CN108693299A - 一种利用土壤活性硫酸盐的找矿方法 - Google Patents

一种利用土壤活性硫酸盐的找矿方法 Download PDF

Info

Publication number
CN108693299A
CN108693299A CN201810234238.9A CN201810234238A CN108693299A CN 108693299 A CN108693299 A CN 108693299A CN 201810234238 A CN201810234238 A CN 201810234238A CN 108693299 A CN108693299 A CN 108693299A
Authority
CN
China
Prior art keywords
soil
prospecting
sulfate
content
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810234238.9A
Other languages
English (en)
Other versions
CN108693299B (zh
Inventor
向武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN201810234238.9A priority Critical patent/CN108693299B/zh
Publication of CN108693299A publication Critical patent/CN108693299A/zh
Application granted granted Critical
Publication of CN108693299B publication Critical patent/CN108693299B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种利用土壤活性硫酸盐的找矿方法,用于寻找隐伏多金属硫化物矿床,仅需要采用覆盖区一定深度下的细粒土壤,通过自然风干过目筛后在无氧环境下加热,经Na2CO3和NaHCO3的混合溶液吸收后的吸收液进行离子色谱检测,根据检测得到的数据进行计算,得到衬值,根据衬值绘制异常图即确定采样区是否含有矿床;操作过程简单,方法简便,可指导实地找矿,降低找矿难度和劳动强度。

Description

一种利用土壤活性硫酸盐的找矿方法
技术领域
本发明涉及矿产资源勘查技术领域,具体涉及一种利用土壤活性硫酸盐的找矿方法。
背景技术
地球化学找矿是通过发现元素含量异常、解释评价异常来进行的。所述异常可以存在于各种不同的介质中,根据地球化学调查介质的不同,地球化学找矿方式主要包括岩石地球化学、土壤地球化学、水系沉积物地球化学、水地球化学、气体地球化学、生物地球化学方法找矿。
土壤地球化学找矿是在系统地测量土壤中元素分布的基础上,研究其分散、集中的规律及其与矿床的联系,通过发现异常,解释评价异常进行找矿。而覆盖区土壤多为运积物,成分复杂,传统化探找矿方法效果不佳。
发明内容
有鉴于此,本发明的实施例提供了一种方法简单、准确度高的利用土壤活性硫酸盐的找矿方法。
为解决上述技术问题,本发明实施例采用的技术方案是,一种利用土壤活性硫酸盐的找矿方法,包括以下步骤:
(1)土壤采样;去除表层杂质和植物后,采集15~30cm深度的细粒土壤,并进行装袋密封;
(2)样品制备;将采集的土壤避光自然风干后,过目筛得到土壤样品,称取适量土壤样品在在氮气或氩气条件下,在温度80-250℃进行加热,加热后的土壤样品加入Na2CO3和NaHCO3的混合溶液中吸收,过滤取吸收液;
(3)样品测试;将吸收液进一步过滤并量取适量于离子色谱仪中进行成分含量的检测,计算得到吸收液中的硫酸盐及硝酸盐的含量;
(4)数据处理;根据称取的土壤重量与得到的硫酸盐含量计算活性硫酸盐(△SO4 2-)的含量,并计算硫酸根离子与硝酸根离子的比值对活性硫酸盐进行校正得到矫正活性硫酸盐(△S/N)的值,并计算衬值绘制异常图得到隐伏矿。
优选地,步骤(1)中,采集的细粒土壤的目数小于60目。
优选地,步骤(2)中,加热温度为80~250℃。
本发明的实施例提供的技术方案带来的有益效果是:本发明的利用土壤活性硫酸盐的找矿方法,过程简单,仅需要采用覆盖区一定深度下的土壤,通过自然风干过目筛后进行无氧环境下加热,经Na2CO3和NaHCO3的混合溶液吸收后的吸收液进行离子色谱检测,根据检测得到的数据进行计算,得到衬值,根据衬值绘制异常图即有助于指导勘探区隐伏矿床的找矿工作,降低找矿难度和劳动强度;且效率高经济成本低。
附图说明
图1是本发明实施例的方法流程示意图;
图2是本发明实施例的找矿方法得到的异常图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
请参考图1,本发明实施例提供了一种利用土壤活性硫酸盐的找矿方法,包括以下步骤:
(1)土壤采样;去除表层杂质和植物后,采集15~30cm深度的细粒土壤,并进行装袋密封;细粒土壤的目数小于60目,称取200g的细粒土壤袋装密封;覆盖区土壤样品来源复杂,运积物所占比例较大,应避免采集砾石和岩屑等粗粒径土壤介质;
(2)样品制备;将采集的土壤避光自然风干后,过目筛得到土壤样品,称取适量土壤样品在氮气或氩气条件下加热,对加热后土壤中释放出的气体样品采用静电滤膜过滤,过滤后的气体样品通入Na2CO3和NaHCO3的混合溶液中吸收后过滤得到吸收液;其中,加热温度为80~250℃,加热时间为5~15min,所述Na2CO3和NaHCO3的浓度分别为3.6mmol/L和6.0mmol/L,所述混合溶液的温度小于10℃;
(3)样品测试;将吸收液进一步过滤后量取适量于离子色谱仪中,进行成分含量的检测,计算得到吸收液中硫酸盐及硝酸盐的含量;
(4)数据处理;根据称取的土壤重量与得到的硫酸盐含量计算活性硫酸盐(△SO4 2-)的含量,单位为mg/g或μg/g,再通过计算硫酸根离子与硝酸根离子含量的比值得到矫正活性硫酸盐(△S/N)值,并计算衬值绘制异常图(见附图2)指导找矿。
本发明实施例的找矿方法是基于硫的生物地球化学原理,硫是多金属硫化物矿床的大量元素,具有很强的迁移转化能力;采用本发明实施例的制样方法将土壤中矿致活性硫酸盐进行有效分离并测量,然后通过矫正获得活性硫酸盐找矿指标。本发明实施例的方法主要针对运积物覆盖区的化探找矿工作,具有采样效率高,测量成本低,能较好屏蔽地表非矿致硫源的干扰,化探异常识别度高。特别适用草原覆盖区和厚层土壤覆盖区的多金属硫化物型隐伏矿的寻找。
参照附图2,采用本发明实施例的方法得到的异常图,根据矫正活性硫酸盐值(△S/N)与活性硫酸盐(△SO4 2-)的含量对比可知,矫正活性硫酸盐值(△S/N)相对较大的区域则存在隐藏的矿体,为实地找矿提供可靠的指导,降低了找矿的难度和劳动强度,节省了找矿成本。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种利用土壤活性硫酸盐的找矿方法,其特征是,包括以下步骤:
(1)土壤采样;去除表层杂质和植物后,采集15~30cm深度的细粒土壤,并进行装袋密封;
(2)样品制备;将采集的土壤避光自然风干后,过目筛得到土壤样品,称取适量土壤样品在氮气或氩气条件下加热,对加热后土壤中释放出的气体样品采用静电滤膜过滤,过滤后的气体样品通入Na2CO3和NaHCO3的混合溶液中吸收后过滤,得到吸收液;
(3)样品测试;将吸收液进一步过滤并量取适量于离子色谱仪中进行成分含量的检测,经计算得到吸收液中硫酸盐、硝酸盐的含量;
(4)数据处理;根据称取的土壤重量与得到的硫酸盐含量计算活性硫酸盐的含量,再通过计算硫酸根离子与硝酸根离子的比值得到矫正活性硫酸盐值,并计算衬值绘制异常图,进而指导找矿。
2.根据权利要求1所述的一种利用土壤活性硫酸盐的找矿方法,其特征是,步骤(1)中,所述细粒土壤的目数小于60目,称取200g的细粒土壤袋装密封。
3.根据权利要求1所述的一种利用土壤活性硫酸盐的找矿方法,其特征是,步骤(2)中,加热温度为80~250℃,加热时间为5~15min;所述Na2CO3和NaHCO3的浓度分别为3.6mmol/L和6.0mmol/L,所述混合溶液的温度小于10℃。
CN201810234238.9A 2018-03-21 2018-03-21 一种利用土壤活性硫酸盐的找矿方法 Active CN108693299B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810234238.9A CN108693299B (zh) 2018-03-21 2018-03-21 一种利用土壤活性硫酸盐的找矿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810234238.9A CN108693299B (zh) 2018-03-21 2018-03-21 一种利用土壤活性硫酸盐的找矿方法

Publications (2)

Publication Number Publication Date
CN108693299A true CN108693299A (zh) 2018-10-23
CN108693299B CN108693299B (zh) 2019-09-17

Family

ID=63844566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810234238.9A Active CN108693299B (zh) 2018-03-21 2018-03-21 一种利用土壤活性硫酸盐的找矿方法

Country Status (1)

Country Link
CN (1) CN108693299B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111292325A (zh) * 2020-03-31 2020-06-16 中国地质调查局西安地质调查中心(西北地质科技创新中心) 一种基于遥感技术的萤石矿识别方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86202228U (zh) * 1986-04-07 1987-10-03 核工业部东北地质勘探局二四零研究所 地电化学找矿提取装置
CN201096644Y (zh) * 2007-07-27 2008-08-06 桂林工学院 低电压偶极地电提取装置
CN102621592A (zh) * 2012-02-09 2012-08-01 成都理工大学 效率可调的动态地气测量方法
CN103135144A (zh) * 2013-01-04 2013-06-05 中山大学 一种利用含碳微粒寻找隐伏矿床的方法
CN104181175A (zh) * 2014-07-18 2014-12-03 中山大学 一种水微粒地球化学找矿方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86202228U (zh) * 1986-04-07 1987-10-03 核工业部东北地质勘探局二四零研究所 地电化学找矿提取装置
CN201096644Y (zh) * 2007-07-27 2008-08-06 桂林工学院 低电压偶极地电提取装置
CN102621592A (zh) * 2012-02-09 2012-08-01 成都理工大学 效率可调的动态地气测量方法
CN103135144A (zh) * 2013-01-04 2013-06-05 中山大学 一种利用含碳微粒寻找隐伏矿床的方法
CN104181175A (zh) * 2014-07-18 2014-12-03 中山大学 一种水微粒地球化学找矿方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANJIN CAO 等: "TEM observation of geogas-carried particles from the Changkeng concealed gold deposit, Guangdong Province, South China", 《JOURNAL OF GEOCHEMICAL EXPLORATION》 *
地电化学提取法在武山铜矿深部找矿的试验研究: "于桑 等", 《地质世界》 *
李生郁 等: "轻烃及硫化物气体测量找寻多金属隐伏矿方法试验", 《物探与化探》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111292325A (zh) * 2020-03-31 2020-06-16 中国地质调查局西安地质调查中心(西北地质科技创新中心) 一种基于遥感技术的萤石矿识别方法及系统
CN111292325B (zh) * 2020-03-31 2021-01-12 中国地质调查局西安地质调查中心(西北地质科技创新中心) 一种基于遥感技术的萤石矿识别方法

Also Published As

Publication number Publication date
CN108693299B (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
Wen et al. Tracing sources of pollution in soils from the Jinding Pb–Zn mining district in China using cadmium and lead isotopes
RU2651353C1 (ru) Геохимический способ поиска месторождений полезных ископаемых
Macedo et al. Development of an analytical approach for determination of total arsenic and arsenic (III) in airborne particulate matter by slurry sampling and HG-FAAS
McCarthy Jr Mercury vapor and other volatile components in the air as guides to ore deposits
Keller et al. Arsenic speciation in natural sulfidic geothermal waters
Wang et al. Characteristics of lead geochemistry and the mobility of Pb isotopes in the system of pedogenic rock–pedosphere–irrigated riverwater–cereal–atmosphere from the Yangtze River delta region, China
CN109270588A (zh) 一种花岗岩型铀矿深部矿化信息提取方法
Tang et al. Genesis of the Jinding Zn-Pb deposit, northwest Yunnan Province, China: Constraints from rare earth elements and noble gas isotopes
Zhu et al. Fluid inclusion, H–O isotope and Pb–Pb age constraints on the genesis of the Yongping copper deposit, South China
CN104181175A (zh) 一种水微粒地球化学找矿方法及其应用
CN108693299B (zh) 一种利用土壤活性硫酸盐的找矿方法
Ye et al. Mechanism of the migration of gold in desert regolith cover over a concealed gold deposit
Sobolev et al. Chemical diagenesis in near-surface zone above oil fields in geochemical exploration
Liqiang et al. Decrepitation thermometry and compositions of fluid inclusions of the Damoqujia gold deposit, Jiaodong gold province, China: implications for metallogeny and exploration
Harguindeguy et al. Isotopic investigation of the colloidal mobility of depleted uranium in a podzolic soil
Fu et al. Formation of the Banxi Sb deposit in Eastern Yangtze Block: Evidence from individual fluid inclusion analyses, trace element chemistry, and He-Ar-S isotopes
McGladrey et al. The integration of physical rock properties, mineralogy and geochemistry for the exploration of large zinc silicate deposits: A case study of the Vazante zinc deposits, Minas Gerais, Brazil
Cui et al. Gold mobilization during prograde metamorphism of clastic sedimentary rocks: an example from the Liaohe Group in the Jiao–Liao–Ji Belt, North China Craton
Wang et al. Sr-Nd isotope and REE compositions of surface sediments from the three Gorges Reservoir: Implications for source identification and apportionment
Herzog et al. Spring flood induced shifts in Fe speciation and fate at increased salinity
Marschik et al. Geochronology and stable isotope signature of alteration related to hydrothermal magnetite ores in Central Anatolia, Turkey
Voltattorni et al. Gas migration from two mine districts: the Tolfa (Lazio, Central Italy) and the Neves-Corvo (Baixo Alentejo, Portugal) case studies
Kozak et al. Environmental impact of flood: the study of arsenic speciation in exchangeable fraction of flood deposits of Warta river (Poland) in determination of “finger prints” of the pollutants origin and the ways of the migration
Wan et al. Identification of metal sources in Geogas from the Wangjiazhuang copper deposit, Shandong, China: Evidence from lead isotopes
Ankusheva et al. Fluid Inclusion Evidences for the PT Conditions of Quartz Veins Formation in the Black Shale-Hosted Gold Deposits, Bodaybo Ore Region, Russia

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant