CN108683157B - Bus grounding intelligent judgment method for transferring grounding processing device - Google Patents

Bus grounding intelligent judgment method for transferring grounding processing device Download PDF

Info

Publication number
CN108683157B
CN108683157B CN201810491957.9A CN201810491957A CN108683157B CN 108683157 B CN108683157 B CN 108683157B CN 201810491957 A CN201810491957 A CN 201810491957A CN 108683157 B CN108683157 B CN 108683157B
Authority
CN
China
Prior art keywords
fault
grounding
resistance
phase
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810491957.9A
Other languages
Chinese (zh)
Other versions
CN108683157A (en
Inventor
李政洋
李景禄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810491957.9A priority Critical patent/CN108683157B/en
Publication of CN108683157A publication Critical patent/CN108683157A/en
Application granted granted Critical
Publication of CN108683157B publication Critical patent/CN108683157B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)

Abstract

The invention relates to a bus grounding intelligent judgment method for a transfer grounding processing device, which is used for judging whether a single-phase grounding fault occurs according to a neutral point voltage UNThe earth fault is divided into a low-resistance earth fault area and a metal earth fault area, and whether the bus single-phase earth fault or the line single-phase earth fault of the substation is judged in different fault areas according to the variable quantity of zero-sequence current before and after transfer.

Description

Bus grounding intelligent judgment method for transferring grounding processing device
Technical Field
The invention belongs to the field of single-phase earth fault processing of a power distribution network, and is mainly used for rapidly judging and selecting faults of a single-phase earth fault of a bus of a substation or a single-phase earth fault of a feeder.
Background
When the ground fault processing device is used for processing the single-phase ground fault, the bus of the substation sometimes has the single-phase ground fault, the single-phase ground fault needs to be judged to occur on the bus or a feeder line connected to the bus, and the fault isolation processing can be accurately carried out only by judging whether the single-phase ground fault occurs on the bus of the substation or the feeder line. When a single-phase earth fault occurs, the change of the shift voltage of the bus and the feeder which are connected together at the neutral point of the fault characteristic is the same, so that the fault area is difficult to be quickly judged according to the single-phase earth fault characteristic, and if the fault area cannot be accurately judged, the fault isolation processing cannot be carried out, so that the fault area is quickly judged and the fault processing in time is very necessary when the single-phase earth fault occurs.
Disclosure of Invention
According to neutral point voltage UNDividing the earth fault into a medium resistance earth fault area and a metal earth fault area, when UG2>UN≥UG1Then, for the middle-resistance fault area, firstly, the feeder line K with the maximum zero-sequence current in each feeder line is found through a zero-sequence current amplitude comparison methodnWhen the zero sequence current of the feeder line is In1Then selecting the earth fault phase, switching on the earth switch of the fault phase for a time T1Then measuring the feeder line KnZero sequence current I ofn2If the medium resistance fault region meets delta In=In1-In21Judging that the line is in single-phase grounding, and the grounding line is the feeder KnIf Δ In=In1-In2≯δ1When the single-phase earth fault occurs to the bus of the substation, when the U is in the fault stateN>UG2When it is a metal ground fault area, if Δ In=In1-In22Then the circuit is judged to be single-phase grounding, and the grounding circuit is the feedLine KnIf Δ In=In1-In2≯δ2If so, generating single-phase earth fault for the bus of the substation; delta1For the allowable value of zero-sequence current change, delta, in the medium-resistance fault region2The zero sequence current change allowable value is a metal grounding fault area; u shapeG2The threshold value is a medium resistance fault and metal grounding fault threshold value; u shapeG1Is a medium resistance fault and high resistance grounding critical value.
δ1For the allowable value of zero-sequence current change, delta, in the medium-resistance fault region2The allowable value of the zero sequence current change of the metal grounding fault area is related to the grounding resistance of a fault point and the grounding resistance of a substation transfer grounding processing device.
UG2The threshold value of medium resistance fault and metal ground fault is the neutral point displacement voltage as UN>UG2Time, metal ground fault, UG1For medium resistance fault and high resistance grounding threshold, when UN< UG1A high resistance ground fault is present.
The invention has the following advantages:
1. the method solves the technical problem of accurate judgment of the bus single-phase earth fault and the feeder single-phase earth, is convenient for accurately isolating the fault, and prevents the feeder from being cut by mistake in the bus single-phase earth fault.
2. The method is simple and quick, and is convenient for the rapid judgment and processing of the fault by comparing the change of the zero sequence current before and after the fault transfer.
Detailed Description
According to neutral point voltage UNDividing the earth fault into a medium resistance earth fault area and a metal earth fault area, when UG2>UN≥UG1Then, for the middle-resistance fault area, firstly, the feeder line K with the maximum zero-sequence current in each feeder line is found through a zero-sequence current amplitude comparison methodnWhen the zero sequence current of the feeder line is In1Then selecting the earth fault phase, switching on the earth switch of the fault phase for a time T1Then measuring the feeder line KnZero sequence current I ofn2If the medium resistance fault region meets delta In=In1-In21Judging that the line is in single-phase grounding, and the grounding line is the feeder KnIf Δ In=In1-In2≯δ1When the single-phase earth fault occurs to the bus of the substation, when the U is in the fault stateN>UG2When it is a metal ground fault area, if Δ In=In1-In22Judging that the line is in single-phase grounding, and the grounding line is the feeder KnIf Δ In=In1-In2≯δ2If so, generating single-phase earth fault for the bus of the substation; delta1For the allowable value of zero-sequence current change, delta, in the medium-resistance fault region2The zero sequence current change allowable value is a metal grounding fault area; u shapeG2The threshold value is a medium resistance fault and metal grounding fault threshold value; u shapeG1Is a medium resistance fault and high resistance grounding critical value.
δ1For the allowable value of zero-sequence current change, delta, in the medium-resistance fault region1For the allowable value of zero-sequence current change, delta, in the medium-resistance fault region2The allowable value of the zero sequence current change of the metal grounding fault area is related to the grounding resistance of a fault point and the grounding resistance of a substation transfer grounding processing device.
UG2The threshold value of medium resistance fault and metal ground fault is the neutral point displacement voltage as UN>UG2Time, metal ground fault, UG1For medium resistance fault and high resistance grounding threshold, when UN< UG1A high resistance ground fault is present.
The above description is only a preferred embodiment of the present invention, and the protection scope of the present invention is not limited to the above embodiments, and all technical solutions belonging to the idea of the present invention belong to the protection scope of the present invention. It should be noted that several modifications and adaptations to those skilled in the art without departing from the principles of the present invention should also be considered within the scope of the present invention.

Claims (3)

1. The utility model provides a bus grounding intelligence judgement method for shifting ground treatment device which characterized in that: according to neutral point voltage UNDividing earth faults into medium-impedance connectionsGround fault area and metal ground fault area, when UG2>UN≥UG1Then, for the middle-resistance fault area, firstly, the feeder line K with the maximum zero-sequence current in each feeder line is found through a zero-sequence current amplitude comparison methodnWhen the zero sequence current of the feeder line is In1Then selecting the earth fault phase, switching on the earth switch of the fault phase for a time T1Then measuring the feeder line KnZero sequence current I ofn2If the medium resistance fault region meets delta In=In1-In21Judging that the line is in single-phase grounding, and the grounding line is the feeder KnIf Δ In=In1-In2≯δ1When the single-phase earth fault occurs to the bus of the substation, when the U is in the fault stateN>UG2When it is a metal ground fault area, if Δ In=In1-In22Judging that the line is in single-phase grounding, and the grounding line is the feeder KnIf Δ In=In1-In2≯δ2If so, generating single-phase earth fault for the bus of the substation; delta1For the allowable value of zero-sequence current change, delta, in the medium-resistance fault region2The zero sequence current change allowable value is a metal grounding fault area; u shapeG2The threshold value is a medium resistance fault and metal grounding fault threshold value; u shapeG1Is a medium resistance fault and high resistance grounding critical value.
2. The bus grounding intelligent judgment method for the transfer grounding processing device according to claim 1, characterized in that: delta1And delta2Both are related to the ground resistance of the fault point and the ground resistance of the substation transfer ground processing device.
3. The bus grounding intelligent judgment method for the transfer grounding processing device according to claim 1, characterized in that: when the neutral point displacement voltage is UN>UG2When it is a metal ground fault, when UN< UG1A high resistance ground fault is present.
CN201810491957.9A 2018-05-22 2018-05-22 Bus grounding intelligent judgment method for transferring grounding processing device Active CN108683157B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810491957.9A CN108683157B (en) 2018-05-22 2018-05-22 Bus grounding intelligent judgment method for transferring grounding processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810491957.9A CN108683157B (en) 2018-05-22 2018-05-22 Bus grounding intelligent judgment method for transferring grounding processing device

Publications (2)

Publication Number Publication Date
CN108683157A CN108683157A (en) 2018-10-19
CN108683157B true CN108683157B (en) 2020-01-03

Family

ID=63807511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810491957.9A Active CN108683157B (en) 2018-05-22 2018-05-22 Bus grounding intelligent judgment method for transferring grounding processing device

Country Status (1)

Country Link
CN (1) CN108683157B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253044B (en) * 2020-07-10 2022-08-16 李景禄 Intelligent judgment and processing method for single-phase earth fault in small-resistance earthing mode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119257A (en) * 2015-07-25 2015-12-02 李景禄 Dynamic processing method for single-phase transition resistor grounding fault of power distribution network
CN106505537A (en) * 2016-12-08 2017-03-15 李景禄 A kind of power network neutral point dynamic electric resistor earthing mode and earthing wire-selecting method
CN107144766A (en) * 2017-06-30 2017-09-08 李景禄 A kind of fast diagnosis method for the fault type that earthing or grounding means is shifted for power distribution network
CN107276050A (en) * 2017-06-29 2017-10-20 李景禄 A kind of Modes for Neutral partition type fault handling method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2680017A1 (en) * 2012-06-28 2014-01-01 ABB Technology AG A method of early detection of feeder lines with a high-ohm ground fault in compensated power networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119257A (en) * 2015-07-25 2015-12-02 李景禄 Dynamic processing method for single-phase transition resistor grounding fault of power distribution network
CN106505537A (en) * 2016-12-08 2017-03-15 李景禄 A kind of power network neutral point dynamic electric resistor earthing mode and earthing wire-selecting method
CN107276050A (en) * 2017-06-29 2017-10-20 李景禄 A kind of Modes for Neutral partition type fault handling method
CN107144766A (en) * 2017-06-30 2017-09-08 李景禄 A kind of fast diagnosis method for the fault type that earthing or grounding means is shifted for power distribution network

Also Published As

Publication number Publication date
CN108683157A (en) 2018-10-19

Similar Documents

Publication Publication Date Title
CN106908693B (en) Single-phase grounding route selection method of arc suppression coil grounding system with high accuracy
CN106707081B (en) flexible direct current power distribution network monopole grounding fault identification and fault protection method
CN104267311A (en) Phase selection method for faults of double-circuit lines on same tower
CN110601151B (en) Distribution line single-phase earth fault protection method and device based on transient zero sequence differential
CN101540499B (en) Fast line selection tripping device for medium resistance grounding for urban distribution network and line selection method
CN105738767B (en) A kind of single-phase transition resistance earth fault phase selection method of partition type power distribution network
CN109406953A (en) One kind is suitable for containing with bus loop power distribution network earth fault line selection method
CN109449895B (en) Distributed self-healing control method suitable for breaker load switch hybrid power distribution network
CN110609207B (en) T-connection line fault distance measurement method
CN108683157B (en) Bus grounding intelligent judgment method for transferring grounding processing device
CN112421570B (en) Graded controllable shunt reactor zero-sequence differential impedance turn-to-turn protection method and device
CN108521116B (en) Method and system for identifying longitudinal fault of power transmission line
Chandra et al. A comparative study of voltage stability indices used for power system operation
Deng Fault protection in DC microgrids based on autonomous operation of all components
CN103066575A (en) Control method of rapidly finding fault
CN103618299A (en) Power distribution network different-place two-point grounded short circuit fault fast recognizing and isolating method based on wide-range information
CN105207180A (en) Method utilizing reactors connected in series for achieving all-line current quick break protection of distributing lines
Xue et al. Fault location principle and 2‐step isolation scheme for a loop‐type DC grid
CN108254650B (en) Quick judgment method for single-phase earth fault of substation bus
Venkata et al. Advanced and adaptive protection for active distribution grid
CN103760463A (en) Low-current line selection method based on DTU
CN110687389B (en) Method for measuring key parameters of transfer grounding device and judging arc extinction of fault point
CN114759530A (en) Small resistance grounding system fault differential protection method, system, medium and equipment
CN109830942B (en) Locking reverse closing method based on voltage abrupt change and three-sequence component asymmetry
Ratnadeep et al. Fault level analysis of power distribution system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant