CN108689704B - 一种b位掺杂非化学计量比室温多铁陶瓷的制备方法 - Google Patents

一种b位掺杂非化学计量比室温多铁陶瓷的制备方法 Download PDF

Info

Publication number
CN108689704B
CN108689704B CN201710218488.9A CN201710218488A CN108689704B CN 108689704 B CN108689704 B CN 108689704B CN 201710218488 A CN201710218488 A CN 201710218488A CN 108689704 B CN108689704 B CN 108689704B
Authority
CN
China
Prior art keywords
room temperature
powder
temperature
stoichiometric
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710218488.9A
Other languages
English (en)
Other versions
CN108689704A (zh
Inventor
王晓飞
胡秋波
张超
臧国忠
张利平
周锋子
王景雪
齐赞
吴清阳
许飞强
李立本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN201710218488.9A priority Critical patent/CN108689704B/zh
Publication of CN108689704A publication Critical patent/CN108689704A/zh
Application granted granted Critical
Publication of CN108689704B publication Critical patent/CN108689704B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种B位掺杂非化学计量比室温多铁陶瓷的制备方法,由分子式为SrTi(1+y)‑xFexO3的材料组成,其中,x的取值范围为0~0.2,y的取值范围为‑0.06~0.06,Sr、Ti和Fe的摩尔比为Sr:Ti:Fe=1:(1+y)‑x:x。采用改良的固相烧结法制备出的钛酸锶陶瓷,具有烧结温度低等优点,本发明降低烧结温度125℃左右,有效的降低了成本;本发明中采用多次研磨的方法,使得钛酸锶陶瓷成相好,并且成品纯度高,质地均匀。

Description

一种B位掺杂非化学计量比室温多铁陶瓷的制备方法
技术领域
本发明涉及材料科学技术领域的多铁性陶瓷,具体涉及一种B位掺杂非化学计量比室温多铁陶瓷的制备方法。
背景技术
如今,随着微电子器件向轻薄短小、多功能、高可靠性和高集成化方向发展,对先进功能材料的结构、性能、制备和应用提出了更高更苛刻的要求。微电子器件尺寸不断缩小,并已接近其物理极限。未来的发展方向应该是追求器件的精密化和多功能化。在当前器件小型化和多功能化的发展背景下,单相多铁材料的研究引起了人们的普遍关注(Nature,429, 392 (2004),Science. 333, 1273 (2011),Nature Mater. 13, 42 (2014)),因为同时具备磁有序和电有序的多铁性材料在器件方面蕴藏着广阔的应用前景。
目前绝大多数材料只在极低温下才表现出铁电性和磁性的共存,主要是一些锰氧化物,例如:BiMnO3、YMnO3和HoMnO3 等,这些材料磁转变温度(奈尔温度,TN)都在100 K以下,而且由于合成困难、制备成本高、需要高温高压等条件限制,离实际应用还有一定的距离。BiFeO3是最有希望得到应用的材料之一,但是也存在合成困难,漏电流大等问题。因此,获得一种制备工艺简单且在室温下具有良好性能的单相多铁材料,依然是亟待解决的问题。
量子顺电体钛酸锶(SrTiO3)作为一种用途广泛的电子功能材料,它具有高介电常数、低介电损耗和热稳定性等优点,被广泛的应用于电子、机械和陶瓷工业。钛酸锶晶格中的离子堆垛是一种理想的钙钛矿结构,任何外部的扰动或内部结构的变化都会影响其性能的变化。其中,钛酸锶铁电性诱导及其机理分析一直是人们研究的焦点。铁电性诱导主要通过晶格应力应变产生:第一,化学应力。通过在Sr2+位掺入离子半径差别较大的元素造成晶格畸变、通过掺入易变价离子产生极性纳米微区以及通过氧同位素代替等诱导钛酸锶铁电性;第二,机械应力。通过在晶格常数大于钛酸锶的单晶衬底上生长钛酸锶,产生张应力,使其出现铁电性,例如:DyScO3、Si等衬底。总结下来,是某种缺陷造成了钛酸锶晶格畸变或产生极性微区,从而形成自发极化,出现铁电性。以上方法存在相变温度低、合成复杂、缺陷种类多和成本高等问题。
发明内容
为了克服现有方法所存在的铁电或铁磁相变温度低、合成复杂、缺陷种类多和成本高等问题,本发明提供一种更为简单、不需要引入其它杂质且不受衬底应力因素影响就能诱导出钛酸锶室温多铁性的方法,即一种B位掺杂非化学计量比室温多铁陶瓷的制备方法,诱导出具有铁电性和/或铁磁性的钛酸锶陶瓷。
本发明为克服上述问题所采用的技术方案为:一种B位掺杂非化学计量比室温多铁陶瓷,由分子式为SrTi(1+y)-xFexO3的材料组成,其中,x的取值范围为0~0.2,y的取值范围为-0.06~0.06,Sr、Ti和Fe的摩尔比为Sr:Ti:Fe=1:(1+y)-x:x。
优选的,室温多铁陶瓷由分子式为SrTi(1+y)-xFexO3的材料组成,其中,x的取值范围为0.1~0.2,y的取值范围为0.03~0.06,Sr、Ti和Fe的摩尔比为Sr:Ti:Fe=1:(1+y)-x:x。
一种B位掺杂非化学计量比室温多铁陶瓷的制备方法,包括以下步骤:(1)、按照1:(1+y)-x:x的摩尔比分别称取物料SrCO3、TiO2和Fe2O3,将称取的全部物料装入玛瑙研钵中,然后加入浓度为99.8%的无水乙醇研磨3h,得到料浆,备用;
(2)、将步骤(1)制备的料浆在40~150℃下烘干后,进行预烧和研磨,制得粉料,备用;
(3)、将步骤(2)所得的粉料倒入玛瑙研钵中并加入质量分数为10%的聚乙烯醇溶液,聚乙烯醇溶液的加入量为粉料质量的5%,研磨2~3h,然后将所得粉料放入鼓风干燥箱中在80℃下烘干5~6h,将烘干后的粉料过120~140目筛;备用;
步骤(4)、将步骤(3)所得粉料在35MPa的压力条件下压制成坯体后,将坯体放入氧化铝坩埚中进行烧结,升温速率为3~5℃/min,待温度升至500℃保温排胶4h后,继续保持升温速率不变,升温至1250~1415℃,保温4~6h后,将温度以2℃/min的速率降至950℃,停止加热,自然冷却至室温,即制得室温多铁陶瓷。
本发明中,步骤(1)中SrCO3和TiO2的纯度为99%以上的分析纯,Fe2O3纯度为99.9%;称量物料的质量时,精确到0.1mg以上。
优选方式之一:步骤(2)中预烧和研磨的步骤为:将烘干后的料浆送入马弗炉中预烧,升温速率为5℃/min,预烧温度为1100℃保温3h,然后自然冷却至室温,将所得粉料放入玛瑙研钵中研磨3h所得粉料。
优选方式之二:步骤(2)中预烧和研磨的步骤为:将烘干后的料浆送入管式炉中预烧,预烧温度为1100℃保温4h,然后自然冷却至室温,将所得粉料放入玛瑙研钵中研磨3h,之后送入炉内以相同条件进行二次预烧,待其自然冷却后所得粉料。本发明中采用二次预烧方法,使得钛酸锶陶瓷成相好,并且成品纯度高,质地均匀,综合性能优良。
优选的,步骤(2)中的预烧和步骤(4)中的烧结均在管式炉中氮气气氛下进行。
本发明中,步骤(4)中所得圆片放入氧化铝坩埚中烧结前,在氧化铝板底部铺一薄层步骤(3)中所得粉料,将步骤(4)压制后坯体放在薄层上,在坯体上再撒一层步骤(3)中所得粉料,最后用氧化铝坩埚罩住进行烧结。
本发明中,步骤(4)中的烧结时,最终升温温度为1250~1275℃。
本发明中,Sr、Ti和Fe的摩尔比为Sr:Ti:Fe=1:(1+y)-x:x,由于钛酸锶陶瓷的特性随着Sr、Ti、Fe的摩尔比不同而不同。当采用优选方式时,x的取值范围为0.1~0.2,y的取值范围为0.03~0.06,当Sr和Ti含量相当时,即Sr/Ti=1,钛酸锶为顺电相。当Sr含量过高或Ti的含量过高时,即y<-0.06或y>0.06,陶瓷中易出现氧化钛、氧化锶等杂相;当x>0.2时,Fe离子增多,Fe2+和Fe3+之间的电子跃迁会造成样品中漏电流增加,也使得陶瓷铁电性难以测出;当y>0.06时,过量的Ti离子会占据半径较大Sr位,由此所造成的晶胞减小能够补偿Ti2+/Ti3+离子占据Ti4+位所导致的晶格参数的增加,从而抑制极化。
钛酸锶是一种最常见的电介质材料,它具有高介电常数、高热稳定性、低损耗和低漏电等性能被作为射频(RF)/微波电子可调器件和未来动态随机存取存储器(DRAM)的候选材料。由于钛酸锶中铁电序与量子涨落共存竞争,通过缺陷调控,可获得丰富而显著的物理新效应、新性能。植入某种缺陷后,钛酸锶能被诱导出铁电性、铁磁性、压电性、超导性和发光等反常现象。本发明通过优化制备工艺,掺杂同时诱导出钛酸锶的铁电性和铁磁性,实现了一种新的单相多铁材料的制备。
本发明诱导出室温铁电性、铁磁性由以下因素引起:
1)、由于Ti过量,会出现Sr空位(Vsr),间隙Ti离子和Vsr会形成一个极化缺陷(TiOC)。和典型的位移性铁电体一样,TiOC会有一个偶极极化转换,如TiOC:100方向和相反00方向极化,呈现铁电性。
2)、当本发明采用在管式炉内烧结时,即缺氧气氛下退火,样品中会出现一定量的氧空位Vo,TiOC和缺陷对TiOC+Vo会在它们自己周围产生极性纳米微区,一个大偶极矩的偶极子将会极化周围小偶极矩的偶极子,它们能够交叠,这些巨大的偶极子能够产生足够大规模的极化团簇,形成极性纳米微区,从而出现铁电性。
3)、由于大离子半径的Fe2+ (0.78 Å)和Fe3+ (0.645 Å)离子会掺入Ti (Ti4+=0.605 Å)位,晶格参数发生变化引起晶格畸变,使得材料变为赝四方结构,从而引起自发极化。
4)、钛酸锶的磁性来源于不同占位的Fe2+和Fe3+之间以氧为媒介而产生的间接交换耦合作用。
5)、由于Ti过量或Sr过量,过量的Ti离子会掺入Sr位,同样过量的Sr离子也会掺入Ti位。由于Sr和Ti的离子半径不一致,晶格参数发生变化会造成晶格畸变,使得材料变为赝四方结构,从而引起自发极化。
有益效果:1、本发明采用改良的固相烧结法制备出的钛酸锶陶瓷,与传统固相烧结法相比,具有制备工艺简单、成本较低、重复性好等优点。
2、本发明采用改良的固相烧结法制备出的量子顺电体钛酸锶陶瓷,具有一定的室温铁电性和铁磁性,铁电性能够提高到20μC/cm2左右,已经超过铁电材料应用标准,应用前景广阔。
3、本发明采用改良的固相烧结法制备出的钛酸锶陶瓷,具有烧结温度低等优点。传统的固相烧结钛酸锶一般在1400℃左右,本发明降低烧结温度125℃左右,有效的降低了成本。
4本发明中采用多次研磨的方法,使得钛酸锶陶瓷成相好,并且成品纯度高,质地均匀。
附图说明
图1为SrTi1+yO3陶瓷的XRD图(x=0,y取值依次为-0.06,-0.03,0,0.03,0.06);
图2为图1中y各取值的SrTi1+yO3陶瓷的室温电滞回线图;
图3为SrTi(1+y)-xFexO3陶瓷的XRD图(x取值依次为0.1,0.2;y取值为0.05);
图4为图3为x、y各取值的SrTi(1+y)-xFexO3陶瓷的室温电滞回线图;
图5为图3为x、y各取值的SrTi(1+y)-xFexO3陶瓷的室温磁滞回线图。
具体实施方式
下面结合具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
一种B位掺杂非化学计量比室温多铁陶瓷,由分子式为SrTi(1+y)-xFexO3的材料组成,其中,x的取值范围为0~0.2,y的取值范围为-0.06~0.06,Sr、Ti和Fe的摩尔比为Sr:Ti:Fe=1:(1+y)-x:x。
实施例1
一种B位掺杂非化学计量比室温多铁陶瓷的制备方法,包括以下步骤:
(1)、按照1:0.94的摩尔比分别称取物料SrCO3和TiO2,即取x=0,y=-0.06。将称取的全部物料装入玛瑙研钵中,然后加入浓度为99.8%的无水乙醇研磨3h,得到料浆,备用;其中的SrCO3和TiO2的纯度为99%以上的分析纯,Fe2O3纯度为99.9%;称量物料的质量时,精确到0.1mg以上。
(2)、将研磨后的料浆在100℃下烘干后,送入管式炉内预烧,预烧温度为1100℃保温4h,然后自然冷却至室温,将所得粉料放入玛瑙研钵中研磨3h,之后送入炉内以相同条件进行二次预烧,待其自然冷却后所得粉料;备用;
(3)、将步骤(2)所得的粉料倒入玛瑙研钵中并加入质量分数为10%的聚乙烯醇溶液,聚乙烯醇溶液的加入量为粉料质量的5%,研磨2h,然后将所得粉料放入鼓风干燥箱中在80℃下烘干5~6h,将烘干后的粉料过120目筛;备用;
步骤(4)、将步骤(3)所得粉料在35MPa的压强下压制成直径为15mm的圆片,然后放入氧化铝舟中进行烧结,升温速率为5℃/min,待温度升至500℃保温排胶4h后,继续保持升温速率不变,升温至1415℃,保温6h后,将温度以2℃/min的速率降至950℃,停止加热,自然冷却至室温,即制得SrTi0.94O3成品。其中,步骤(2)中的预烧和步骤(4)中的烧结均在管式炉中氮气气氛下进行。
步骤(4)中所得圆片放入氧化铝舟中烧结前,在氧化铝舟底部铺一薄层步骤(3)中所得粉料,把圆片放在薄层上,在圆片上再撒一层步骤(3)中所得粉料,最后用氧化铝盖子罩住进行烧结。
实施例2
本实施例与实施例1的不同点在于:按1: 1的摩尔比分别称取化学药品SrCO3和TiO2,即取x=y;其余原配料的加入量和制备过程同实施例1;最后得到SrTiO3薄膜。
实施例3
本实施例与实施例1的不同点在于:按1: 1.06的摩尔比分别称取化学药品SrCO3和TiO2,即取x=0,y=0.06;其余原配料的加入量和制备过程同实施例1;最后得到SrTi1.06O3薄膜。
实施例1至实施例3制得的SrTi1+xO3陶瓷的XRD图如图1所示,电滞回线图如图2所示。Ti过量或缺少,能够诱导出量子顺电体SrTiO3的铁电性,并给出了室温铁电回线。传统的钛酸锶铁电陶瓷掺杂,如Ca2+、Ba2+、Pb2+、Mn2+、Bi2+和Cd2+等元素少量掺杂后,掺杂离子占据Sr位后形成偏心离子,造成晶格畸变,引起电荷中心不对称从而产生自发极化,出现铁电性。但是少量掺杂发生铁电相变温度都比较低,随着掺杂量的增加,一般相变温度会升高。如:Ba掺杂量达到50%以上,铁电性会升高到室温附近。但此时主体材料为钛酸锶钡,而不是钛酸锶。
实施例4
一种B位掺杂非化学计量比室温多铁陶瓷的制备方法,包括以下步骤:步骤一、按1:(1+0.05)-0.1:0.1的摩尔比分别称取化学药品SrCO3、TiO2和Fe2O3;并装入玛瑙研钵中,然后加入浓度为99.8%的无水乙醇研磨3h,得到料浆;
步骤二、将研磨后的料浆在40~150℃下烘干后,送入马弗炉中预烧,升温速率为5℃/min,预烧温度为1100℃保温3h,然后自然冷却至室温,将所得粉料放入玛瑙研钵中研磨3h所得粉料;备用;
步骤三、将步骤二中所得粉料倒入玛瑙研钵中并加入质量分数为10%的聚乙烯醇溶液,聚乙烯醇溶液的加入量为粉料质量的5%,研磨3h,然后将所得粉料放入鼓风干燥箱中在80℃温度下烘干5-6h,将烘干后的粉料过140目筛子;备用;
步骤四、将步骤三中所得粉料在35MPa的压力条件下用粉末压片机压成直径15mm的圆片,然后放入氧化铝坩埚中进行烧结,升温速率为5℃/min,待温度升至500℃保温排胶4h后,继续保持升温速率不变,升温至1275℃,保温4h后,将温度以2℃/min的速率降至950℃,停止加热,自然冷却至室温,即制得SrTi(1+0.05)-0.1Fe0.1O3陶瓷。
实施例5
一种B位掺杂非化学计量比室温多铁陶瓷的制备方法,包括以下步骤:步骤一、按1:(1+0.05)-0.2:0.2的摩尔比分别称取化学药品SrCO3、TiO2和Fe2O3;并装入玛瑙研钵中,然后加入浓度为99.8%的无水乙醇研磨3h,得到料浆;
步骤二、将研磨后的料浆在40~150℃下烘干后,送入马弗炉中预烧,升温速率为5℃/min,预烧温度为1100℃保温3h,然后自然冷却至室温,将所得粉料放入玛瑙研钵中研磨3h所得粉料;备用;
步骤三、将步骤二中所得粉料倒入玛瑙研钵中并加入质量分数为10%的聚乙烯醇溶液,聚乙烯醇溶液的加入量为粉料质量的5%,研磨2.5h,然后将所得粉料放入鼓风干燥箱中在80℃温度下烘干5-6h,将烘干后的粉料过140目筛子;备用;
步骤四、将步骤三中所得粉料在35MPa的压力条件下用粉末压片机压成直径15mm的圆片,然后放入氧化铝坩埚中进行烧结,升温速率为4℃/min,待温度升至500℃保温排胶4h后,继续保持升温速率不变,升温至1250℃,保温4.5h后,将温度以2℃/min的速率降至950℃,停止加热,自然冷却至室温,即制得SrTi(1+0.05)-0.2Fe0.2O3陶瓷。
实施例4和实施例5制得的SrTi(1+y)-xFexO3陶瓷XRD图如图3所示,室温电滞回线图如图4所示,室温磁滞回线图如图5所示,表现出良好的室温铁磁性。本发明中,Fe含量可以具有更高的含量,如Fe含量为0.2时也具有铁电性;并且铁电极化提高到20μC/cm2左右,归功于极化缺陷(TiOC),由于Ti过量,TiOC由间隙Ti离子和Sr空位形成。另外,Fe离子掺杂造成的晶格畸变也有一定的贡献。磁性主要来源于不同价态Fe离子之间通过氧为媒介产生的双交换作用。但晶格之间的应力、氧空位的浓度(磁性离子很容易局域在氧空位周围形成磁偶极子)等对铁磁性也有很大的影响。

Claims (7)

1.一种B位掺杂非化学计量比室温多铁陶瓷的制备方法,其特征在于:由分子式为SrTi(1+y)-xFexO3的材料组成,其中,x的取值范围为0.1~0.2,y的取值范围为0.03~0.06,Sr、Ti和Fe的摩尔比为Sr:Ti:Fe=1:(1+y)-x:x;制备方法包括以下步骤:
(1)、按照1:(1+y)-x:x的摩尔比分别称取物料SrCO3、TiO2和Fe2O3,将称取的全部物料装入玛瑙研钵中,然后加入浓度为99.8%的无水乙醇研磨3h,得到料浆,备用;
(2)、将步骤(1)制备的料浆在40~150℃下烘干后,进行预烧和研磨,制得粉料,备用;
(3)、将步骤(2)所得的粉料倒入玛瑙研钵中并加入质量分数为10%的聚乙烯醇溶液,聚乙烯醇溶液的加入量为粉料质量的5%,研磨2~3h,然后将所得粉料放入鼓风干燥箱中在80℃下烘干5~6h,将烘干后的粉料过120~140目筛;备用;
步骤(4)、将步骤(3)所得粉料在35MPa的压力条件下压制成坯体后,将坯体放入氧化铝坩埚中进行烧结,升温速率为3~5℃/min,待温度升至500℃保温排胶4h后,继续保持升温速率不变,升温至1250~1415℃,保温4~6h后,将温度以2℃/min的速率降至950℃,停止加热,自然冷却至室温,即制得室温多铁陶瓷。
2.根据权利要求1所述的一种B位掺杂非化学计量比室温多铁陶瓷的制备方法,其特征在于:步骤(1)中SrCO3和TiO2的纯度为99%以上的分析纯,Fe2O3纯度为99.9%;称量物料的质量时,精确到0.1mg以上。
3.根据权利要求1所述的一种B位掺杂非化学计量比室温多铁陶瓷的制备方法,其特征在于:步骤(2)中预烧和研磨的步骤为:将烘干后的料浆送入马弗炉中预烧,升温速率为5℃/min,预烧温度为1100℃保温3h,然后自然冷却至室温,将所得粉料放入玛瑙研钵中研磨3h所得粉料。
4.根据权利要求1所述的一种B位掺杂非化学计量比室温多铁陶瓷的制备方法,其特征在于:步骤(2)中预烧和研磨的步骤为:将烘干后的料浆送入管式炉中预烧,预烧温度为1100℃保温4h,然后自然冷却至室温,将所得粉料放入玛瑙研钵中研磨3h,之后送入炉内以相同条件进行二次预烧,待其自然冷却后所得粉料。
5.根据权利要求4所述的一种B位掺杂非化学计量比室温多铁陶瓷的制备方法,其特征在于:步骤(2)中的预烧和步骤(4)中的烧结均在管式炉中氮气气氛下进行。
6.根据权利要求1所述的一种B位掺杂非化学计量比室温多铁陶瓷的制备方法,其特征在于:步骤(4)中所得圆片放入氧化铝坩埚中烧结前,在氧化铝板底部铺一薄层步骤(3)中所得粉料,将步骤(4)压制后坯体放在薄层上,在坯体上再撒一层步骤(3)中所得粉料,最后用氧化铝坩埚罩住进行烧结。
7.根据权利要求1所述的一种B位掺杂非化学计量比室温多铁陶瓷的制备方法,其特征在于:步骤(4)中的烧结时,最终升温温度为1250~1275℃。
CN201710218488.9A 2017-04-05 2017-04-05 一种b位掺杂非化学计量比室温多铁陶瓷的制备方法 Active CN108689704B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710218488.9A CN108689704B (zh) 2017-04-05 2017-04-05 一种b位掺杂非化学计量比室温多铁陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710218488.9A CN108689704B (zh) 2017-04-05 2017-04-05 一种b位掺杂非化学计量比室温多铁陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN108689704A CN108689704A (zh) 2018-10-23
CN108689704B true CN108689704B (zh) 2020-08-04

Family

ID=63842084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710218488.9A Active CN108689704B (zh) 2017-04-05 2017-04-05 一种b位掺杂非化学计量比室温多铁陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN108689704B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007144A (zh) * 2014-06-11 2014-08-27 武汉华敏测控技术股份有限公司 一种铁掺杂钛酸锶氧传感器及其制备方法
CN104003712A (zh) * 2013-02-25 2014-08-27 中国科学院上海硅酸盐研究所 钛酸锶钡热释电陶瓷及其制备方法
US9076567B2 (en) * 2011-07-28 2015-07-07 Corning Incorporated Reduced oxides having large thermoelectric ZT values

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9076567B2 (en) * 2011-07-28 2015-07-07 Corning Incorporated Reduced oxides having large thermoelectric ZT values
CN104003712A (zh) * 2013-02-25 2014-08-27 中国科学院上海硅酸盐研究所 钛酸锶钡热释电陶瓷及其制备方法
CN104007144A (zh) * 2014-06-11 2014-08-27 武汉华敏测控技术股份有限公司 一种铁掺杂钛酸锶氧传感器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Room temperature multiferroic properties of (Fex,Sr1-x)TiO3 thin films: Web of science;Kyoung-Tae Kim 等;《Applied Physics Letters》;20140909;第105卷(第10期);第102903页 *
巨介电常数低介电损耗SrTiO3基陶瓷制备与介电响应机制研究;王志建;《中国学位论文全文数据库》;20160623;第2.1.1节,第3.5.1节 *

Also Published As

Publication number Publication date
CN108689704A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
Yang et al. High energy storage density and discharging efficiency in La3+/Nb5+-co-substituted (Bi0. 5Na0. 5) 0.94 Ba0. 06TiO3 ceramics
Liu et al. Electrocaloric effects in spark plasma sintered Ba0. 7Sr0. 3TiO3-based ceramics: effects of domain sizes and phase constitution
JP6269965B2 (ja) 巨大誘電率材料
Gao et al. Microstructure, piezoelectric and ferroelectric properties of Mn-added Na0. 5Bi4. 5Ti4O15 ceramics
JP2011236122A (ja) 電力伝達系のための誘電材料
CN104478431A (zh) 具有高介电常数的离子改性二氧化钛陶瓷材料及制备方法
CN111763084A (zh) 一种高电卡效应的掺锰钛酸锶钡陶瓷及其制备方法和应用
CN113963951A (zh) 介电材料、其制备方法、包括其的器件、和存储器单元
US20230033065A1 (en) Ceramic dielectrics with high permittivity and low dielectric loss and preparation method therefor
Li et al. Structural and multiferroic properties of Nd and Mn co-doped 0.55 BiFeMnO3-0.45 BaTiO3 ceramics with high energy storage efficiency
Zhang et al. Band gap narrowing and magnetic properties of transition‐metal‐doped Ba0. 85Ca0. 15Ti0. 9Zr0. 1O3 lead‐free ceramics
CN106007705B (zh) 一种类钙钛矿层状结构固溶体系材料及其制备方法
Infantiya et al. Calcium copper titanate a perovskite oxide structure: effect of fabrication techniques and doping on electrical properties—a review
US11958781B2 (en) Potassium sodium bismuth niobate tantalate zirconate ferrite ceramics with non-stoichiometric Nb5+ and preparation method therefor
Gai et al. The effect of (Li, Ce) doping in aurivillius phase material Na0. 25K0. 25Bi4. 5Ti4O15
CN107778004A (zh) 一种锆钛酸锶钡陶瓷及其制备方法和应用
CN108689704B (zh) 一种b位掺杂非化学计量比室温多铁陶瓷的制备方法
Elayaperumal et al. Effect of CuO addition on magnetic and electrical properties of Sr2Bi4Ti5O18 lead-free ferroelectric ceramics
Fang et al. Preparation and electrical properties of (1− x) Sr (Fe1/2Nb1/2) O3–xPbTiO3 ferroelectric ceramics
CN113443910A (zh) 一种在与贱金属内电极适配的钛酸锶钡陶瓷材料及其制备方法
CN108689705B (zh) 一种室温铁电极化增强型钛酸锶陶瓷的制备方法
Chen et al. Synthesis, structural stability and phase diagram of BiFeO3–CaSnO3 ceramics
Yang et al. Structural, electrical, luminescent, and magnetic properties of Ba0. 77Ca0. 23TiO3: Eu ceramics
Chen et al. Study on the polarization enhancement mechanism and electrical properties of high temperature bismuth layered KxNa0. 5-xBi4. 46Ce0· 04Ti4O15+ y ceramics
Veenachary et al. Magnetoelectric Properties of Aurivillius-Layered Perovskites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181023

Assignee: Luoyang pingconvex Technology Co.,Ltd.

Assignor: HENAN University OF SCIENCE AND TECHNOLOGY

Contract record no.: X2021980013090

Denomination of invention: A preparation method of B-doped non stoichiometric room temperature multiferroic ceramics

Granted publication date: 20200804

License type: Exclusive License

Record date: 20211125

EE01 Entry into force of recordation of patent licensing contract