后囊较薄且向后膨出。这通常发生在玻璃体系统附着于眼睛的位置处。变形可能导致局部区域的极端近视屈光。可能存在也可能不存在囊下皮质浑浊化。视力障碍可能是光学变形或囊浑浊化的结果。虽然报告了双侧和家族病例,但大多数病例都是单侧的。在大多数情况下,手术与良好的视力结果相关。可很少发生晶状体的自发破裂,导致突然进展成全白内障。
后囊下
这些可以是先天性的,但更常见的是由于受伤或类固醇使用而获得。浊斑为皮质性的,并且不涉及囊本身。
持续性胎儿血管(PFV)(严重种类仍被称为原发性玻璃体持续增生)
PFV患者的晶状体浊斑通常是囊的,并且可与囊的收缩、增厚和血管形成相关。在晶状体囊外或涉及晶状体囊可能有后斑块伴随清澈晶状体,但必须作为白内障进行治疗。
晶状体的外伤性破坏
在儿童中,外伤性前晶状体囊破裂迅速地导致水合的白色白内障。然而,在儿童中,前房中的晶状体皮质可以很好地耐受且无眼内压升高(IOP)。白内障手术通常可以延迟几天或长达3或4周,以允许外伤性虹膜炎在白内障及IOL手术前消退。
使用方法
在一些实施方案中,本文公开了生物材料组合物在维持受试者眼睛的晶状体前囊的结构完整性及原位诱导晶状体上皮干细胞和祖细胞的扩充中的应用,其中通过位于晶状体前囊的周边区域的撕囊术开口将生物材料组合物施用于晶状体前囊中,并且其中在施用生物材料组合物之前去除该晶状体的内容物。
在一些实施方案中,利用本文所述的生物材料组合物来增进LEC的扩充。在一些情况下,利用本文所述的生物材料组合物来增进或促进LEC增殖及分化成晶状体纤维细胞。在一些情况下,生物材料组合物包含人血清和成纤维细胞生长因子(FGF)。在一些情况下,该成纤维细胞生长因子是人成纤维细胞生长因子。
在一些实施方案中,生物材料组合物任选地包含一种或多种营养物、添加剂或其组合。在一些情况下,所述一种或多种营养物、添加剂或其组合增进细胞增殖、细胞分化或细胞活力。在一些情况下,一种或多种营养物包括氨基酸的组合物。在一些情况下,氨基酸的组合物包含选自以下的一种或多种氨基酸:丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、脯氨酸、丝氨酸和酪氨酸。在一些情况下,氨基酸的组合物包含选自以下的一种或多种氨基酸:丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸和缬氨酸。在一些情况下,氨基酸的组合物包含选自以下的一种或多种氨基酸:丙氨酸、天冬酰胺、天冬氨酸、谷氨酸、甘氨酸、脯氨酸和丝氨酸。在一些情况下,氨基酸的组合物包含丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、脯氨酸、丝氨酸和酪氨酸。在一些情况下,氨基酸的组合物包含丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸和缬氨酸。在一些情况下,氨基酸的组合物包含丙氨酸、天冬酰胺、天冬氨酸、谷氨酸、甘氨酸、脯氨酸和丝氨酸。
在一些实施方案中,一种或多种营养物包括葡萄糖源。在一些情况下,生物材料组合物包含葡萄糖源。
在一些实施方案中,一种或多种营养物包括丙酮酸盐。在一些情况下,生物材料组合物包含丙酮酸盐。
在一些实施方案中,一种或多种营养物包括至少一种维生素。示例性的维生素包括但不限于叶酸、烟酰胺、核黄素、B12、氯化胆碱、肌醇、烟酰胺、D-泛酸、盐酸吡哆醛、盐酸硫胺素等。在一些情况下,一种或多种营养物包括选自叶酸、烟酰胺、核黄素、B12、氯化胆碱、肌醇、烟酰胺、D-泛酸、盐酸吡哆醛和盐酸硫胺素的至少一种维生素。在一些情况下,生物材料组合物包含选自叶酸、烟酰胺、核黄素、B12、氯化胆碱、肌醇、烟酰胺、D-泛酸、盐酸吡哆醛和盐酸硫胺素的至少一种维生素。
在一些实施方案中,添加剂包括无机盐。示例性的无机盐包括但不限于氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠和磷酸钠。在一些情形下,添加剂包括氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠、磷酸钠或其组合。在一些情况下,生物材料组合物包含氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠、磷酸钠或其组合。
在一些情形下,本文所述的方法采用约0.1X至约10X浓度范围内的生物材料组合物。在一些情况下,本文所述的方法采用约0.1X至约9X、约0.5X至约8X、约0.5X至约7X、约0.5X至约6X、约0.5X至约5X、约0.5X至约4X、约0.5X至约3X、约0.5X至约2X、约0.5X至约1X、约1X至约10X、约1X至约9X、约1X至约8X、约1X至约7X、约1X至约6X、约1X至约5X、约1X至约4X、约1X至约3X、约1X至约2X、约2X至约10X、约2X至约9X、约2X至约8X、约2X至约7X、约2X至约6X、约2X至约5X、约2X至约4X、约2X至约3X、约4X至约10X、约4X至约9X、约4X至约8X、约4X至约7X、约4X至约6X、约4X至约5X、约5X至约10X、约5X至约9X、约5X至约8X、约5X至约7X或约5X至约6X浓度的浓度范围。
在一些情形下,采用约0.1X至约10X浓度范围内的生物材料组合物来维持结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充。在一些情况下,采用约0.1X至约9X、约0.5X至约8X、约0.5X至约7X、约0.5X至约6X、约0.5X至约5X、约0.5X至约4X、约0.5X至约3X、约0.5X至约2X、约0.5X至约1X、约1X至约10X、约1X至约9X、约1X至约8X、约1X至约7X、约1X至约6X、约1X至约5X、约1X至约4X、约1X至约3X、约1X至约2X、约2X至约10X、约2X至约9X、约2X至约8X、约2X至约7X、约2X至约6X、约2X至约5X、约2X至约4X、约2X至约3X、约4X至约10X、约4X至约9X、约4X至约8X、约4X至约7X、约4X至约6X、约4X至约5X、约5X至约10X、约5X至约9X、约5X至约8X、约5X至约7X或约5X至约6X浓度的浓度范围来维持结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充。
在一些情况下,本文所述的方法采用约0.1X、0.2X、0.3X、0.4X、0.5X、0.6X、0.7X、0.8X、0.9X、1X、2X、3X、4X、5X、6X、7X、8X、9X或10X的浓度。在一些情形下,采用约0.1X的浓度。在一些情况下,采用约0.2X的浓度。在一些情况下,采用约0.3X的浓度。在一些情况下,采用约0.4X的浓度。在一些情况下,采用约0.5X的浓度。在一些情况下,采用约0.6X的浓度。在一些情况下,采用约0.7X的浓度。在一些情况下,采用约0.8X的浓度。在一些情况下,采用约0.9X的浓度。在一些情况下,采用约1X的浓度。在一些情况下,采用约2X的浓度。在一些情况下,采用约3X的浓度。在一些情况下,采用约4X的浓度。在一些情况下,采用约5X的浓度。在一些情况下,采用约6X的浓度。在一些情况下,采用约7X的浓度。在一些情况下,采用约8X的浓度。在一些情况下,采用约9X的浓度。在一些情况下,采用约10X的浓度。在一些情况下,采用约0.1X、0.2X、0.3X、0.4X、0.5X、0.6X、0.7X、0.8X、0.9X、1X、2X、3X、4X、5X、6X、7X、8X、9X或10X的浓度来维持结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充。
在一些实施方案中,将本文所述的生物材料组合物以足以替代由于从晶状体前囊去除晶状体内容物导致的体积损失的量来施用于晶状体前囊。在一些情况下,将生物材料组合物以足以维持晶状体前囊的结构完整性的量来施用于晶状体前囊。在一些情形下,所述量为约10μL至约300μL。在一些情形下,所述量为约10μL至约250μL。在一些情形下,所述量为约10μL至约200μL。在一些情形下,所述量为约50μL至约300μL。在一些情形下,所述量为约50μL至约250μL。在一些情形下,所述量为约50μL至约200μL。在一些情形下,所述量为约50μL至约100μL。在一些情形下,所述量为约100μL至约300μL。在一些情形下,所述量为约100μL至约250μL。在一些情形下,所述量为至少10μL。在一些情形下,所述量为至少50μL。在一些情形下,所述量为至少100μL。在一些情形下,所述量为至少150μL。在一些情形下,所述量为至少200μL。在一些情形下,所述量为至少250μL。在一些情形下,所述量为至少300μL。在一些情形下,所述量为至多10μL。在一些情形下,所述量为至多50μL。在一些情形下,所述量为至多100μL。在一些情形下,所述量为至多150μL。在一些情形下,所述量为至多200μL。在一些情形下,所述量为至多250μL。在一些情形下,所述量为至多300μL。
在一些实施方案中,撕囊术开口的直径为约1.0至2.0mm。在一些情况下,撕囊术开口的直径为约1.0至1.5mm。在一些情形下,撕囊术开口的直径为约1mm、直径为约1.1mm、直径为约1.2mm、直径为约1.3mm、直径为约1.4mm、直径为约1.5mm、直径为约1.6mm、直径为约1.7mm、直径为约1.8mm、直径为约1.9mm或直径为约2mm。在一些情况下,撕囊术开口的直径为约1mm。在一些情况下,撕囊术开口的直径为约1.1mm。在一些情况下,撕囊术开口的直径为约1.2mm。在一些情况下,撕囊术开口的直径为约1.3mm。在一些情况下,撕囊术开口的直径为约1.4mm。在一些情况下,撕囊术开口的直径为约1.5mm。在一些情况下,撕囊术开口的直径为约1.6mm。在一些情况下,撕囊术开口的直径为约1.7mm。在一些情况下,撕囊术开口的直径为约1.8mm。在一些情况下,撕囊术开口的直径为约1.9mm。在一些情况下,撕囊术开口的直径为约2mm。
在一些实施方案中,撕囊术开口的直径为小于1.0mm至小于2.0mm。在一些情形下,撕囊术开口的直径为小于1.0mm。在一些情形下,撕囊术开口的直径为小于1.1mm。在一些情形下,撕囊术开口的直径为小于1.2mm。在一些情形下,撕囊术开口的直径为小于1.3mm。在一些情形下,撕囊术开口的直径为小于1.4mm。在一些情形下,撕囊术开口的直径为小于1.5mm。在一些情形下,撕囊术开口的直径为小于1.6mm。在一些情形下,撕囊术开口的直径为小于1.7mm。在一些情形下,撕囊术开口的直径为小于1.8mm。在一些情形下,撕囊术开口的直径为小于1.9mm。在一些情形下,撕囊术开口的直径为小于2mm。
在一些情形下,撕囊术开口位于远离眼睛的中央视轴的位置处。在这样的情况下,该切口将使得由于切口的愈合不当而引起的视力损害最小化。
在一些实施方案中,使用生物材料组合物来维持晶状体前囊的结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充在患有白内障的受试者的眼中进行。在一些情况下,受试者为人。在一些情况下,受试者为18岁或更年长的人。在其他情况下,受试者为17岁或更年轻的人类。在一些情况下,受试者为成年人。在其他情况下,受试者为儿童或婴儿。
在一些实施方案中,使用生物材料组合物维持晶状体前囊的结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充在患有小儿白内障的受试者的眼中进行。
在一些实施方案中,使用生物材料组合物维持晶状体前囊的结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充在患有先天性白内障(或婴儿白内障)的受试者的眼中进行。
在一些实施方案中,使用生物材料组合物维持晶状体前囊的结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充在患有获得性和幼年白内障的受试者的眼中进行。
在一些实施方案中,使用生物材料组合物维持晶状体前囊的结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充在患有选自核性白内障、皮质性白内障、后囊下白内障、继发性白内障、外伤性白内障和辐射性白内障的白内障的受试者的眼中进行。在一些情形下,使用生物材料组合物维持晶状体前囊的结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充在患有核性白内障的受试者的眼中进行。在一些情形下,使用生物材料组合物维持晶状体前囊的结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充在患有皮质性白内障的受试者的眼中进行。在一些情形下,使用生物材料组合物维持晶状体前囊的结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充在患有后囊下白内障的受试者的眼中进行。在一些情形下,使用生物材料组合物维持晶状体前囊的结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充在患有继发性白内障的受试者的眼中进行。在一些情形下,使用生物材料组合物维持晶状体前囊的结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充在患有外伤性白内障的受试者的眼中进行。在一些情形下,使用生物材料组合物维持晶状体前囊的结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充在患有辐射性白内障的受试者的眼中进行。
在一些实施方案中,在晶状体前囊中制造撕囊开口后,去除晶状体的内容物,包括例如白内障和可选的天然晶状体。在一些情况下,内源性晶状体上皮干细胞和祖细胞(LEC)保留在晶状体前囊中。
在一些情况下,晶状体上皮干细胞和祖细胞表达Pax6和/或Bmi-1。在一些情况下,表达Pax6和/或Bmi-1的LEC扩充或增殖,随后分化成晶状体纤维细胞。
在一些情形下,本文所述的应用和方法不涉及人工眼内晶状体(IOL)的植入。
在一些情况下,相对于包括包含中央撕囊术开口的撕囊术过程和人工眼内晶状体植入的方法,本文所述的应用和方法导致视轴浑浊化(VAO)减少。
在另外的情况下,本文所述的应用和方法导致选自角膜水肿、前房炎症和视轴浑浊化的并发症事件减少。
用于晶状体再生的系统和装置
在某些实施方案中,本文的公开内容涉及用于治疗白内障的系统及其方法。在一些情形下,所述系统包括晶状体乳化单元、抽吸单元和生物材料递送单元,任选地包括检测器和计算机/比较器。在一些情况下,该系统包括成像单元(例如,检测器)(2204),用于在晶状体乳化、抽吸或递送生物材料组合物期间的一个或多个步骤中可视化;晶状体乳化单元(2201),用于分解来自前囊的目标材料(例如,白内障);抽吸单元(2202),用于从前囊去除目标材料;以及生物材料递送单元(2203),用于递送生物材料组合物以促进LEC增殖和分化(2205),其中所有单元均可操作地连接到计算机(参见图22)。在一些情形下,在该系统中,检测器可操作地连接到计算机/比较器,并且计算机/比较器直接连接到晶状体乳化单元(2201)、抽吸单元(2202)和生物材料递送单元(2203)。通过该组合,如本发明所设想的,使用所述系统来产生和引导晶状体乳化单元或工具朝向眼睛以便进行眼科手术过程。在一些情形下,所述系统可包含以下至少一种以促进从样品晶状体囊去除白内障物质:激光、光学相干断层扫描(OCT)传感器、成像系统、视频系统、位置传感器、冲洗装置、抽吸装置和机器人铰接控制。
在一些情形下,晶状体乳化(Phaco)是用于提取白内障物质并维持前房和晶状体囊的完整性的技术。如本文所用的,术语“晶状体乳化”是指基于超声和激光的乳化过程,以及超声和激光过程的组合,用于分解目标内眼组织,通常是晶状体,以进行白内障手术。
在一些实施方案中,晶状体乳化单元(2201)涉及使用具有超声和/或激光手持件的机械,该手持件配备有尖端以乳化患者的晶状体。在一些实施方案中,尖端是窄的或薄的探头,该探头可被设计成插入到晶状体的周边区域而不是中央轴区域,以保留几乎完整的透明晶状体囊和晶状体上皮干细胞或祖细胞层,该层具有再生潜力,是自然晶状体再生所亟需的。在一些实施方案中,晶状体乳化工具或探头为约3mm或更小,如2mm和1mm。在一些实施方案中,晶状体乳化小于约1mm。在一些实施方案中,尖端由以超声频率振动的钛或钢或其他材料制成,并且晶状体材料得以乳化。在其他实施方案中,晶状体乳化尖端是能够产生所谓的“飞秒”激光束的激光器。
激光单元
在一些实施方案中,所产生的激光束包括具有极其超短持续时间(例如,小于大约500fs)的一系列激光脉冲。在一些情形下,激光单元包括光束操纵组件,用于沿着选定的路径移动激光的焦斑以乳化一定体积的目标组织。在一些实施方案中,激光信号和能量经由光子波导、一组反射镜或者一组反射镜和透镜传送到工具的尖端。重要的是,激光束必须能够在眼睛内部的选定目标组织上进行激光诱导光学击穿(LIOB)。此外,重要的是存在精确的LIOB性能。这样的精度要求能够对要被LIOB改变的靶组织成像。在一些实施方案中,由于白内障物质或水、网或者任何热或机械效应对激光的强吸收,工具能够在小的精确区域中用激光打碎白内障。在一些实施方案中,工具中的激光被改变以“底切”大片的白内障物质,即用小切口来去除大片。在一些实施方案中,实时控制工具中激光的脉冲能量、重复率和脉冲持续时间。在这些参数的控制中,工具的使用者改变白内障物质去除的程度和速度。在一些情形下,激光以预先设计的模式向晶状体施加多个脉冲以去除晶状体物质。在一些情形下,工具尖端的形状被设定成提供最大的切割效果。在一些情形下,激光工具尖端的形状呈扁平、圆形、逐渐收缩到一点或者是扁平、圆形和锥形形状的组合。
冲洗和抽吸工具(2202)
在一些实施方案中,本发明包括冲洗和抽吸工具(例如,抽吸单元,2202)以从囊去除碎片。在一些实施方案中,冲洗和抽吸能力在与乳化工具(例如,晶状体乳化单元,2201)相同的工具上得到结合。在替代方案中,第二工具包括专用的抽吸和冲洗工具。通常,抽吸单元(2202)包括向通过软管耦合到阻尼器的真空泵提供电力的电源。在一些情形下,抽吸流通过管从阻尼器传递到工具。阻尼器(例如,以汽缸内的柱塞为代表)在工具中的空气堵塞或阻塞的情况下缓和抽吸压力的峰及谷,例如通过流量计。在一些情形下,冲洗和抽吸通道的大小直接影响从晶状体囊提取的白内障片的大小。
在一些实施方案中,本发明包括由计算机、压力容器和流量计控制的泵。在设备中,向泵供应流体。泵经由管定向地将流体推进至压力容器。泵入压力容器中的流体迫使最初停留在压力容器中的液体流向流量计。流量计检测液体从设备输出之前的速度。关于液体流速的信息被发送到计算机,该计算机可以向泵发送压力信号。这创造了反馈回路;通过将流量反馈信号传送给计算机,计算机可以通过压力信号控制泵从而响应排出液体的速度。因此,如果液体流动过快,则下调流体从泵通过管的流动。或者,如果液体流动过慢,则增加流体从泵通过管的流动,以对压力容器中的液体施加更大的压力。压力容器中的压力增加导致液体流动增加。该反馈回路使设备能够在输出时将其液体流量调节到期望的冲洗速率。在一些情形下,本公开内容包括节流阀,其接收来自计算机、中央处理单元、微控制器、ASIC或其他控制电路的流动控制信号。在一些情形下,节流阀通过限制(“节流”)从设备输出的流体而进一步影响流体流动。
在晶状体白内障物质的乳化和抽吸期间,携带干细胞的囊的某些部分(诸如前部和/或后部)有被乳化单元和抽吸力损坏的风险。例如,如果晶状体囊膜的一部分被吸入抽吸管,则前部和/或后部可能受压并撕裂。这增加了玻璃体液侵入眼睛前部的风险,该侵入引起感染和其他眼病。为了使这种可能性最小化,在一些实施方案中,当关停乳化剂时,乳化单元延伸超过吸入管的末端以充当探头。使用纤维作为探头防止了吸入管接近囊膜并将之损坏。探头的形状经过优化,以使对膜的损坏最小化。成形尖端的实例包括浑圆或圆形的尖端。在一些实施方案中,尖端具有冲洗能力和抽吸能力以提取白内障物质并维持前房和晶状体囊的完整性。
在一些实施方案中,晶状体囊保持完整,其中制造双侧切口用于晶状体乳化尖端,并用于抽吸尖端和/或灌洗尖端以去除大部分晶状体。此后,成功漂洗/洗涤晶状体囊的完整内容物,这样使得导致继发性白内障的碎片得以排出。然后,在晶状体囊完整的情况下,制造用于生物材料递送单元(2203)的最小切口,以通过切口注射或递送生物材料以填充囊。
在一些实施方案中,通过将生物材料递送至晶状体囊来增强晶状体干细胞和祖细胞再生。因此,若干实施方案改变递送的生物材料的组分以影响晶状体干细胞和祖细胞的最佳再生。例如,除了抽吸流体之外或代替抽吸流体,将泵用于生物材料流体,或者替代地使用注射器来引入生物材料。
用于提高原位晶状体干细胞/祖细胞生长的生物材料
在一些实施方案中,利用本文所述的生物材料组合物来增进LEC的扩充。在一些情况下,利用本文所述的生物材料组合物来增进或促进LEC增殖并分化成晶状体纤维细胞。在一些情形下,生物材料组合物包含人血清和成纤维细胞生长因子(FGF)。在一些情况下,成纤维细胞生长因子是人成纤维细胞生长因子。
在一些实施方案中,生物材料组合物任选地包含一种或多种营养物、添加剂或其组合。在一些情况下,所述一种或多种营养物、添加剂或其组合增进细胞增殖、细胞分化或细胞活力。在一些情况下,一种或多种营养物包括氨基酸的组合物。在一些情况下,氨基酸的组合物包含选自以下的一种或多种氨基酸:丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、脯氨酸、丝氨酸和酪氨酸。在一些情况下,氨基酸的组合物包含选自以下的一种或多种氨基酸:丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸和缬氨酸。在一些情况下,氨基酸的组合物包含选自以下的一种或多种氨基酸:丙氨酸、天冬酰胺、天冬氨酸、谷氨酸、甘氨酸、脯氨酸和丝氨酸。在一些情况下,氨基酸的组合物包含丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、脯氨酸、丝氨酸和酪氨酸。在一些情况下,氨基酸的组合物包含丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸和缬氨酸。在一些情况下,氨基酸的组合物包含丙氨酸、天冬酰胺、天冬氨酸、谷氨酸、甘氨酸、脯氨酸和丝氨酸。
在一些情况下,一种或多种营养物包括葡萄糖源。在一些情况下,生物材料组合物包含葡萄糖源。
在一些实施方案中,一种或多种营养物包括丙酮酸盐。在一些情况下,生物材料组合物包含丙酮酸盐。
在一些实施方案中,一种或多种营养物包括至少一种维生素。示例性的维生素包括但不限于叶酸、烟酰胺、核黄素、B12、氯化胆碱、肌醇、烟酰胺、D-泛酸、盐酸吡哆醛、盐酸硫胺素等。在一些情况下,一种或多种营养物包括选自叶酸、烟酰胺、核黄素、B12、氯化胆碱、肌醇、烟酰胺、D-泛酸、盐酸吡哆醛和盐酸硫胺素的至少一种维生素。在一些情况下,生物材料组合物包含选自叶酸、烟酰胺、核黄素、B12、氯化胆碱、肌醇、烟酰胺、D-泛酸、盐酸吡哆醛和盐酸硫胺素的至少一种维生素。
在一些实施方案中,添加剂包括无机盐。示例性的无机盐包括但不限于氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠和磷酸钠。在一些情形下,添加剂包括氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠、磷酸钠或其组合。在一些情况下,生物材料组合物包含氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠、磷酸钠或其组合。
在一些情形下,本文所述系统采用约0.1X至约10X浓度范围内的生物材料组合物。在一些情况下,本文所述的系统采用约0.1X至约9X、约0.5X至约8X、约0.5X至约7X、约0.5X至约6X、约0.5X至约5X、约0.5X至约4X、约0.5X至约3X、约0.5X至约2X、约0.5X至约1X、约1X至约10X、约1X至约9X、约1X至约8X、约1X至约7X、约1X至约6X、约1X至约5X、约1X至约4X、约1X至约3X、约1X至约2X、约2X至约10X、约2X至约9X、约2X至约8X、约2X至约7X、约2X至约6X、约2X至约5X、约2X至约4X、约2X至约3X、约4X至约10X、约4X至约9X、约4X至约8X、约4X至约7X、约4X至约6X、约4X至约5X、约5X至约10X、约5X至约9X、约5X至约8X、约5X至约7X或约5X至约6X浓度的浓度范围。
在一些情况下,利用约0.1X至约10X浓度范围内的生物材料组合物来维持结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充。在一些情况下,利用约0.1X至约9X、约0.5X至约8X、约0.5X至约7X、约0.5X至约6X、约0.5X至约5X、约0.5X至约4X、约0.5X至约3X、约0.5X至约2X、约0.5X至约1X、约1X至约10X、约1X至约9X、约1X至约8X、约1X至约7X、约1X至约6X、约1X至约5X、约1X至约4X、约1X至约3X、约1X至约2X、约2X至约10X、约2X至约9X、约2X至约8X、约2X至约7X、约2X至约6X、约2X至约5X、约2X至约4X、约2X至约3X、约4X至约10X、约4X至约9X、约4X至约8X、约4X至约7X、约4X至约6X、约4X至约5X、约5X至约10X、约5X至约9X、约5X至约8X、约5X至约7X或约5X至约6X浓度的浓度范围来维持结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充。
在一些情况下,本文所述的系统采用约0.1X、0.2X、0.3X、0.4X、0.5X、0.6X、0.7X、0.8X、0.9X、1X、2X、3X、4X、5X、6X、7X、8X、9X或10X的浓度。在一些情形下,采用约0.1X的浓度。在一些情形下,采用约0.2X的浓度。在一些情形下,采用约0.3X的浓度。在一些情形下,采用约0.4X的浓度。在一些情形下,采用约0.5X的浓度。在一些情形下,采用约0.6X的浓度。在一些情形下,采用约0.7X的浓度。在一些情形下,采用约0.8X的浓度。在一些情形下,采用约0.9X的浓度。在一些情形下,采用约1X的浓度。在一些情形下,采用约2X的浓度。在一些情形下,采用约3X的浓度。在一些情形下,采用约4X的浓度。在一些情形下,采用约5X的浓度。在一些情形下,采用约6X的浓度。在一些情形下,采用约7X的浓度。在一些情形下,采用约8X的浓度。在一些情形下,采用约9X的浓度。在一些情形下,采用约10X的浓度。在一些情形下,采用约0.1X、0.2X、0.3X、0.4X、0.5X、0.6X、0.7X、0.8X、0.9X、1X、2X、3X、4X、5X、6X、7X、8X、9X或10X的浓度来维持结构完整性并原位诱导晶状体上皮干细胞和祖细胞的扩充。
在一些实施方案中,将本文所述的生物材料组合物以足以替代由于从晶状体前囊去除晶状体内容物导致的体积损失的量来施用于晶状体前囊。在一些情况下,将生物材料组合物以足以维持晶状体前囊的结构完整性的量来施用于晶状体前囊。在一些情形下,所述量为约10μL至约300μL。在一些情形下,所述量为约10μL至约250μL。在一些情形下,所述量为约10μL至约200μL。在一些情形下,所述量为约50μL至约300μL。在一些情形下,所述量为约50μL至约250μL。在一些情形下,所述量为约50μL至约200μL。在一些情形下,所述量为约50μL至约100μL。在一些情形下,所述量为约100μL至约300μL。在一些情形下,所述量为约100μL至约250μL。在一些情形下,所述量为至少10μL。在一些情形下,所述量为至少50μL。在一些情形下,所述量为至少100μL。在一些情形下,所述量为至少150μL。在一些情形下,所述量为至少200μL。在一些情形下,所述量为至少250μL。在一些情形下,所述量为至少300μL。在一些情形下,所述量为至多10μL。在一些情形下,所述量为至多50μL。在一些情形下,所述量为至多100μL。在一些情形下,所述量为至多150μL。在一些情形下,所述量为至多200μL。在一些情形下,所述量为至多250μL。在一些情形下,所述量为至多300μL。
成像传感器
使用包括本文所述成像单元(2204)的成像技术和传感器来优化激光器、冲洗和抽吸参数。例如,如果检测到工具尖端太靠近解剖结构,则降低激光器功率以降低受伤的可能性。类似地,操控冲洗和抽吸压力以便于去除白内障物质。
在一些实施方案中,使用位置传感器或成像技术来定位白内障的不同部分和白内障的大小。这样的位置传感器或成像技术包括但不限于3D成像、OCT、MRI、CT、超声、术中(OCT)或具有处理的视频系统。在一些实施方案中,工具本身具有OCT装置。在一些实施方案中,工具具有多自由度(dof)传感器,诸如电磁或光纤传感器。使用本文所述的图像组件的准确图像来定义非治疗安全区以保护晶状体、后晶状体囊、视网膜等。
在一些实施方案中,检测器是使用光学相干断层扫描(OCT)技术操作的一种类型的成像单元。替代地,或除了OCT装置之外,检测器包括Scheimpflug装置、共焦成像装置、光学测距装置、超声装置和/或双光子成像装置。因此,检测器将包括产生成像光束的光源和将成像光束引向眼睛的光学器件。在一些情形下,这些光学器件包括激光单元的光束操纵组件中的一些或全部光学器件。对于该系统,使用成像光束来创建眼睛内所选定的组织的三维图像。然后将这些图像传递给例如计算机/比较器以供计算机/比较器在控制激光单元时使用。
识别眼睛中的几个相关结构并用作参照,包括角膜、巩膜、晶状体、玻璃体、视网膜、黄斑和视网膜血管。玻璃体位于玻璃体腔中,该玻璃体腔从视网膜和黄斑(后侧)延伸到晶状体(前侧)。因此,玻璃体建立与晶状体囊、视网膜、黄斑和视网膜血管的边界。
本文的公开内容对于几种情况特别感兴趣。例如,有兴趣在玻璃体与相邻的解剖结构之间的边界处来准确乳化目标玻璃体组织。应当理解,当前的讨论同样适用于其他玻璃体边界,包括与晶状体囊、视网膜血管、黄斑等的边界。
在一些实施方案中,如本文所述的具有成像反馈的计算机控制单元的使用还允许更精确的瞄准。例如,如本文所述的具有成像反馈的计算机控制的飞秒激光器的使用导致治疗过程时间显著减少或潜在损伤减少。
工具铰接
在一些实施方案中,工具尖端位于机器人控制的铰接区域中。铰接区域允许工具尖端的移动,同时避免工具其余部分中的运动。在一些实施方案中,铰接区域包括预弯管、嵌入直管或弯管内的预弯管、具有控制线的弯曲部、用半导体制造技术制造的弯曲部以及具有微电机和微齿轮的弯曲部。使用机器人控制的铰接尖端使提取白内障物质所需的晶状体囊中切口的大小最小化。因此,这是关于撕囊术的重要技术。
铰接工具的实例是埋设于预弯管中的光纤,其中预弯管具有刚性的直外管。在一些实施方案中,预弯管缩回到直管中,产生可从弯曲变为直线配置的工具。通过机器人控制回缩量,允许工具上的弯曲与工具模式和/或激光器参数同步。预弯管的使用不限制与工具尖端一起使用的铰接手段,其他手段包括具有一个或多个控制线的弯曲部。
在一些实施方案中,本发明包括用于将工具的尖端定位到位并且任选地提供用于调节激光工具的方向的角自由度的机器人。
提高晶状体干细胞/祖细胞生长的基质
在一些实施方案中,希望控制基质或生物材料(例如,水凝胶)的孔隙度,从而控制营养物和废物扩散进出基质的能力。在一些实施方案中,将合适的交联剂添加至前述生物材料。若干实施方案改变了添加至生物材料的适当交联剂的相对量,导致平均孔径减小及通过水凝胶的扩散减少。相反,一些实施方案包含相对较少量的交联剂,使得孔径及通过水凝胶的扩散增加。若干实施方案实现了生物材料的结构完整性以及营养物和废物的充分扩散的平衡度。
如本文所用的,术语“基质”是指晶状体干细胞可以粘附的任何物质,因此可以替代饲养细胞的细胞附着功能或支持其粘附,诸如附着因子。特别适用于与本发明一起使用的是衍生自基底膜的细胞外基质组分或形成粘附分子受体-配体偶联的一部分的细胞外基质组分。可以由本发明的该方面的方法使用的合适基质的非限制性实例包括哺乳动物羊膜如人羊膜、胶原蛋白(例如,胶原蛋白IV)、纤维蛋白原、串珠蛋白聚糖、层粘连蛋白、纤连蛋白、蛋白聚糖、前胶原、透明质酸、巢蛋白、硫酸乙酰肝素、生腱蛋白、聚L-赖氨酸、明胶、聚L-鸟氨酸、血小板衍生生长因子(PDGF)等或其任意组合。或者,细胞外基质是商业提供的。可商购的细胞外基质的实例是细胞外基质蛋白(Fischer或Life Tech)、纤维蛋白原和凝血酶片(Reliance Life)和MatrigelTM(BD Biosciences)及其等同物。在期望完全无动物培养条件的情况下,基质来源于人源或使用重组技术合成。这样的基质包括例如,人羊膜、人源纤连蛋白、重组纤连蛋白基质,这些可以从Sigma,St.Louis,MO,USA获得,或者可以使用已知的重组DNA技术产生(参见例如,美国专利号6,152,142和Tseng等人,(1997)Am.J.Ophthalmol.124:765-774,所述专利和文献各自通过引用并入本文)。
几个实施方案包括添加至生物材料的营养物、添加剂和/或生长因子。这样的添加剂增进细胞增殖、细胞分化或细胞活力。此外,除了生物材料的组合物之外,添加剂还增强细胞保留。其他实施方案不必需添加剂来产生有效的细胞保留。营养物、添加剂和/或生长因子不限于在体外条件下添加的那些,它们可以是从并入生物材料中的细胞或者从生物材料组合物递送到其上或其中的局部靶组织上释放的。此外,在一些情形下,其他营养物如葡萄糖、胰岛素、丙酮酸、氨基酸和生长因子也并入生物材料中。其他实施方案包括生物材料的血清补充,补充范围为约5-10%血清。在一些实施方案中,以约7.5%血清补充生物材料。在一些实施方案中,以约5-7%、6-8%、7-9%或8-10%范围的血清补充生物材料。在涉及7.5%的血清补充的一些实施方案中,生物材料是乙酰透明质酸。在一些实施方案中,生物材料补充有与ECM相关的一种或多种组分。在一些实施方案中,生物材料补充有胶原。在一些实施方案中,胶原蛋白以最终浓度的约0.2-0.6%的范围添加至生物材料,其中包括0.3%、0.4%和0.5%。可以使用更低或更高的范围。在一些实施方案中,使用约0.4%的胶原来补充乙酰透明质酸以形成细胞基质。
计算机系统和程序
在一些实施方案中,本文描述了包括用于实现本文所述的一种或多种应用或系统的计算机系统或平台。在一些实施方案中,本文还描述了包括用于控制计算机系统以执行根据本文所述的一种或多种方法或系统的步骤的计算机程序。
在一些实施方案中,计算机系统是指具有计算机的系统,其中计算机包括内置有软件以运行该计算机的计算机可读介质。在一些情况下,计算机系统包括一个或多个通用或专用处理器和相关的存储器,包括易失性和非易失性存储器装置。在一些情况下,计算机系统存储器存储软件或计算机程序,所述软件或计算机程序用于控制计算机系统的操作以制造根据本发明的专用系统或者实现执行根据本发明的方法的系统。在一些情况下,计算机系统包括用于处理数据的基于Intel或AMD x86的单核或多核中央处理单元(CPU)、ARM处理器或者类似的计算机处理器。在一些情况下,CPU或微处理器是任何传统的通用单芯片或多芯片微处理器,诸如Intel Pentium处理器、Intel 8051处理器、RISC或MISS处理器、Power PC处理器或ALPHA处理器。在一些情况下,微处理器是任何传统或专用的微处理器,诸如数字信号处理器或图形处理器。微处理器通常具有传统的地址线、传统的数据线以及一个或多个传统的控制线。如下所述,根据本发明的软件在专用系统或具有DOS、CPM、Windows、Unix、Linix或其他操作系统的通用计算机上执行。在一些情形下,所述系统包括非易失性存储器(诸如用于存储计算机程序、软件和数据的磁盘存储器和固态存储器)以及易失性存储器(诸如用于执行程序和软件的高速ram)。
在一些实施方案中,计算机可读介质是指用于存储可由计算机访问的数据的任何存储装置,以及用于提供计算机对数据的访问的任何其他设备。存储装置型计算机可读介质的示例包括:硬磁盘;软盘;光盘,诸如CD-ROM和DVD;磁带;存储芯片。在本发明的各种实施方案中有用的计算机可读物理存储介质可包括任何物理计算机可读存储介质,例如,固态存储器(诸如闪速存储器)、磁和光学计算机可读存储介质和装置以及使用其他持久性存储技术的存储器。在一些实施方案中,计算机可读介质是允许计算机程序和数据被计算机访问的任何有形介质。计算机可读介质可包括以能够存储信息如计算机可读指令、程序模块、程序、数据、数据结构和数据库信息的任何方法或技术实现的易失性和非易失性、可移动和不可移动的有形介质。在本发明的一些实施方案中,计算机可读介质包括但不限于RAM(随机存取存储器)、ROM(只读存储器)、EPROM(可擦除可编程只读存储器)、EEPROM(电可擦除可编程只读存储器)、闪速存储器或其他存储技术、CD-ROM(光盘只读存储器)、DVD(数字通用光盘)或其他光存储介质、盒式磁带、磁带、磁盘存储或其他磁性存储介质、其他类型的易失性和非易失性存储器以及可用于存储信息并且可由计算机读取的任何其他有形介质,并且包括前述的任何合适的组合。
在一些情形下,本文描述的一种或多种方法在独立计算机上实现或者作为联网计算机系统或计算平台的一部分实现。在独立计算机中,所有软件和数据都可以驻留在本地存储器装置上,例如光盘或闪速存储器装置可以用于存储用于实现本发明的计算机软件以及数据。在备选的实施方案中,可以通过到远程装置的网络连接来访问软件或数据或两者。
在一些情况下,计算机指令以软件、固件或硬件实现,并且包括由信息处理系统的模块承担的任何类型的编程步骤。在一些情况下,计算机系统连接到局域网(LAN)或广域网(WAN)。局域网的一个示例可以是公司计算网络,包括对因特网的访问,包含数据处理系统的计算机和计算装置连接到该网络。在一个实施方案中,LAN使用工业标准传输控制协议/网际协议(TCP/IP)网络协议进行通信。传输控制协议(TCP)可以用作传输层协议,以在计算机系统之间提供可靠的、面向连接的传输层链路。网络层为传输层提供服务。使用双向信号交换方案,TCP提供了用于在计算机系统之间建立、维持和终止逻辑连接的机制。TCP传输层使用IP作为其网络层协议。此外,TCP提供协议端口,通过在每条消息中包含目标和源端口号来区分在单个装置上执行的多个程序。TCP执行诸如字节流发送、数据流定义、数据确认、丢失或损坏的数据重传以及通过单个网络连接多路复用多个连接等功能。最后,TCP负责将信息封装到数据报结构中。在备选的实施方案中,LAN可以符合其他网络标准,包括但不限于国际标准组织的开放系统互连、IBM的SNA、Novell的Netware和Banyan VINES。
服务器
在一些实施方案中,在服务器或计算机服务器上处理本文提供的方法和系统(图23)。在一些实施方案中,服务器401包括中央处理单元(CPU,也称“处理器”)405,其为单核处理器、多核处理器或用于并行处理的多个处理器。在一些实施方案中,用作控制组件的一部分的处理器是微处理器。在一些实施方案中,服务器401还包括存储器410(例如,随机存取存储器、只读存储器、闪速存储器);电子存储单元415(例如,硬盘);用于与一个或多个其他系统通信的通信接口420(例如,网络适配器);以及外围装置425,包括高速缓存、其他存储器、数据存储和/或电子显示适配器。存储器410、存储单元415、接口420和外围装置425通过诸如主板的通信总线(实线)与处理器405通信。在一些实施方案中,存储单元415是用于存储数据的数据存储单元。服务器401在通信接口420的辅助下可操作地耦合至计算机网络(“网络”)430。在一些实施方案中,在附加硬件的辅助下,处理器也可操作地耦合至网络。在一些实施方案中,网络430是因特网、内联网和/或外联网、与因特网、远程通信或数据网络通信的内联网和/或外联网。在一些实施方案中,网络430在服务器401的辅助下实现对等网络,其使得耦合至服务器401的装置能够作为客户端或服务器。在一些实施方案中,服务器能够经由通过网络430传输的电子信号发送和接收计算机可读指令(例如,装置/系统操作协议或参数)或数据(例如,传感器测量值、从检测代谢物获得的原始数据、从检测代谢物获得的原始数据的分析、从检测代谢物获得的原始数据的解释等)。此外,在一些实施方案中,网络用于例如跨国际边界发送或接收数据。
在一些实施方案中,服务器401与一个或多个输出装置435(诸如,显示器或打印机)和/或与一个或多个输入装置440(例如,键盘、鼠标或操纵杆)通信。在一些实施方案中,显示器是触摸屏显示器,在这种情况下,该显示器同时起显示装置和输入装置的作用。在一些实施方案中,存在不同的和/或另外的输入装置,诸如发声器、扬声器或传声器。在一些实施方案中,服务器使用各种操作系统中的任一种,诸如例如,几种版本的中的任一种。
在一些实施方案中,存储单元415存储与本文所述的装置、系统或方法的操作相关联的文件或数据。
在一些实施方案中,服务器通过网络430与一个或多个远程计算机系统通信。在一些实施方案中,一个或多个远程计算机系统包括例如个人计算机、膝上型计算机、平板计算机、电话、智能电话或个人数字助理。
在一些实施方案中,控制组件包括单个服务器401。在其他情况下,系统包括通过内联网、外联网和/或因特网彼此通信的多个服务器。
在一些实施方案中,服务器401适于存储本文描述的装置操作参数、协议、方法以及具有潜在相关性的其他信息。在一些实施方案中,这样的信息存储在存储单元415或服务器401上,并且这样的数据通过网络发送。
某些术语
尽管本文中已经示出并描述了本公开内容的优选实施方案,但对于本领域技术人员显而易见的是,这些实施方案仅以示例的方式提供。本领域技术人员在不脱离本公开内容的情况下将想到多种变化、改变和替代。应当理解,本文所述的本公开内容的实施方案的各种替代方案均可使用。旨在以下述权利要求限定本公开内容的范围,并由此涵盖这些权利要求范围内的方法和结构及其等同项。
除非另有定义,否则本文使用的所有技术和科学术语具有与本文所述的本公开内容所属领域的技术人员所一般理解的相同的含义。本说明书中提到的所有出版物、专利和专利申请均通过引用并入于此,其程度如同特别地且单独地指出每一个单独的出版物、专利或专利申请均通过引用而并入。
在本申请中,除非另有特别说明,否则单数的使用包括复数。必须指出,除非上下文另有明确规定,如在说明书中所使用的,单数形式“一个”、“一种”和“该”包括复数个指代物。在本申请中,除非另有说明,“或”的使用表示“和/或”。此外,术语“包括”以及其他形式如“包含”的使用并不是限制性的。
本文所用的章节标题仅用于组织目的,而不应理解为限制所描述的主题。本申请中引用的所有文件或文件的部分,包括但不限于专利、专利申请、文章、书籍、手册和论文,通过引用而全文明确地并入本文以用于任何目的。另外,本文所述的结构、系统和/或装置可以整体组分或单独组分来实现。因此,本发明的方法和系统不限于白内障手术和其他眼科应用。
如本文所用的,范围和量可表示为“约”特定值或范围。约还包括确切的量。因此,“约5μL”意指“约5μL”,也指“5μL”。通常,术语“约”包括预期在实验误差范围内的量,例如,±5%、±10%或±15%。
如本文所用,术语“个体”、“受试者”和“患者”意指任何哺乳动物。在一些实施方案中,该哺乳动物为人。在一些实施方案中,该哺乳动物为非人类哺乳动物。所述术语均不要求或限于以医疗保健工作者(例如,医生、注册护士、护士执业者、医师助理、老年或临终关怀工作者)的监督(例如,不断的或间歇的)为特征的情况。
实施方案1涉及原位扩充晶状体上皮干细胞和祖细胞的方法,包括:(i)在受试者眼睛的晶状体前囊的周边区域制造撕囊术开口;(ii)去除晶状体内容物;(iii)通过撕囊术开口向前囊内施用生物材料组合物,以维持前囊的结构完整性,并原位诱导晶状体上皮干细胞和祖细胞的扩充。
实施方案2引用实施方案1,其中所述生物材料组合物包含人血清和成纤维细胞生长因子(FGF)。
实施方案3引用实施方案1或2,其中所述生物材料组合物进一步包含营养物、添加剂或其组合,其中所述营养物包括氨基酸的组合物和可选的一种或多种营养物,并且其中所述添加剂包括氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠、磷酸钠或其组合。
实施方案4引用实施方案1,其中所述撕囊术开口的直径为约1.0至2.0mm。
实施方案5引用实施方案1,其中所述撕囊术开口的直径为约1.0至1.5mm。
实施方案6引用实施方案1,其中所述撕囊术开口位于远离眼睛的中央视轴的位置处。
实施方案7引用实施方案1,其中所述受试者患有白内障。
实施方案8引用实施方案1,其中所述受试者为动物或人。
实施方案9引用实施方案8,其中所述人为18岁或更年长。
实施方案10引用实施方案8,其中所述人为17岁或更年轻。
实施方案11引用实施方案10,其中所述人患有小儿白内障。
实施方案12引用实施方案8,其中所述人为成人或婴儿。
实施方案13引用实施方案12,其中所述人类婴儿患有先天性白内障。
实施方案14引用实施方案7,其中白内障被去除。
实施方案15引用实施方案1,其中所述晶状体上皮干细胞和祖细胞表达Pax6和/或Bmi-1。
实施方案16引用实施方案1,其中所述方法不涉及人工眼内晶状体(IOL)的植入。
实施方案17引用实施方案1,其中相对于包括包含中央撕囊术开口的撕囊术过程和人工眼内晶状体植入的方法,所述方法导致视轴浑浊化(VAO)减轻。
实施方案18引用实施方案1,其中所述方法导致选自角膜水肿、前房炎症和视轴浑浊化的并发症事件减少。
实施方案19涉及用于执行白内障去除的微创方法的系统,该系统包含成像单元、用于乳化白内障物质的晶状体乳化单元、用于去除白内障物质的抽吸单元以及用于将生物材料经由晶状体囊开口递送到囊袋中的生物材料递送单元,其中所有单元均可操作地连接到计算机。
实施方案20引用实施方案19,其中所述晶状体乳化单元包括超声探头或激光探头,所述探头配备有经设计成插入眼睛的晶状体前囊的周边区域的尖端。
实施方案21引用实施方案20,其中所述尖端被配置成执行制造直径为约1.0至2.0mm的开口和从眼睛去除白内障中的一项或两者。
实施方案22引用实施方案20,其中所述尖端被配置成执行制造直径为约1.0至1.5mm的开口和从眼睛去除白内障中的一项或两者。
实施方案23引用实施方案20,其中所述尖端配置用于防止对内源性晶状体上皮干细胞和祖细胞的损伤。
实施方案24引用实施方案19,其中所述成像单元采用选自3D成像、光学相干断层扫描、MRI、CT和超声的成像技术。
实施方案25引用实施方案19,其中所述生物材料组合物包含人血清和成纤维细胞生长因子(FGF)。
实施方案26引用实施方案19,其中所述生物材料组合物进一步包含营养物、添加剂或其组合,其中所述营养物包括氨基酸的组合物和可选的一种或多种营养物,并且其中所述添加剂包括氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠、磷酸钠或其组合。
实施方案27涉及实施方案19-26的系统用于去除有需要的受试者中的白内障的应用。
实施方案28引用实施方案27,其中所述受试者为动物或人。
实施方案29引用实施方案28,其中所述人为18岁或更年长。
实施方案30引用实施方案28,其中所述人为18岁或更年轻。
实施方案31引用实施方案30,其中所述人患有小儿白内障。
实施方案32引用实施方案28,其中所述人为成人或婴儿。
实施方案33引用实施方案32,其中所述人类婴儿患有先天性白内障。
实施方案34涉及使用内源性晶状体上皮干细胞和祖细胞的晶状体再生方法,包括以下步骤:(i)在受试者眼睛的前囊中分离晶状体上皮干细胞和祖细胞;(ii)使前囊中的晶状体上皮干细胞和祖细胞与生物材料组合物相接触,其中所述干细胞和祖细胞增殖并分化成晶状体纤维细胞以形成晶状体。
实施方案35引用实施方案34,其中所述生物材料组合物包含人血清和成纤维细胞生长因子(FGF)。
实施方案36引用实施方案34或35,其中所述生物材料组合物进一步包含营养物、添加剂或其组合,其中所述营养物包括氨基酸的组合物和可选的一种或多种营养物,并且其中所述添加剂包括氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠、磷酸钠或其组合。
实施方案37引用实施方案34,其进一步包括在所述晶状体前囊的周边区域中制造撕囊术开口。
实施方案38引用实施方案37,其中所述撕囊术开口的直径为约1.0至2.0mm。
实施方案39引用实施方案37,其中所述撕囊术开口的直径为约1.0至1.5mm。
实施方案40引用实施方案37,其中所述撕囊术开口位于远离眼睛的中央视轴的位置处。
实施方案41引用实施方案34,其中所述受试者患有白内障。
实施方案42引用实施方案34,其中所述受试者为动物或人。
实施方案43引用实施方案42,其中所述人为18岁或更年长。
实施方案44引用实施方案42,其中所述人类为17岁或更年轻。
实施方案45引用实施方案44,其中所述人患有小儿白内障。
实施方案46引用实施方案42,其中所述人为成人或婴儿。
实施方案47引用实施方案46,其中所述人类婴儿患有先天性白内障。
实施方案48引用实施方案34,其中步骤(i)中的所述晶状体上皮干细胞和祖细胞的分离包括选择或富集表达Pax6和Bmi-1的干细胞和祖细胞。
实施方案49引用实施方案1,其中以足以替代由于从晶状体前囊去除晶状体内容物导致的体积损失的量来施用所述生物材料组合物。
实施方案50引用实施方案19,其中以足以替代由于从囊袋去除白内障物质导致的体积损失的量来施用所述生物材料组合物。
实施例
这些实施例仅出于说明性目的而提供,而非限制本文提供的权利要求的范围。
实施例1-使用具有视功能的内源性祖细胞的晶状体再生
鉴别并分离哺乳动物中的晶状体上皮祖细胞(LEC)。显示出Pax6和Bmi-1是LEC更新和增殖所必需的。本实施例还描述了用于白内障去除的手术方法,该方法保持晶状体囊及其相关的内源性LEC的完整性。使用该方法在兔和猕猴以及患有白内障的人类婴儿中实现了功能性晶状体再生。本文描述的手术方法在概念上不同于当前的实践,原因在于其最大程度地保留了内源性LEC及其自然环境,并且再生具有视功能的晶状体。这些发现例示了用于白内障的新的治疗策略,并向使用内源性祖细胞的组织再生提供了新的范例。
LEC的分离和培养
所有动物研究均经中山大学(Sun Yat-sen University)机构动物关怀委员会(the Institutional Animal Care Committee)、加州大学圣地亚哥分校、华西医院和德克萨斯大学西南医学中心批准进行。
将眼球从1月龄的新西兰白兔中摘出,并用PBS(含有抗生素)洗涤三次。去除角膜和虹膜,然后在晶状体的后囊中制造小切口;去除附着有上皮的囊,并切成1×1mm2的片。在补充有20%FBS、NEAA和50μg/ml庆大霉素的最小必需培养基中培养上皮细胞片。
从Advanced Bioscience Resources,Inc.(San Francisco,CA)购得17周龄的人类胎儿眼球。根据与上述相同的方法培养LEC。
为了体外分化,在基质胶包被的6孔板或8孔室中培养LEC。21天后,在补充有NEAA、1%FBS、100ng/mL FGF2和5μg/mL胰岛素的最小必需培养基中形成透镜状体。使用LeicaM205FA立体显微镜获得透镜状组织的图像。
转基因小鼠研究
从Jackson实验室(Bar Harbor,ME;库存号7576)购得膜-番茄/膜-绿(mTmG)靶向的ROSAmTmG小鼠,并保持为纯合子。将在Pax6晶状体外胚层增强子和Pax6P0启动子26控制下表达EGFP-Cre重组酶融合蛋白的P0-3.9-GFPCre小鼠维持在FVB/N背景中。通过将纯合ROSAmTmG报道基因小鼠品系与P0-3.9-GFPCre缺失品系杂交来进行谱系追踪实验。在P1、P14和P30解剖眼睛并在4%甲醛中固定过夜。然后在10%蔗糖中温育组织并将其包埋在OCT中用于冷冻切片。将冷冻切片在PBS中洗涤并在Zeiss Axio Imager荧光显微镜上成像。如前所述产生Bmi-1fl/fl小鼠27。从Jackson实验室获得巢蛋白-Cre小鼠28。对于BrdU脉冲,向小鼠注射溶解在PBS中的100mg/kg BrdU(Sigma),然后保持饮用含有1mg/ml BrdU的水直至处死。
对于基因表达研究,在解剖显微镜下解剖Pax6P0-3.9-GFPCre小鼠的晶状体。通过制造三个十字形切口从后表面打开晶状体囊袋。打开囊袋并挤出晶状体材料。在荧光显微镜下,将中间前囊区域中的GFP阳性LEC与剩余囊区域中的GFP阴性LEC机械分离。使用RNeasy Mini试剂盒(Qiagen)分离RNA。
为了使白内障成像,用阿佛丁(Avertin)麻醉小鼠,并向每只眼睛施用一滴1%的Mydriacyl(Alcon)。使用光学显微镜对眼睛立即进行体内可视化。对于组织学,用肝素化盐水灌注小鼠,然后用4%多聚甲醛(PFA)的PBS溶液灌注。将解剖的眼睛在4%PFA中固定过夜,包埋在石蜡中,并由UT西南分子病理学核心设施切片。为了进行BrdU染色,使载玻片脱石蜡,并经受热介导的抗原修复(在10mM柠檬酸钠中,pH 6.0)。将载玻片用第一小鼠抗BrdU(Caltag,MD5000,1:200)在4℃下染色过夜。随后将载玻片用Alexa Fluor 555缀合的山羊抗小鼠IgG1第二抗体(Life Technologies,1:500)和1mg/ml DAPI(1:500)在室温下染色1小时。用BrdU标记的细胞数目除以单层LEC中的DAPI+细胞的总数。
慢病毒RNAi
从Origene(TL314462)购得靶向人BMI-1基因的慢病毒shRNA(NCBI参考序列:NM_005180.8),ShRNA靶向序列如下:5’-AATGCCATATTGGTATATGAC-ATAACAGG-3’(SEQ ID NO:31)和5’-GTAAGAATCAG ATGGCATTATGCTTGTTG-3’(SEQ ID NO:32)。分别使用两种shRNA,并且使用无效的29-聚体乱序shRNA作为对照。使用shRNA慢病毒包装试剂盒(Origene,TR30022)制备慢病毒shRNA颗粒。在转染后第48h和第72h收获病毒。
蛋白质印迹分析
将LEC在具有透镜状形成培养基的Matrigel包被的3.5mm皿上培养30天。用冰冷的PBS洗涤细胞两次,并在具有PMSF的RIPA裂解缓冲液中裂解。通过BCA蛋白质测定试剂盒确定蛋白质浓度。将30μg的总蛋白质裂解物加载到10%SDS-PAGE凝胶上,然后在70V下转移到PVDF膜(Millipore)上2小时。用以下第一抗体在4℃下探测膜过夜:抗αA-晶体蛋白(sc-22389,Santa Cruz)、抗β-晶体蛋白(sc-48335,Santa Cruz)、抗γ-晶体蛋白(sc-22415,Santa Cruz)和抗β-肌动蛋白(sc-47778,Santa Cruz),然后与HRP缀合的抗兔、抗小鼠或抗山羊第二抗体在室温下温育1小时。使用具有ECL缓冲液(Millipore)的印迹成像系统(Fluor Chem Q,Protein Simple)使免疫检测得以可视化。
兔和猕猴模型中的晶状体再生
新西兰白兔(n=29,4只兔子死于与手术无关的全身性感染。剩余的25只兔子用于评估再生)和长尾猕猴(M.fascicularis)(n=6)进行了微创撕囊术手术。仅使用每只动物的左眼用于实验。在不同时间点进行裂隙灯活组织镜检和照相以监测晶状体再生。在手术后第1天、第7天和1个月处死兔子,并摘出经治疗的眼睛。收获晶状体以使用H&E染色进行组织学分析。对于猕猴来说,在手术后4个月摘出经治疗的眼睛,并且收获晶状体用于相同的组织学检查。将眼睛固定,石蜡包埋,并使用晶状体通过角膜、瞳孔和视神经以5μm原位切片。
实时PCR
使用RNeasy Mini试剂盒(Qiagen)从兔LEC、成熟晶状体纤维细胞和P0-3.9-GFPCre小鼠中的LEC分离RNA,并使其经受柱上脱氧核糖核酸酶消化。根据制造商的说明书(Invitrogen),使用Superscript III逆转录酶试剂盒合成cDNA。使用基因特异性引物(表2)和7500实时PCR系统(Applied Biosystems)上的Power SYBR Green PCR Master Mix,通过40个周期的扩增进行定量PCR。测量一式三份进行,并相对于内源性GAPDH水平归一化。使用ΔΔCT方法(CT值<30)计算表达的相对倍数变化。
免疫荧光和激光共聚焦显微镜
将兔LEC在4%PFA中固定20分钟,然后用0.3%Triton X-100-PBS渗透10分钟,并在含有5%BSA的PBS溶液中封闭,然后在第一抗体中在4℃下温育过夜。在PBS中洗涤3次后,将细胞与第二抗体在室温下温育1小时。用DAPI复染细胞核。
使用以下抗体:山羊抗Sox2多克隆抗体(Santa Cruz)、兔抗PAX6多克隆抗体(PRB-278P,Covance)、小鼠抗Bmi1抗体(ab14389,Abcam)和小鼠抗Ki67单克隆抗体(550609,BDSciences)。以1:500的稀释度使用第二抗体Alexa Fluor 488或568缀合的抗小鼠或抗兔IgG(Invitrogen)。使用Olympus FV1000共聚焦显微镜获得图像。
人类LEC的BrdU标记
使用BrdU标记来鉴别和定量来自人尸体眼睛的增殖LEC。用BrdU脉冲整装制片的人晶状体囊,然后用针对BrdU的抗体染色以确定增殖LEC的分布和密度。简而言之,在死后12-24小时内,从中国广州中山眼科中心的眼库获得来自死后供体眼睛的晶状体。使用来自六名供体的总共十二个晶状体进行实验。使用30号针在死后人类晶状体的前表面上制造小的穿刺损伤。将晶状体在37℃下在补充有10%FBS的Dulbecco改良Eagle培养基(DMEM)中在具有5%CO2的潮湿温育器中培养。来自相同供体的对侧晶状体在相同条件下处理,但不接受穿刺损伤并用作对照。为了标记增殖的LEC,在穿刺损伤后24小时将两组晶状体均在100μg/ml BrdU(Sigma-Aldrich)中温育。然后从囊袋去除晶状体,并将晶状体囊在4%甲醛中固定,并根据制造商的说明书(CST,Boston,MA)使用标准免疫组织化学方案进行BrdU染色。使用Carl Zeiss显微镜(Jena,Germany)拍摄图像。
人类临床试验的研究设计、执行和监督
本研究经中山眼科中心(ZOC)机构审查委员会批准。在入选前从婴儿的父母或监护人处获得知情同意书,并在整个研究过程中遵循《赫尔辛基宣言》的原则。该研究根据针对小儿白内障手术视功能测量的国际指南和协议以及中国卫生部儿童白内障计划(CCPMOH)的协议进行,并拥有ZOC-CCPMOH的独立数据及安全监测委员会。
白内障摘除术的当前手术方法描述
在小于2岁的儿童白内障患者中,针对小儿白内障的当前治疗标准治疗涉及使用前连续曲线撕囊术(ACCC,直径约6mm;图1)通过相对较大的开口去除白内障晶状体,然后进行白内障摘除术和人工晶状体植入或放置术后无晶状体眼镜/隐形眼镜。一些患者经历了额外的后连续曲线撕囊术(PCCC)和前玻璃体切除术。
建立微创撕囊术手术方法以保留LEC
建立了新的撕囊术手术方法以促进晶状体再生(图9A)。首先,我们将撕囊开口的大小减小到直径1.0-1.5mm。这导致面积为约1.2mm2的最小伤口,其仅为当前方法产生的伤口大小的约4.3%。其次,我们将撕囊术的位置移动到晶状体的周边区域而不是中央区域。使用0.9mm晶状体乳化探头去除晶状体内容物和/或皮质浊斑。这些变化提供了显著的优势。首先,其大大减少了损伤的大小,从而导致炎症的发病率降低且愈合更快。其次,其将伤口瘢痕从中央视轴移到周边,导致视轴透明度改善。第三,其保留了几乎完整的透明晶状体囊和LEC层,该LEC具有再生潜力并且对于天然晶状体的再生是亟需的。
患有先天性白内障的人类婴儿中的微创晶状体手术的临床试验
小儿患者选自中国卫生部儿童白内障项目(CCPMOH),其包括一系列关于早期干预对小儿白内障治疗的长期结果的影响的研究(ClinicalTrials.gov,标识符:NCT01844258)。入选标准如下:婴儿≤24月龄,并且被诊断患有双侧或单侧无并发症的先天性白内障,具有完整的非纤维化囊袋。排除标准包括术前眼内压(IOP)>21mmHg、早产、眼病家族史、眼外伤或其他异常,诸如小角膜、持续性增殖性原始玻璃体、风疹或Lowe综合征。12名小儿白内障患者(24只眼)接受新的微创晶状体手术(表1和表2)。25名小儿白内障患者(共50只眼)入选作为对照组,接受当前的标准手术治疗(图20A)。临床试验配对流程图列于图20A中。
角膜水肿的发病率被定义为手术后1周中央角膜厚度增加>5%,并且严重前房炎症的发病率被定义为闪辉值(flare value)>10,该值由Pentacam系统(OCULUS,Germany)和激光闪光仪(KOWA,FM-600,Japan)评估。早发性高眼压被鉴别为在手术后1个月内通过Tonopen(Reichert,Seefeld,Germany)测得的IOP>21mmHg。黄斑水肿通过眼底OCT(iVue,Optovue,Germany)被鉴别为手术后一周中央黄斑厚度增加>10%。如所指示的,VAO被定义为视力下降和眼底模糊程度,在随访时采用YAG激光囊切开术来治疗。
与使用本文所述的新手术技术操作的婴儿相比,接受传统技术的婴儿在手术后一周具有更高的前房炎症、早发性高眼压和VAO增加的发病率(表1和表3)。然而,在用本发明的新方法治疗的组中,在手术后3个月发现在100%的眼睛中具有透明的再生双凸晶状体,而在用标准技术治疗的组中则无再生双凸晶状体形成。此外,实验组中在手术后1个月内100%的囊开口愈合,但对照组中则无囊开口愈合。
小儿视敏度的评估
测试装置包括一套Teller视敏度卡(Vistech Consultants,Dayton,OH)。该套卡片由15张具有光栅的空间频率范围为0.32至38周/cm,半倍频程(half-octave)步幅的卡片和一张空白灰卡组成。每张卡片上都有一个4mm的窥视孔,允许测试人员在测试过程中通过卡片观察儿童的脸部。在整个测试过程中,通过使用辅助使测试距离保持不变以测量从儿童眼睛到卡片的距离。对于38cm来说,辅助是从测试人员的肘部到测试人员手上的特定关节所测量的距离,并且对于55cm来说,辅助是Teller视敏度卡的长度(55cm)。测试人员被要求在不用手指捏握卡片的正面的情况下保持住卡片,原因在于手指捏握卡片可能会吸引儿童的注意力。测试人员直接在儿童面前出示卡片,并于卡片顶部之上或通过卡片中的窥视孔观察儿童。
在每次视敏度测试期间,测试人员都知道光栅以半倍频程步幅按照从低到高的空间频率的顺序排列,但不了解每张卡片上光栅的绝对空间频率。根据受试者年龄组的空间频率的三个可能子集中的伪随机顺序选择用于每个测试的空间频率子集。每个年龄组的所有三个子集均包含已知远高于该年龄组的阈值的空间频率。为了不让测试人员了解绝对空间频率,不允许测试人员查看卡片的正面以确认光栅的位置。作为替代,在测试人员向受试者展示卡片足够长的时间以评估受试者是否能够察觉到光栅之后,测试人员要求助手确认光栅在卡片上的位置。测试人员不了解视敏度结果,直至每名受试者完成测试。基于受试者对所呈现的每张卡片的眼睛和头部运动反应,以测试人员判断儿童可以看到的最细微光栅的空间频率对视敏度加以评分。在数据分析之前将视敏度评分转换成对数值。
晶状体屈光力的测量
根据制造商的方法,使用手持式自动折射计(PlusoptiX A09,OptiMed,Sydney,Australia)来评估再生晶状体的功能。
统计分析
为了确定用新的微创手术治疗的眼睛的视敏度是否有所改善,进行ANOVA以比较术前视敏度和术后多个时间点的视敏度。如果Levene检验未能证明方差的齐性,则使用Kruskal-Wallis检验。进行成对比较以评估与术前基线相比视敏度的显著改善。此外,对于手术前后的每个时间点,使用t检验来比较接受传统手术的组与接受新的微创手术的组的视敏度。
针对在每个时间点由干预组所测量的主要和次要端点提供描述性统计。报告了连续变量的平均值和标准偏差,并报告了分类变数的计数和百分比。为了评估每组中的主要结果、十进制小数视敏度(decimal acuity)是否显著改善,使用配对t检验在基线与研究端点处测量的十进制小数视敏度之间进行前后比较。检查数据的正态性,并且如果严重不符合假设,则考虑非参数替代,即Wilcoxon符号秩检验。为了评估两组中的平均反应曲线是否相似,使用线性混合效应模型来解释受试者内的相关性。由于该测量的齐性,基线十进制小数视敏度未被模型调整。由于治疗标准方法需要在第3个月进行激光手术而新型治疗方法不需要,因此分别使用激光手术前和激光手术后的数据拟合两种模型,以证明新型方法的优越性。在每个模型中,结果是在4个时间点测量的十进制小数视敏度:基线、1周、3个月(激光手术前或激光手术后)和6个月;时间(基线作为参考水平)、治疗分配及其相互作用是固定效应;而患者是随机效应。使用似然比检验(LRT)通过比较具有和不具有固定效应的模型来鉴别显著关联。通过删除不显著的固定效应再次拟合线性混合效应模型,直至选择最终模型。必要时进行对比检验。
对于次要目标,比较两组之间每种并发症病况的比例。假设来自同一患者的眼睛并发症的发生是独立的。报告了平均差及其95%的置信区间。使用两比例z检验,如果不符合正态性假设,则使用非参数卡方检验作为替代。所有检验均为双侧,且p值小于0.05被认为是统计上显著的。
调节性反应的评估
通过开放视野自动验光仪(SRW-5001K;Shin-Nippon,Tokyo,Japan)测量调节性反应,其允许以任何距离观察目标。小儿患者在父母的帮助下进行定位以便自动验光仪测量。通过训练有素的认证研究人员或研究协调员引导患者双眼注视近目标(33cm,N10大小的笑脸的5×5阵列)和远目标(3m,N10大小的笑脸的5×5阵列)。在整个研究过程中,由相同的训练有素的认证研究人员在每个目标距离进行三次非睫状肌麻痹的自动验光测量,以维持整个试验的准确性和一致性。测量在相同的安静环境中进行,具有一致的室内照明,以减少干扰因素的影响并维持受试者的注意力。记录每次测量的球面等效折射值(SER),并计算平均值以评估调节性反应。调节性反应的值是近目标和远目标的SER值之间的差异。我们还使用动态视网膜检影来测量婴儿的调节。简而言之,当患者被引导注视3m远的目标,我们使用视网膜检影记录晶状体屈光度值。然后当目标移近时,在离眼睛33cm的距离处记录另一个晶状体屈光度值。使用这两次测量之间的差异来评估晶状体调节力。
LEC在晶状体再生中的作用
在成熟晶状体中,LEC覆盖晶状体的前表面并在赤道处开始分化成晶状体纤维(图2A)。持续的自我更新以及对抗外部损伤和氧化性损伤的保护能力属于LEC最重要的功能。为了评估LEC的再生能力,使用溴脱氧尿苷(BrdU)标记来鉴别来自人类供体晶状体的增殖LEC。在8月龄、30岁和40岁的供体中定量BrdU+LEC,并且发现增殖细胞的数目随着年龄增加而减少(图2B-图2C)。然而,在保留空囊袋支架的情况下手术去除整个晶状体内容物后,BrdU+细胞的数目增加了11倍(P<0.05,图2D-图2E),表明人类LEC在损伤后具有强大的再生能力。
Pax6在眼睛发育以及晶状体诱导中起重要作用。在出生后,Pax6在晶状体上皮中维持高水平的表达,特别是在萌发区(图3A)。为了确定Pax6+LEC是否能够有助于晶状体纤维细胞形成,通过将Pax6晶状体外胚层增强子驱动的Cre缺失小鼠品系(P0-3.9-GFPCre)与ROSAmTmG膜结合的GFP报道基因品系杂交,在小鼠中进行谱系追踪实验。在P1,P14和P30,在ROSAmTmG;Pax6P0-3.9-GFPCre小鼠的整个晶状体中均观察到高密度的膜GFP+细胞。相反,单独的P0-3.9-GFPCre等位基因仅在可通过抗GFP抗体染色检测的LEC中产生核GFP表达(图3A-图3B)。这些结果表明,来自胚胎或成人晶状体的Pax6+LEC有助于出生后小鼠晶状体纤维细胞的替代。
分离并扩充来自新生晶状体囊的兔LEC。这些LEC显示出鹅卵石样上皮形态,对LEC标志物Pax6和Sox2具有高度阳性染色,并且可以随时间进行传代(图4A)。在分化时,这些LEC形成透明的三维凸透镜状结构,定义为透镜状体(图4B-图4C),其具有显著的屈光力(图4C)。免疫染色和蛋白质印迹分析显示,透镜状体表达成熟的晶状体纤维特异性基因,包括编码αA-晶体蛋白、β-晶体蛋白和γ-晶体蛋白的基因(图4B-图4C)。
LEC稳态和完整性的破坏导致白内障形成
通过对多梳家族成员BMI-1的研究,检查了LEC库及其在维持晶状体功能中的作用。已知BMI-1促进多种出生后组织中干细胞的维持和自我更新,并且在鼠晶状体萌发区和培养的人类胎儿LEC中均有表达(图5A-图5B,图6A)。在人LEC中敲低BMI-1导致体外LEC增殖显著降低(图7A),而不影响LEC或晶状体纤维细胞中关键基因的表达(图7B)。为了直接测试Bmi-1的条件性缺失对LEC增殖的影响,向2月龄、7月龄和12月龄的巢蛋白-Cre;Bmi-1fl/fl小鼠和Bmi-1fl/fl同窝对照施用BrdU。在20小时脉冲后,在2月龄的巢蛋白-Cre;Bmi-1fl/fl小鼠和Bmi-1fl/fl对照中,BrdU+LEC的百分比无显著差异。然而,与对照相比,7月龄和12月龄的巢蛋白-Cre;Bmi-1fl/fl眼中BrdU+LEC的百分比显著降低(图6B,P<0.05)。
在Pax6P0-3.9-GFPCre小鼠晶状体的前囊中研究了Pax6+LEC中Bmi1、Sox2和Ki67的mRNA表达水平。与Pax6-(GFP-阴性)LEC相比,位于萌发区的Pax6+(GFP-阳性)LEC具有更高的Bmi1、Sox2和Ki67表达水平(图8A-图8C)。此外,Bmi-1的条件性缺失导致衰老的巢蛋白-Cre;Bmi-1fl/fl小鼠中Pax6+/Sox2+LEC的数目急剧减少(图6A,P<0.001)。另外,衰老的巢蛋白-Cre;Bmi-1fl/fl小鼠的晶状体变得逐渐不透明,表明白内障形成。为了检验这一假设,向2月龄、7月龄和12月龄的巢蛋白-Cre;Bmi-1fl/fl小鼠和Bmi-1fl/fl同窝对照的眼睛施用托吡卡胺滴剂以扩张瞳孔(图6C-图6D)。2月龄的巢蛋白-Cre;Bmi-1fl/fl小鼠(n=3)的眼睛与年龄匹配的对照(n=4)无法区分。然而,100%的7月龄(n=5)和12月龄(n=7)的巢蛋白-Cre;Bmi-1fl/fl小鼠患有双侧白内障,而年龄匹配的Bmi-1fl/fl对照(n=3,7月龄;n=5,12月龄)均未发生白内障。此外,H&E染色切片显示在7月龄和12月龄的巢蛋白-Cre;Bmi-1fl/fl小鼠中存在白内障(图6D)。这些例证了Bmi-1功能缺失破坏了LEC增殖,从而耗尽了LEC库并增进了白内障的形成。
使用微创撕囊术手术进行的LEC完整性保留和晶状体再生
在小儿白内障手术中进行的当前撕囊术方法涉及在前囊中央制造直径为6mm的大开口,导致伤口面积大且大量LEC被破坏(图1C)。为了克服这些不足并促进晶状体再生,提出了新的撕囊术方法。这种新方法具有两个优势:1)其大大减小了伤口的大小,并且2)其将撕囊术开口从中央视轴移至周边。因此,该过程的应用导致视轴透明度改善并保留了具有再生潜力的LEC(图9A)。
在兔眼中研究体内晶状体再生。使用本文所述的新的微创撕囊术技术来保留内源性LEC,同时去除天然晶状体(图10A-图10I)。手术后1天,裂隙灯显微术显示前囊与后囊粘连(图9B)。手术后4-5周,再生晶状体组织以曲线对称模式从囊袋的周边向中央生长(图9B)。手术后7周,再生晶状体组织形成沿前-后轴的的透明双凸晶状体,其中后段和视网膜清晰可见(图9B-图9C),与正常健康晶状体相当(图9C)。评估手术后再生晶状体的屈光力,发现从手术后1个月到5个月增加到平均15.6屈光度,该值与正常晶状体相当21(图9D,P<0.01)。
再生晶状体的萌发区中的LEC在手术后7周显示出强烈的增殖活性,如Ki67和BrdU标记二者所证明的(图9E-图9G)。值得注意的是,一些PAX6+LEC与BrdU共标记,证明了其增殖潜力(图9G)。这些LEC失去了PAX6表达,伴随而来的是分化的开始和随后从晶状体赤道的迁移。
手术后1天,组织学检查显示单层LEC保持完整(图11A)。手术后4天,LEC以曲线的360度方式从周边向中央迁移到后囊上,在后囊上具有单层上皮(图11A)。手术后7天,后囊上的LEC开始伸长,其核位于在前方远离后囊的位置(图11A)。手术后28天,观察到具有晶状体纤维和挤压核的结构(图11B)。手术后7周,再生的晶状体纤维沿前-后轴伸长并生长以覆盖整个后囊区域,形成具有双凸形状的晶状体(图11C)。
使用类似的微创手术技术在1-3月龄的猕猴(大约相当于4-12月龄的人类婴儿)中研究了晶状体再生。从手术后第1天到第3天,未见炎症或其他不期望的副作用的迹象。手术后2-3个月,再生晶状体组织以曲线模式从周边向中央生长(图12A)。手术后5个月,形成具有透明视轴的双凸晶状体(图12A-图12B)。手术后7周的眼底检查显示视网膜清晰可见,与通过正常健康晶状体看到的视网膜相当。未观察到不期望的并发症,诸如黄斑水肿、视网膜脱落或眼内炎。
人类婴儿中的晶状体再生
白内障是人类婴儿视力丧失的主要原因。目前,最常用的手术过程涉及通过较大的ACCC去除浑浊晶状体,结合后激光囊切开术或PCCC和前玻璃体切除术(图1A-图1C),随后进行人工晶状体植入或术后无晶状体眼镜或隐形眼镜。然而,经常发生诸如视轴浑浊(VAO)等并发症。此外,对于发育中的眼睛的屈光矫正的困难、继发性青光眼和手术相关的并发症可导致不良结果。在最大两岁的小儿白内障患者中进行了临床试验,以研究是否可以使用微创手术在人体内再生晶状体。
12名小儿白内障患者(24只眼)经受了微创手术以促进晶状体再生,而对照组中的25名小儿白内障患者(50只眼)接受了当前治疗标准治疗,这使他们无晶状体。我们能够使用裂隙灯显微镜动态观察和记录术后体内晶状体再生的过程。在微创手术后一个月内,囊袋开口愈合。手术后3个月,形成了再生的透明双凸晶状体结构(图13A-图13B)。手术后8个月,未观察到明显的VAO或其他并发症(表1和表3)。
使用具有后照明和Pentacam系统的裂隙灯显微术来评估再生晶状体的功能性质。当用具有相对均匀密度的再生晶状体再填充囊袋时,所有眼睛均获得了视功能。在成功的晶状体再生的所有情况下都观察到眼底的清晰视图(图13A-图13B)。再生晶状体的平均中央厚度在手术后显著增加,并且在手术后8个月与天然晶状体相当(图14A,P<0.01)。还使用视网膜检影和检眼镜检查来评估再生晶状体的功能,并且发现从手术后1周到8个月,屈光力显著增加(图14B,n=24,P<0.01)。
手术后8个月使用开放视野自动验光仪评估再生晶状体的调节能力以测量不同距离的调节反应,并使用动态视网膜检影来验证调节反应。再生晶状体的平均调节反应增加至2.5屈光度,与无晶状体对照的屈光度增加0.10相比显著改善(*P<0.001)。使用Teller视敏度卡比较术前和术后的视敏度,在术前和每次术后随访时记录光栅视敏度(周期/度),并转换成最小分辨率角度的对数(logMAR)。与术前基线相比,术后婴儿的视敏度和调节力显著改善(图14C-图14D)。视敏度的增加与使用当前手术方法达到的相当(图13C)。因此,视功能测试显示再生晶状体是起作用的。
微创手术与当前治疗标准手术的临床结果比较
使用当前的小儿白内障手术方法,由于残留LEC的异常增殖,VAO将会在术后数周或数月内在几乎所有患者中发生(表1和表3)。患者越年轻,VAO越早发生。为了避免VAO,广泛实施额外的过程,诸如晶状体囊的抛光、激光囊切开术、PCCC和前玻璃体切除术,以破坏LEC、LEC在其上增殖的晶状体囊和异常的晶状体纤维再生。虽然这些手术可使VAO发病率降低15%,但它们具有显著的术后炎症和并发症风险。在该临床试验中,本微创手术方法在几乎所有眼睛中均带来视轴透明度(95.8%)(图14E、图15、表1和表3)。由于来自ACCC的瘢痕直径<1.5mm且位于前囊的周边,因此它远离所述视轴(图14E),并且除非瞳孔扩张否则不可见。保留的晶状体囊保持几乎完全透明(图14E)。未观察到紊乱的组织再生。因此,与当前的白内障手术治疗标准相比,本新型微创技术使VAO降低了20倍以上(84%与4.2%)。此外,存在完整的后囊和晶状体-玻璃体界面(表1和表3)。
通过在每组内使用配对t检验,在标准治疗组中(p值<0.001(t=23.40,df=49.04))和新型治疗组中(p值<0.001(t=15.05,df=23.01))分别观察到治疗前后十进制小数视敏度的显著改善。使用十进制小数视敏度作为结果(时间:基线、1周、3个月(对照组为手术后))并且治疗分配及其相互作用作为固定效应的线性混合效应模型通过似然比检验产生时间和治疗相互作用的统计上不显著的结果,p值为0.956(χ2=0.332,df=3)(表4A左,表4C左)),表明两组的平均反应曲线随时间平行。线性混合效应模型通过删除相互作用项进行重新拟合(表4B左)。具有不显著的p值0.776(χ2=0.081,df=1)的似然比检验(表4C左)说明两组中的平均十进制小数视敏度之间的差异在时间上没有统计学差异(图20B)。相比之下,使用十进制小数视敏度作为结果(时间:基线、1周、3个月(对照组为手术后)),治疗分配及其相互作用作为固定效应的线性混合效应模型产生时间和治疗相互作用的统计上显著的结果,p值<0.001(χ2=47.529,df=3)(表4A右和表4C右))。来自两组的平均反应的非平行图案主要是由于对照组中激光手术前3个月的视力丧失,而新型治疗组的十进制小数视敏度单调增加(图20B)。通过几乎每次测量,新型治疗还显示出显著降低的并发症率,支持新型治疗的优越性和安全性(表1和表3)。
表1显示了接受新手术技术与现有技术的婴儿中晶状体再生和并发症的比较。
表2图示了用于实时PCR的引物。
表3A-表3C图示了接受新手术治疗与现有治疗的婴儿中晶状体再生和并发症的比较。
表3A
当前治疗 新治疗
总患者 25 12
总眼睛 50 24
再生晶状体结构 0 24
囊开口的愈合和闭合 0 24
表3B
表3C
当前治疗 新治疗 平均差(95%CI) P值
总体并发症率 46(0.92) 4(0.17) 0.75(0.57,0.95) <0.001
角膜水肿 15(0.30) 2(0.08) 0.22(0.02,0.42) 0.04
前房炎症 37(0.74) 4(0.17) 0.57(0.35,0.80) <0.001
黄斑水肿 3(0.06) 0 0.06(-0.04,0.16) 0.22
眼内炎 0 0
视网膜脱落 0 0
高眼压 9(0.18) 0 0.18(0.04,0.32) 0.03
视轴浑浊化 42(0.84) 1(0.04) 0.80(0.64,0.96) <0.001
额外的激光手术 42(0.84) 0 0.84(0.71,0.97) <0.001
前玻璃体切除术 8(0.16) 0 0.16(0.03,0.29) 0.04
在接受新手术技术与标准治疗的婴儿中,在每个时间点测量的十进制小数视敏度和并发症的概要统计。报告针对中间部分中连续变量(十进制小数视敏度)的平均值(标准偏差)。OD,右侧眼(右眼)。OS,左侧眼(左眼)。
表4A至表4C显示临床结果分析。
表4A.具有十进制小数视敏度作为结果的线性混合效应模型;时间、治疗及其相互作用作为固定效应;并且患者作为随机效应。
表4B.具有十进制小数视敏度作为结果的线性混合效应模型;时间和治疗作为固定效应;并且患者作为随机效应。
表4C.基于反应曲线分析的固定效应的似然比检验。
实施例2-诱导晶状体上皮干细胞和祖细胞的增殖和分化的生物材料组合物
递送生物材料组合物的微创撕囊术手术方法
使用本文公开的撕囊术手术方法来递送生物材料组合物以维持眼睛的晶状体前囊的结构完整性并诱导晶状体上皮干细胞和祖细胞的扩充。所述生物材料组合物包含人血清和成纤维细胞生长因子(FGF)。在一些情形下,所述生物材料组合物任选地包含一种或多种营养物和添加剂。在一些情形下,所述一种或多种营养物包括氨基酸的组合物。在一些情形下,所述一种或多种营养物包括葡萄糖源。在一些情形下,所述一种或多种营养物包括维生素,诸如叶酸、烟酰胺(nicotinamide)、核黄素、B12、氯化胆碱、肌醇、烟酰胺(niacinamide)、D-泛酸、盐酸吡哆醛、盐酸硫胺素等。在一些情形下,所述生物材料组合物任选地包含非必需氨基酸,所述氨基酸包括丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、脯氨酸、丝氨酸和酪氨酸。在一些情形下,所述添加剂包括无机盐,诸如氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠和磷酸钠。
首先,撕囊术开口的大小减小到直径1.0mm-1.5mm。这导致面积为约1.2mm2的最小伤口,其仅为当前方法产生的伤口大小的约4.3%。其次,撕囊术的位置移到晶状体的周边区域而不是中央区域。使用0.9mm晶状体乳化术探头来去除晶状体内容物和/或皮质浊斑,然后施用在0.1X至10X浓度范围内的生物材料组合物。在一些情形下,以1X浓度施用生物材料组合物。
与包括包含中央撕囊术开口的撕囊术过程和人工眼内晶状体(IOL)植入的方法相比,本文公开的生物材料组合物的应用减少了视轴浑浊化(VAO)。
本文公开的生物材料组合物的应用导致诸如角膜水肿、前房炎症和视轴浑浊化(VAO)等并发症事件减少。
在患有先天性白内障的人类婴儿中递送生物材料组合物的微创撕囊术手术方法
小儿患者选自中国卫生部儿童白内障项目(CCPMOH),其包括一系列关于早期干预对小儿白内障治疗的长期结果的影响的研究(ClinicalTrials.gov,标识符:NCT01844258)。入选标准如下:婴儿≤24月龄,并且被诊断患有双侧或单侧无并发症的先天性白内障,具有完整的非纤维化囊袋。排除标准包括术前眼内压(IOP)>21mmHg、早产、眼病家族史、眼外伤或其他异常(诸如小角膜、持续性增殖性原始玻璃体、风疹或Lowe综合征)。12名小儿白内障患者(24只眼)接受了单独使用生物材料组合物的新型微创晶状体手术。25名小儿白内障患者(共50只眼)入选作为对照组,接受当前的标准手术治疗。
角膜水肿的发病率被定义为手术后1周中央角膜厚度增加>5%,并且严重前房炎症的发病率被定义为闪辉值>10,该值由Pentacam系统(OCULUS,Germany)和激光闪光仪(KOWA,FM-600,Japan)评估。早发性高眼压被鉴别为在手术后1个月内通过Tonopen(Reichert,Seefeld,Germany)测得的IOP>21mmHg。黄斑水肿通过眼底OCT(iVue,Optovue,Germany)被鉴别为手术后一周中央黄斑厚度增加>10%。如所指示的,VAO被定义为视力下降和眼底模糊程度,在随访时采用YAG激光囊切开术来治疗。
与使用本文所述的新手术技术以及生物材料组合物操作的婴儿相比,接受传统技术的婴儿在手术后一周具有更高的前房炎症、早发性高眼压和VAO增加的发病率。与用标准技术治疗的组相比,在用本发明的新方法治疗的组中,手术后3个月发现在更高百分比的眼睛中具有透明的再生双凸晶状体。此外,与对照组中的囊开口相比,在手术后1个月内,实验组中的囊开口愈合百分比更高。
虽然本文已经示出并描述了本发明的优选实施方案,但对于本领域技术人员将显而易见的是,这些实施方案仅作为示例提供。在不偏离本发明的情况下,本领域技术人员现将想到许多变化、改变和替换。应理解,本文所述的本发明的实施方案的各种替代方案均可用于实施本发明。意在用以下权利要求限定本发明的范围,并由此涵盖这些权利要求范围内的方法和结构及其等同物。
出于比较各种实施方案的目的,描述了这些实施方案的某些方面和优点。这些方面或优点不一定全部通过任何特定的实施方案实现。因此,例如,各种实施方案可以以实现或优化如本文所教导的一个优点或一组优点的方式来执行,而不必实现如本文可以另外教导或建议的其他方面或优点。
用本文的任何实施方案示出的要素或组分对于特定实施方案是示例性的,并且可以在本文公开的其他实施方案中使用或与其结合使用。虽然本发明易于产生各种修改和替代形式,但是其具体示例已在附图中示出并在本文中详细描述。然而,本发明不限于所公开的特定形式或方法,与此相反,本发明涵盖其所有修改、等同物和替代物。
序列表
<110> 张康
侯睿
<120> 使用内源性干细胞/祖细胞的晶状体再生
<130> 49697-702.601
<140>
<141>
<150> 62/264,828
<151> 2015-12-08
<160> 32
<170> PatentIn version 3.5
<210> 1
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 1
gcccaacctg gtggctgtgt gcct 24
<210> 2
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 2
agacaccagg tccgggctgg ggtgc 25
<210> 3
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 3
gcttggagca aggctcctgc tt 22
<210> 4
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 4
acgtgaaggt gctgtacaca c 21
<210> 5
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 5
gacttcgagg cgaagcagca gt 22
<210> 6
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 6
atcttctgct gcatgaatgt gtc 23
<210> 7
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 7
gaccctggaa caagctat 18
<210> 8
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 8
atccgatggt accggtccag c 21
<210> 9
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 9
gcgagatccc gccaacatca agt 23
<210> 10
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 10
aggatgcgtt gctgacaatc 20
<210> 11
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 11
gtattcttgc ttcaggtaga t 21
<210> 12
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 12
gaggctcaaa tgcgacttca gct 23
<210> 13
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 13
gctttgcttt tttcaagtga tt 22
<210> 14
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 14
aggcttcacc acgtccacct tccgc 25
<210> 15
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 15
gaacgccttc atggtgtggt 20
<210> 16
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 16
agcgtcttgg ttttccgc 18
<210> 17
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 17
gcgagtaccc tcgctgggac t 21
<210> 18
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 18
acgacacctt ctcctggtag c 21
<210> 19
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 19
ggtacttcat tgatgccaca acc 23
<210> 20
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 20
ctggtcttgt gaacttggac atc 23
<210> 21
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 21
actacacgct aatggacatt gcc 23
<210> 22
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 22
ctctccagca ttcgtcagtc ca 22
<210> 23
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 23
catcactgcc acccagaaga ctg 23
<210> 24
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 24
atgccagtga gcttcccgtt cag 23
<210> 25
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 25
ctgaggaacc agagaagaca gg 22
<210> 26
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 26
catggaacct gatgtgaagg agg 23
<210> 27
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 27
aacggcagct acagcatgat gc 22
<210> 28
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 28
cgagctggtc atggagttgt ac 22
<210> 29
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 29
atcattgacc gctcctttag gt 22
<210> 30
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成引物
<400> 30
gctcgccttg atggttcct 19
<210> 31
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成寡核苷酸
<400> 31
aatgccatat tggtatatga cataacagg 29
<210> 32
<211> 29
<212> DNA
<213> 人工序列
<220>
<223> 人工序列的描述:合成寡核苷酸
<400> 32
gtaagaatca gatggcatta tgcttgttg 29

Claims (32)

1.生物材料组合物在维持受试者眼睛的晶状体前囊的结构完整性及原位诱导晶状体上皮干细胞和祖细胞的扩充中的应用,其中将所述生物材料组合物通过位于所述晶状体前囊的周边区域的撕囊术开口施用于所述晶状体前囊中,并且其中在施用所述生物材料组合物之前去除所述晶状体的内容物。
2.如权利要求1所述的应用,其中所述生物材料组合物包含人血清和成纤维细胞生长因子(FGF)。
3.如权利要求1或2所述的应用,其中所述生物材料组合物进一步包含营养物、添加剂或其组合。
4.如权利要求3所述的应用,其中所述营养物包括氨基酸的组合物和可选的一种或多种营养物。
5.如权利要求3所述的应用,其中所述添加剂包括氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠、磷酸钠或其组合。
6.如权利要求1所述的应用,其中以足以替代由于从所述晶状体前囊去除所述晶状体内容物导致的体积损失的量来施用所述生物材料组合物。
7.如权利要求1所述的应用,其中所述撕囊术开口的直径为约1.0至2.0mm。
8.如权利要求1所述的应用,其中所述撕囊术开口的直径为约1.0至1.5mm。
9.如权利要求1所述的应用,其中所述撕囊术开口位于远离眼睛的中央视轴的位置处。
10.如权利要求1所述的应用,其中所述受试者患有白内障。
11.如权利要求1所述的应用,其中所述受试者为动物或人。
12.如权利要求11所述的应用,其中所述人为18岁或更年长。
13.如权利要求11所述的应用,其中所述人为17岁或更年轻。
14.如权利要求13所述的应用,其中所述人患有小儿白内障。
15.如权利要求11所述的应用,其中所述人为成人或婴儿。
16.如权利要求15所述的应用,其中所述人类婴儿患有先天性白内障。
17.如权利要求10所述的应用,其中白内障被去除。
18.如权利要求1所述的应用,其中所述晶状体上皮干细胞和祖细胞表达Pax6和/或Bmi-1。
19.如权利要求1所述的应用,其中所述应用不涉及人工眼内晶状体(IOL)的植入。
20.如权利要求1所述的应用,其中相对于包括包含中央撕囊术开口的撕囊术过程和人工眼内晶状体植入的应用,所述应用导致视轴浑浊化(VAO)减轻。
21.如权利要求1所述的应用,其中所述应用导致选自角膜水肿、前房炎症和视轴浑浊化的并发症事件减少。
22.一种用于执行白内障去除的微创方法的系统,该系统包含成像单元、用于乳化白内障物质的晶状体乳化单元、用于去除白内障物质的抽吸单元以及用于将生物材料组合物经由晶状体囊开口递送到囊袋中的生物材料递送单元,其中所有所述单元均可操作地连接到计算机。
23.如权利要求22所述的系统,其中所述晶状体乳化单元包括超声探头或激光探头,所述探头配备有经设计成插入眼睛的晶状体前囊的周边区域的尖端。
24.如权利要求23所述的系统,其中所述尖端被配置成执行制造直径为约1.0至2.0mm的开口和从眼睛去除白内障中的一项或两者。
25.如权利要求23所述的系统,其中所述尖端被配置成执行制造直径为约1.0至1.5mm的开口和从眼睛去除白内障中的一项或两者。
26.如权利要求23所述的系统,其中所述尖端被配置成防止对内源性晶状体上皮干细胞和祖细胞的损伤。
27.如权利要求22所述的系统,其中所述成像单元采用选自3D成像、光学相干断层扫描、MRI、CT和超声的成像技术。
28.如权利要求22所述的系统,其中所述生物材料组合物包含人血清和成纤维细胞生长因子(FGF)。
29.如权利要求22所述的系统,其中所述生物材料组合物进一步包含营养物、添加剂或其组合。
30.如权利要求29所述的系统,其中所述营养物包括氨基酸的组合物和可选的一种或多种营养物。
31.如权利要求29所述的系统,其中所述添加剂包括氯化钙、氯化钾、硫酸镁、氯化钠、磷酸二氢钠、磷酸钾、碳酸氢钠、磷酸钠或其组合。
32.如权利要求22所述的系统,其中以足以替代由于从所述囊袋去除所述白内障物质导致的体积损失的量来施用所述生物材料组合物。
CN201680081391.1A 2015-12-08 2016-12-08 使用内源性干细胞/祖细胞的晶状体再生 Pending CN108697500A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562264828P 2015-12-08 2015-12-08
US62/264,828 2015-12-08
PCT/US2016/065642 WO2017100463A1 (en) 2015-12-08 2016-12-08 Lens regeneration using endogenous stem/progenitor cells

Publications (1)

Publication Number Publication Date
CN108697500A true CN108697500A (zh) 2018-10-23

Family

ID=59013526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680081391.1A Pending CN108697500A (zh) 2015-12-08 2016-12-08 使用内源性干细胞/祖细胞的晶状体再生

Country Status (4)

Country Link
US (1) US20180353645A1 (zh)
EP (1) EP3386438A1 (zh)
CN (1) CN108697500A (zh)
WO (1) WO2017100463A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2692657C1 (ru) * 2018-07-26 2019-06-25 федеральное государственное автономное учреждение "Национальный медицинский исследовательский центр "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации Способ удаления вторичной катаракты
WO2023131844A1 (en) * 2022-01-07 2023-07-13 Johnson & Johnson Surgical Vision, Inc. Robot manipulator for eye surgery tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971382A (en) * 1973-12-11 1976-07-27 Krasnov Mikhail M Method of non-surgical treatment of cataracts
US20020165522A1 (en) * 2001-05-03 2002-11-07 Jorgen Holmen Method for use in cataract surgery
US20070049862A1 (en) * 2004-04-30 2007-03-01 Reinhardt Thyzel Method and Device for Preventing or Reducing Proliferation or Migration of Epithelial Cells at the Inside of a Lens-Capsule Bag of a Human or Animal Eye
US20140074074A1 (en) * 2012-09-07 2014-03-13 Optimedica Corporation Methods and systems for performing a posterior capsulotomy and for laser eye surgery with a penetrated cornea
US20140194859A1 (en) * 2013-01-10 2014-07-10 Pravoslava IANCHULEV System and method of performing femtosecond laser accomodative capsulotomy
CN104093383A (zh) * 2011-12-19 2014-10-08 爱尔康手术激光股份有限公司 白内障手术的内部手术光学相干断层成像
WO2015121683A1 (en) * 2014-02-17 2015-08-20 University Of Newcastle Upon Tyne Expansion method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8162927B2 (en) * 2000-03-21 2012-04-24 Gholam A. Peyman Method and apparatus for accommodating intraocular lens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971382A (en) * 1973-12-11 1976-07-27 Krasnov Mikhail M Method of non-surgical treatment of cataracts
US20020165522A1 (en) * 2001-05-03 2002-11-07 Jorgen Holmen Method for use in cataract surgery
US20070049862A1 (en) * 2004-04-30 2007-03-01 Reinhardt Thyzel Method and Device for Preventing or Reducing Proliferation or Migration of Epithelial Cells at the Inside of a Lens-Capsule Bag of a Human or Animal Eye
CN104093383A (zh) * 2011-12-19 2014-10-08 爱尔康手术激光股份有限公司 白内障手术的内部手术光学相干断层成像
US20140074074A1 (en) * 2012-09-07 2014-03-13 Optimedica Corporation Methods and systems for performing a posterior capsulotomy and for laser eye surgery with a penetrated cornea
US20140194859A1 (en) * 2013-01-10 2014-07-10 Pravoslava IANCHULEV System and method of performing femtosecond laser accomodative capsulotomy
WO2015121683A1 (en) * 2014-02-17 2015-08-20 University Of Newcastle Upon Tyne Expansion method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
夏朝霞等: "《bFGF在体外培养的晶状体上皮细胞中的表达及对细胞周期的影响》", 《眼科研究》 *
柳夏林等: "《兔眼晶状体再生模型的建立及观察》", 《眼科学报》 *

Also Published As

Publication number Publication date
EP3386438A1 (en) 2018-10-17
WO2017100463A1 (en) 2017-06-15
US20180353645A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
Lin et al. Lens regeneration using endogenous stem cells with gain of visual function
Okumura et al. Effect of the Rho kinase inhibitor Y-27632 on corneal endothelial wound healing
de Medeiros et al. Effect of femtosecond laser energy level on corneal stromal cell death and inflammation
Morgan et al. Secondary cataracts in infants after lensectomies
Sukhija et al. Outcome of primary intraocular lens implantation in infants: Complications and rates of additional surgery
Haripriya et al. The aravind pseudoexfoliation study: Surgical and first-year postoperative results in eyes without phacodonesis and nonmiotic pupils
Ferreira et al. Human amniotic membrane for the treatment of large and refractory macular holes: a retrospective, multicentric, interventional study
Jin et al. Comparison of femtosecond laser-assisted corneal intrastromal xenotransplantation and the allotransplantation in rhesus monkeys
Basak et al. Suppl-1, M2: Outcomes of Descemet Membrane Endothelial Keratoplasty (DMEK) Using Surgeon’s Prepared Donor DM-Roll in Consecutive 100 Indian Eyes
Zheng et al. An experimental study of femto-laser in assisting xenograft acellular cornea matrix lens transplantation
CN108697500A (zh) 使用内源性干细胞/祖细胞的晶状体再生
Liu et al. Comparison between limbal and pars plana approaches using microincision vitrectomy for removal of congenital cataracts with primary intraocular lens implantation
Nadal et al. Scleral fixation of posteriorly dislocated intraocular lenses by 23-gauge vitrectomy without anterior segment approach
Kobayashi et al. Case series and techniques of Descemet’s Stripping Automated Endothelial Keratoplasty for severe bullous keratopathy after birth injury
Hosny et al. Results of femtosecond laser-assisted descemet stripping automated endothelial keratoplasty
Seiler et al. Functional and structural assessment of retinal sheet allograft transplantation in feline hereditary retinal degeneration
US20220273422A1 (en) Corneal inlay design and methods of correcting vision
Lutz et al. Effects of pulsed fluid lens capsule washing following phacoemulsification on lens epithelial cells and posterior capsule opacification formation ex vivo
Wu et al. Mechanical protective effect of lens anterior capsule disc on corneal endothelial cells during femtosecond laser-assisted cataract surgery in a rabbit model
Sun et al. Change of recipient corneal endothelial cells after non-descemet's stripping automated endothelial keratoplasty in a rabbit model
Chen et al. Management of aphakia with visual axis opacification after congenital cataract surgery based on UBM image features analysis
Xu et al. Lens regeneration using endogenous stem cells with gain of visual function.
Huq et al. Cataract surgery and phacoemulsification for the beginning surgeons
Said et al. Boston Keratoprosthesis
Zhao et al. Comparison of treatments for bullous keratopathy in rabbits

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181023

WD01 Invention patent application deemed withdrawn after publication