CN108692827A - 一种电控调谐型长周期光子晶体光纤光栅温度传感器 - Google Patents

一种电控调谐型长周期光子晶体光纤光栅温度传感器 Download PDF

Info

Publication number
CN108692827A
CN108692827A CN201810315971.3A CN201810315971A CN108692827A CN 108692827 A CN108692827 A CN 108692827A CN 201810315971 A CN201810315971 A CN 201810315971A CN 108692827 A CN108692827 A CN 108692827A
Authority
CN
China
Prior art keywords
photonic crystal
refractive index
crystal fiber
temperature sensor
fibre core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810315971.3A
Other languages
English (en)
Other versions
CN108692827B (zh
Inventor
赵勇
王�琦
杜超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201810315971.3A priority Critical patent/CN108692827B/zh
Publication of CN108692827A publication Critical patent/CN108692827A/zh
Application granted granted Critical
Publication of CN108692827B publication Critical patent/CN108692827B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明提出一种电控调谐型长周期光子晶体光纤光栅温度传感器。其光子晶体光纤采用折射率高于传统二氧化硅的FK51A材料为基底。光子晶体光纤纤芯空气孔填充对温度和电场敏感的液晶材料。通过在梳状电极上施加电压来周期性改变液芯折射率,从而调制出长周期光纤光栅效果。其谐振波长可以通过改变梳状电极间距(光栅周期)来确定。当外界温度改变时,液晶的折射率发生变化,因此可以通过监测谐振波长的变化来实现对温度的测量。本发明提出的电控调谐型长周期光子晶体光纤光栅温度传感器具有成本低、结构灵活、波长及带宽可调谐的优点。

Description

一种电控调谐型长周期光子晶体光纤光栅温度传感器
技术领域
本发明属于光纤传感器技术领域,涉及一种电控调谐型长周期光子晶体光纤光栅器件,该器件可以用作高灵敏度温度传感器。
背景技术
长周期光纤光栅传感器具有灵敏度高、结构小巧、耐腐蚀、抗电磁干扰等优点,长期以来一直是光纤传感领域的研究热点。当前,长周期光纤光栅传感器已被广泛用于折射率、温度、应变、弯曲等物理参量的测量,但是传统长周期光纤光栅已不能满足高灵敏度测量要求,因此需要不断探索高性能指标的新型传感器。
光子晶体光纤是一种具有多层空气孔包层的特种光纤,其灵活的结构可以根据各种测量需求进行设计,并可以通过填充功能材料来改变其传输特性。因此,基于光子晶体光纤刻写的长周期光纤光栅应运而生,并逐渐引起了科研工作者的关注。
目前刻写长周期光纤光栅的方法主要有紫外曝光法、二氧化碳激光、飞秒激光及电弧放电等热辅助法。紫外曝光法只能刻写纤芯掺锗的光纤,限制了其在纯二氧化硅材料基底的光子晶体光纤上的应用。热辅助法是对光纤进行周期性点式加热,加热区发生结构形变并释放残余应力从而改变其材料折射率,具有不可逆性。
发明内容
本发明的目的是克服传统方法制备长周期光纤光栅不可逆的缺点,采用梳状电极来周期性调制光子晶体光纤纤芯液晶的折射率,通过改变梳状电极间距来确定该长周期光纤光栅器件的谐振波长。此温度传感器具有成本低、结构灵活、波长及带宽可调谐的优点。
具体技术方案为:
一种电控调谐型长周期光子晶体光纤光栅温度传感器,主体为具有三角形周期排列空气孔的光子晶体光纤,基底材料折射率为1.46~1.48,纤芯空气孔直径为1~2μm,包层空气孔直径d为1~2μm,包层空气孔的孔间距Λ为2.5~5μm,占空比d/Λ小于0.45来保证光子晶体光纤具有无截止单模特性;纤芯空气孔内填充对温度敏感的向列相液晶;光子晶体光纤的外表面设置梳状电极,通过梳状电极施加电压对液晶填充的光子晶体光纤纤芯进行周期性折射率调制,形成电控调谐型长周期光子晶体光纤光栅温度传感器。
进一步地,上述纤芯空气孔内填充的向列相液晶为折射率n1为1.51~1.71的E7液晶。
进一步地,上述梳状电极的电极间距(即光栅周期)P为550~650μm,光栅周期个数N为40~60;折射率调制深度Δn为2×10-4~2.5×10-5
进一步地,上述包层和纤芯空气孔直径相等皆为1.05μm,孔间距为4.61μm,光纤直径为125μm,基底材料折射率为1.4759(入射波长1550nm),梳状电极的电极间距(光栅周期)P为613.8μm,光栅周期个数N为51;折射率调制深度Δn为2×10-5。该光子晶体光纤采用折射率高于传统二氧化硅的FK51A材料为基底,不仅有利于增强模式之间的耦合,还提高了纤芯填充液体的折射率灵敏度。
本发明光子晶体光纤上采用梳状电极调制出长周期光纤光栅,实现在宽带波长范围内的纤芯和包层模式转换。通过在光子晶体光纤的纤芯内填充折射率可调的光学功能材料液晶,实现通过环境温度来调控所填充液体折射率,进而改变长周期光纤光栅的谐振波长。此结构提供了一种具有高灵敏度的温度传感器。
本发明的有益效果为:
(1)本发明提出的一种纤芯具有空气孔的光子晶体光纤,该光子晶体光纤的背景材料采用FK51A,其折射率高于传统二氧化硅,从而增强了纤芯模式和包层模式之间的耦合,并提高了纤芯填充液体的折射率灵敏度。
(2)本发明提出的电控调谐型长周期光子晶体光纤光栅,采用梳状电极来周期性调制光子晶体光纤纤芯液晶的折射率,通过改变梳状电极间距来确定该长周期光纤光栅器件的谐振波长,解决传统工艺制备的长周期光纤光栅波长不可调,结构不可逆的问题;
(3)本发明提出的一种电控调谐型长周期光子晶体光纤光栅温度传感器,其光子晶体光纤纤芯空气孔结构中填充折射率对温度敏感的光学功能材料液晶,其周围环境温度可以引起谐振波长位置的变化,从而使该传感器具有较高的温度灵敏度和可调谐性。
附图说明
图1为光子晶体光纤结构横截面示意图;
其中,1光子晶体光纤基底材料FK51A;2光子晶体光纤包层空气孔;3光子晶体光纤纤芯空气孔;d包层空气孔直径;Λ包层空气孔孔间距;D光纤直径;
图2为电控调谐型长周期光子晶体光纤光栅结构示意图;
其中,4光子晶体光纤纤芯空气孔中填充的液晶E7;5熔接的单模光纤;6光子晶体光纤;7梳状电极阵列;P梳状电极间距(光栅周期);
图3为不同基底材料的光子晶体光纤光栅谐振波长随纤芯填充液体折射率变化关系;
图4为光子晶体光纤(基底为FK51A)的纤芯模式和包层模式电场分布及其功率随光栅长度的转换关系;
其中,(a)光子晶体光纤的纤芯模式LP01电场强度分布;(b)光子晶体光纤的纤芯模式LP02电场强度分布;(c)纤芯模式LP01和包层模式LP02模式功率转换与光栅长度的关系图;
图5为不同温度下电控调谐型长周期光子晶体光纤光栅透射光谱图;
其中,(a)15℃~27℃温度变化范围的透射光谱图;(b)30℃~58℃温度变化范围的透射光谱图;
图6电控调谐型长周期光子晶体光纤光栅谐振波长随温度的变化关系。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下结合本发明具体实施例,并参照附图,对本发明的具体结构、原理以及性能优化过程作进一步的详细说明。
实施例1
一种电控调谐型长周期光子晶体光纤光栅温度传感器,通过堆积拉制法制得光子晶体光纤。该光子晶体光纤基底材料FK51A具有较高的折射率。光子晶体光纤的端面如图1所示,包层和纤芯空气孔直径d为1.05μm,孔间距Λ为4.61μm,光纤直径D为125μm,基底材料折射率n1为1.4759(1550nm波长处);纤芯内填充液晶折射率范围为1.51~1.71。此参数使得光子晶体光纤具有无截止单模特性,从而避免其他高阶模式的干扰。
通过梳状电极施加电压对液晶填充的光子晶体光纤纤芯进行周期性折射率调制,制成电控调谐型长周期光子晶体光纤光栅,其结构如图2所示。P为梳状电极间距(光栅周期)613.8μm;纤芯液晶折射率被梳状电极调制的部分,其折射率为n2+Δn,折射率调制深度Δn为2×10-5;未调制液晶的折射率保持不变为n2
在光子晶体光纤纤芯空气孔中填充折射率范围为1.50259~1.51593的液体,并探究了基于不同背景材料光子晶体光纤的长周期光栅的谐振波长对折射率变化的响应。通过线性拟合计算可知,见图3,基底材料为FK51A的光子晶体光纤光栅对纤芯填充液体折射率变化的灵敏度远高于传统以二氧化硅材料为基底的光子晶体光纤。
将折射率n2为1.51~1.71的光学功能材料E7液晶填充在基底材料为FK51A的光子晶体光纤的纤芯空气孔内,根据偶合模理论分别求得参与模式耦合的纤芯模式LP01和包层模式LP02,其电场强度分布如图4所示。根据如图4所示的模式功率转换与光栅长度的关系,可以得到优化后的长周期光纤光栅长度为3.11cm,即光栅个数N为51。
通过改变周围环境温度实现对光子晶体光纤纤芯空气孔中填充液晶折射率的调制,从而进一步改变长周期光子晶体光纤光栅的谐振波长。如图5所示,通过对谐振波长的监测实现长周期光子晶体光纤光栅传感器对环境温度的测量。电控调谐型长周期光子晶体光纤光栅谐振波长随温度的变化关系如图6所示。在15℃~27℃温度变化范围内,谐振波长随着温度的增加向短波长方向移动,而在30℃~58℃温度变化范围,谐振波长随着温度的增加向长波长方向移动,在58℃附近,温度灵敏度可以达到481.9nm/℃。

Claims (5)

1.一种电控调谐型长周期光子晶体光纤光栅温度传感器,其特征在于,主体为具有三角形周期排列空气孔的光子晶体光纤,基底材料折射率为1.46~1.48,纤芯空气孔直径为1~2μm,包层空气孔直径为1~2μm,包层空气孔的孔间距为2.5~5μm,占空比小于0.45,保证光子晶体光纤具有无截止单模特性;纤芯空气孔内填充对温度敏感的向列相液晶;光子晶体光纤的外表面设置梳状电极,通过梳状电极施加电压对液晶填充的光子晶体光纤纤芯进行周期性折射率调制,从而实现电控调谐型长周期光子晶体光纤光栅温度传感器。
2.根据权利要求1所述的温度传感器,其特征在于,纤芯空气孔内填充的向列相液晶为折射率n1为1.51~1.71的E7液晶。
3.根据权利要求1或2所述的温度传感器,其特征在于,梳状电极的电极间距P为550~650μm,光栅周期个数N为40~60;折射率调制深度Δn为2×10-4~2.5×10-5
4.根据权利要求1或2所述的温度传感器,其特征在于,包层和纤芯空气孔直径相等皆为1.05μm,孔间距为4.61μm,光纤直径为125μm,基底材料折射率为1.4759,梳状电极的电极间距P为613.8μm,光栅周期个数N为51;折射率调制深度Δn为2×10-5
5.根据权利要求3所述的温度传感器,其特征在于,包层和纤芯空气孔直径相等皆为1.05μm,孔间距为4.61μm,光纤直径为125μm,基底材料折射率为1.4759,梳状电极的电极间距P为613.8μm,光栅周期个数N为51;折射率调制深度Δn为2×10-5
CN201810315971.3A 2018-04-08 2018-04-08 一种电控调谐型长周期光子晶体光纤光栅温度传感器 Expired - Fee Related CN108692827B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810315971.3A CN108692827B (zh) 2018-04-08 2018-04-08 一种电控调谐型长周期光子晶体光纤光栅温度传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810315971.3A CN108692827B (zh) 2018-04-08 2018-04-08 一种电控调谐型长周期光子晶体光纤光栅温度传感器

Publications (2)

Publication Number Publication Date
CN108692827A true CN108692827A (zh) 2018-10-23
CN108692827B CN108692827B (zh) 2020-07-24

Family

ID=63844933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810315971.3A Expired - Fee Related CN108692827B (zh) 2018-04-08 2018-04-08 一种电控调谐型长周期光子晶体光纤光栅温度传感器

Country Status (1)

Country Link
CN (1) CN108692827B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186590A (zh) * 2019-05-17 2019-08-30 河南师范大学 一种由液晶填充的双通道自校准光纤表面等离子共振温度传感器

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029620A (ja) * 1983-07-28 1985-02-15 Nec Kansai Ltd 液晶温度検出装置
EP0210503A1 (en) * 1985-07-23 1987-02-04 Minnesota Mining And Manufacturing Company Luminous horizontal roadway marking strips
JP2004077701A (ja) * 2002-08-14 2004-03-11 Toshiba Corp 平面表示装置
US20050169590A1 (en) * 2003-12-31 2005-08-04 Crystal Fibre A/S Liquid crystal infiltrated optical fibre, method of its production, and use thereof
CN201107472Y (zh) * 2007-05-11 2008-08-27 安徽华东光电技术研究所 自由立体显示器
US7570320B1 (en) * 2005-09-01 2009-08-04 Vescent Photonics, Inc. Thermo-optic liquid crystal waveguides
CN101520555A (zh) * 2009-04-17 2009-09-02 南开大学 基于功能材料填充微结构光纤的可调谐双通道光栅滤波器
WO2009109216A1 (en) * 2008-03-03 2009-09-11 Abb Research Ltd Electrical hollow core insulator
CN102141691A (zh) * 2011-04-25 2011-08-03 东北大学 一种磁控可调谐光纤梳状滤波器
CN102243113A (zh) * 2011-06-22 2011-11-16 天津大学 波长可调谐的光子晶体光纤光栅温度传感器
CN102590932A (zh) * 2012-03-14 2012-07-18 天津理工大学 一种新型结构的掺杂液晶光子晶体光纤传感模型
CN102768440A (zh) * 2012-06-30 2012-11-07 南京大学 一种快速响应光开关
CN102830461A (zh) * 2012-09-25 2012-12-19 天津工业大学 一种电控可调谐的多孔太赫兹带隙光纤
CN102980685A (zh) * 2012-12-06 2013-03-20 天津理工大学 级联长周期光子晶体光纤光栅温度传感器
CN103105643A (zh) * 2013-03-05 2013-05-15 天津理工大学 一种电压可调的双芯光子晶体光纤太赫兹波滤波器
CN105628134A (zh) * 2014-11-06 2016-06-01 成都天兴仪表(集团)有限公司 一种汽车燃油表阻尼油量的计算方法
US20170315158A1 (en) * 2015-01-14 2017-11-02 Abb Schweiz Ag Spun highly-birefringent fiber for current sensing with inherent insensitivity to temperature
CN108760079A (zh) * 2018-05-02 2018-11-06 燕山大学 一种基于液晶填充微结构光纤的Sagnac干涉温度传感器

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029620A (ja) * 1983-07-28 1985-02-15 Nec Kansai Ltd 液晶温度検出装置
EP0210503A1 (en) * 1985-07-23 1987-02-04 Minnesota Mining And Manufacturing Company Luminous horizontal roadway marking strips
JP2004077701A (ja) * 2002-08-14 2004-03-11 Toshiba Corp 平面表示装置
US20050169590A1 (en) * 2003-12-31 2005-08-04 Crystal Fibre A/S Liquid crystal infiltrated optical fibre, method of its production, and use thereof
US7570320B1 (en) * 2005-09-01 2009-08-04 Vescent Photonics, Inc. Thermo-optic liquid crystal waveguides
CN201107472Y (zh) * 2007-05-11 2008-08-27 安徽华东光电技术研究所 自由立体显示器
WO2009109216A1 (en) * 2008-03-03 2009-09-11 Abb Research Ltd Electrical hollow core insulator
CN101520555A (zh) * 2009-04-17 2009-09-02 南开大学 基于功能材料填充微结构光纤的可调谐双通道光栅滤波器
CN102141691A (zh) * 2011-04-25 2011-08-03 东北大学 一种磁控可调谐光纤梳状滤波器
CN102243113A (zh) * 2011-06-22 2011-11-16 天津大学 波长可调谐的光子晶体光纤光栅温度传感器
CN102590932A (zh) * 2012-03-14 2012-07-18 天津理工大学 一种新型结构的掺杂液晶光子晶体光纤传感模型
CN102768440A (zh) * 2012-06-30 2012-11-07 南京大学 一种快速响应光开关
CN102830461A (zh) * 2012-09-25 2012-12-19 天津工业大学 一种电控可调谐的多孔太赫兹带隙光纤
CN102980685A (zh) * 2012-12-06 2013-03-20 天津理工大学 级联长周期光子晶体光纤光栅温度传感器
CN103105643A (zh) * 2013-03-05 2013-05-15 天津理工大学 一种电压可调的双芯光子晶体光纤太赫兹波滤波器
CN105628134A (zh) * 2014-11-06 2016-06-01 成都天兴仪表(集团)有限公司 一种汽车燃油表阻尼油量的计算方法
US20170315158A1 (en) * 2015-01-14 2017-11-02 Abb Schweiz Ag Spun highly-birefringent fiber for current sensing with inherent insensitivity to temperature
CN108760079A (zh) * 2018-05-02 2018-11-06 燕山大学 一种基于液晶填充微结构光纤的Sagnac干涉温度传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DANNY NOORDEGRAAF: "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers", 《OPTICS EXPRESS》 *
王林新: "光子晶体光纤及其长周期光栅的研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186590A (zh) * 2019-05-17 2019-08-30 河南师范大学 一种由液晶填充的双通道自校准光纤表面等离子共振温度传感器

Also Published As

Publication number Publication date
CN108692827B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
Lu et al. Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid
US6529676B2 (en) Waveguide incorporating tunable scattering material
Yao et al. Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating
Liu et al. Tunable fiber polarization filter by filling different index liquids and gold wire into photonic crystal fiber
Min et al. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers
Sun et al. Phase-shifted gratings fabricated with femtosecond laser by overlapped two types of fiber Bragg gratings
CN101261117A (zh) 基于多孔微结构光纤的应变传感器
CN101414093A (zh) 一种基于功能材料填充微结构光纤的可调谐干涉仪
CN103091831A (zh) 可调谐光学滤波器及应用
JP2010506219A (ja) キャピラリ導波管の調整可能な光学装置を用いて、光信号をフィルタ処理する方法
Du et al. Electrically tunable long period gratings temperature sensor based on liquid crystal infiltrated photonic crystal fibers
Liu et al. Electrically sensing characteristics of the sagnac interferometer embedded with a liquid crystal-infiltrated photonic crystal fiber
CN102590931A (zh) 一种温度可调的光子晶体光纤太赫兹波滤波器
CN103869503A (zh) 多波长光纤滤波器
CN201181206Y (zh) 基于多孔微结构光纤的应变传感器
Su et al. Temperature compensated curvature sensor with insensitive axial strain based on tapered ring core fiber interferometer
CN108692827A (zh) 一种电控调谐型长周期光子晶体光纤光栅温度传感器
Li et al. Optically tunable fiber Bragg grating
Wang et al. Curvature sensor based on D-shape fiber long period fiber grating inscribed and polished by CO2 laser
Shang et al. Structural modulated ultralong period microfiber grating for the simultaneous measurement of the refractive index and temperature in a low-refractive-index range
JP2010506218A (ja) キャピラリ導波管の調整可能な光学装置
Sun et al. A new sensor for simultaneous measurement of strain and temperature
CN202886770U (zh) 全光纤化微型加热器
Wang et al. Study on fabrication, spectrum and torsion sensing characteristics of microtapered long-period fiber gratings
Shang et al. Ultralong-period microfiber grating for simultaneous measurement of displacement and temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200724

CF01 Termination of patent right due to non-payment of annual fee