CN108681707A - Wide-angle model recognizing method and system based on global and local Fusion Features - Google Patents
Wide-angle model recognizing method and system based on global and local Fusion Features Download PDFInfo
- Publication number
- CN108681707A CN108681707A CN201810463134.5A CN201810463134A CN108681707A CN 108681707 A CN108681707 A CN 108681707A CN 201810463134 A CN201810463134 A CN 201810463134A CN 108681707 A CN108681707 A CN 108681707A
- Authority
- CN
- China
- Prior art keywords
- vehicle
- image
- image block
- global
- features
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004927 fusion Effects 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 14
- 238000012549 training Methods 0.000 claims abstract description 7
- 238000001514 detection method Methods 0.000 claims description 12
- 238000003709 image segmentation Methods 0.000 claims description 10
- 238000000605 extraction Methods 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 5
- 238000007781 pre-processing Methods 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 230000008676 import Effects 0.000 abstract description 3
- 238000011176 pooling Methods 0.000 description 21
- 230000006870 function Effects 0.000 description 17
- 239000000284 extract Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
- G06V20/584—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/254—Fusion techniques of classification results, e.g. of results related to same input data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/46—Extracting features or characteristics from the video content, e.g. video fingerprints, representative shots or key frames
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/08—Detecting or categorising vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Multimedia (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Abstract
本发明公开一种基于全局和局部特征融合的大角度车型识别方法和系统,当车辆经过车型识别采集区时截取出包含车辆的图像,首先对截取的包含车辆的图像进行裁剪,得到去除复杂背景的车辆图片,将车辆图片分割为车脸图像分块、车尾图像分块和车轮图像分块。再将车辆图片、车脸图像分块、车尾图像分块和车轮图像分块导入到深层多分支卷积神经网络中对车辆的全局和局部特征进行特征训练,并将车辆图片特征和各个分块特征进行特征融合。后通过分类器对融合后的特征进行分类识别。本发明将大角度车辆的全局和局部特征进行融合,能够明显的提高大角度车型识别的准确率。
The invention discloses a large-angle vehicle identification method and system based on fusion of global and local features. When a vehicle passes through a vehicle identification collection area, an image containing the vehicle is intercepted. First, the intercepted image containing the vehicle is cut to obtain complex background removal. The vehicle picture is divided into vehicle face image block, rear image block and wheel image block. Then import the vehicle picture, car face image block, car rear image block and wheel image block into the deep multi-branch convolutional neural network to perform feature training on the global and local features of the vehicle, and combine the vehicle picture features with each segment block features for feature fusion. Finally, classifiers are used to classify and identify the fused features. The invention fuses the global and local features of the large-angle vehicle, and can obviously improve the accuracy of large-angle vehicle identification.
Description
技术领域technical field
本发明涉及智能识别技术领域,具体涉及一种基于全局和局部特征融合的大角度车型识别方法和系统。The invention relates to the technical field of intelligent identification, in particular to a large-angle vehicle identification method and system based on fusion of global and local features.
背景技术Background technique
车辆型号识别技术已经成为社会发展的需要,是智能交通系统中的一个重要的研究领域,同时也是人工智能图像识别、图像处理和模式识别研究的热门课题,在智能交通以及犯罪车辆的追踪等方面有着重要的应用价值和研究意义。Vehicle type recognition technology has become the need of social development and is an important research field in intelligent transportation systems. It is also a hot topic in the research of artificial intelligence image recognition, image processing and pattern recognition. It has important application value and research significance.
传统的车辆型号识别总是依托于人工识别和车牌识别,且都使用卡口图片,其中人工识别的方法效率极低,并且识别准确率也不高,车牌识别的方法难以对伪造的车牌、套牌等违法犯罪车辆进行有效的识别。此外,大角度车辆所处的场景多变,车身外观多变,比如颜色、形状、尺寸等,另外每个摄像头拍摄的距离不同,拍摄角度不同都会影响最终车辆的型号识别的结果。Traditional vehicle model recognition always relies on manual recognition and license plate recognition, and all use bayonet pictures. Among them, the efficiency of manual recognition is extremely low, and the recognition accuracy is not high. Effective identification of illegal and criminal vehicles such as license plates. In addition, the scene where the large-angle vehicle is located is changeable, and the appearance of the vehicle body is changeable, such as color, shape, size, etc. In addition, the shooting distance and shooting angle of each camera are different, which will affect the final vehicle model recognition result.
发明内容Contents of the invention
本发明针对现有的车辆型号识别方法存在识别准确率不高的问题,提供一种基于全局和局部特征融合的大角度车型识别方法和系统。Aiming at the problem of low recognition accuracy in existing vehicle model recognition methods, the present invention provides a large-angle vehicle model recognition method and system based on fusion of global and local features.
为解决上述问题,本发明是通过以下技术方案实现的:In order to solve the above problems, the present invention is achieved through the following technical solutions:
基于全局和局部特征融合的大角度车型识别方法,包括步骤如下:A large-angle car recognition method based on global and local feature fusion, including the following steps:
步骤1、当车辆经过车型识别采集区时,截取出包含车辆的图像;Step 1, when the vehicle passes through the vehicle type identification collection area, intercept the image containing the vehicle;
步骤2、对截取的包含车辆的图像进行预处理:Step 2, preprocessing the intercepted image containing the vehicle:
步骤2.1、先将获取的图像使用标注框对图像进行裁剪,得到去除复杂背景的车辆图片;Step 2.1, first cut the acquired image using a label frame to obtain a vehicle image with complex background removed;
步骤2.2、对车辆图片使用目标检测SSD算法分别检测车辆的车脸部分、车尾部分和车轮部分,得到车脸图像分块、车尾图像分块和车轮图像分块;Step 2.2, using the target detection SSD algorithm on the vehicle picture to detect the car face part, car rear part and wheel part of the vehicle respectively, and obtain the car face image segmentation, vehicle rear image segmentation and wheel image segmentation;
步骤2.3、对车辆图片、车脸图像分块、车尾图像分块和车轮图像分块进行旋转和镜像,用于数据增强,并将增强后的车辆图片、车脸图像分块、车尾图像分块和车轮图像分块裁剪成统一大小,构建车辆数据库;Step 2.3. Rotate and mirror the vehicle image, vehicle face image block, vehicle rear image block, and wheel image block for data enhancement, and the enhanced vehicle image, vehicle face image block, and vehicle rear image Cut the block and wheel image blocks into a uniform size to build a vehicle database;
步骤3、将所构建的车辆数据库导入到所述的深层多分支卷积神经网络中对车辆的全局和局部特征进行特征训练;Step 3, importing the built vehicle database into the deep multi-branch convolutional neural network to carry out feature training on the global and local features of the vehicle;
步骤4、将特征训练所得到的车辆图片、车脸图像分块、车尾图像分块和车轮图像分块的特征进行加权特征融合;Step 4, performing weighted feature fusion on the features of the vehicle picture, vehicle face image block, car rear image block and wheel image block obtained through feature training;
步骤5、通过分类器对融合后的特征进行分类识别。Step 5. Classify and identify the fused features through a classifier.
上述步骤2.2中,目标检测SSD算法的具体步骤如下:In the above step 2.2, the specific steps of the target detection SSD algorithm are as follows:
步骤2.2.1、输入去除复杂背景的车辆图片,进行前向传播得到车辆的基本特征;Step 2.2.1, input the vehicle picture with the complex background removed, and perform forward propagation to obtain the basic characteristics of the vehicle;
步骤2.2.2、在特征的各个位置设置不同大小、不同长宽比的候选区域;Step 2.2.2, setting candidate regions of different sizes and different aspect ratios at each position of the feature;
步骤2.2.3、将候选区域和真实框进行匹配;Step 2.2.3, matching the candidate area with the real frame;
步骤2.2.4、通过预测器将每个候选区域的位置偏移量进行预测和类别置信度输出;Step 2.2.4, the position offset of each candidate area is predicted and the category confidence is output by the predictor;
步骤2.2.5、通过多任务的损失函数经过反向转播计算并调整每个层的权重。Step 2.2.5, calculate and adjust the weight of each layer through the reverse broadcast of the multi-task loss function.
上述步骤2.2.5中,多任务的损失函数为位置损失函数和置信度损失函数之和。In the above step 2.2.5, the multi-task loss function is the sum of the position loss function and the confidence loss function.
上述步骤4中,在对特征进行加权特征融合时,In the above step 4, when performing weighted feature fusion on features,
车辆图像分块权重系数w1为:The vehicle image block weight coefficient w1 is:
w1=k1/(k1+k2+k3+k4);w1=k1/(k1+k2+k3+k4);
车脸图像分块权重系数w2为:The block weight coefficient w2 of the car face image is:
w2=k2/(k1+k2+k3+k4);w2=k2/(k1+k2+k3+k4);
车尾图像分块权重系数w3为:The block weight coefficient w3 of the rear image is:
w3=k3/(k1+k2+k3+k4);w3=k3/(k1+k2+k3+k4);
车轮图像分块权重系数w4为:The wheel image block weight coefficient w4 is:
w4=k4/(k1+k2+k3+k4);w4=k4/(k1+k2+k3+k4);
其中,k1是车辆图像分块的权重,k2是车脸图像分块的权重,k3是车尾图像分块的权重,k4是车轮图像分块的权重。Among them, k1 is the weight of the vehicle image block, k2 is the weight of the car face image block, k3 is the weight of the rear image block, and k4 is the weight of the wheel image block.
基于上述方法所设计的一种基于全局和局部特征融合的大角度车型识别系统,由依次连接的视频图像采集模块、车辆图片检测模块、车辆图片分割模块、车辆全局和局部图像特征提取模块、车辆全局和局部图像融合模块、以及大角度车辆型号识别模块组成;A large-angle car recognition system based on the fusion of global and local features designed based on the above method, consists of video image acquisition module, vehicle picture detection module, vehicle picture segmentation module, vehicle global and local image feature extraction module, vehicle Composed of global and local image fusion modules, and large-angle vehicle model recognition modules;
视频图像采集模块:用于获取车辆监控视频;Video image acquisition module: used to acquire vehicle monitoring video;
车辆图片检测模块:用于对获取的道路交通十字路口监控视频中的车辆进行检测,并且截取出视频监控中的车辆;Vehicle picture detection module: used to detect the vehicles in the acquired road traffic intersection surveillance video, and intercept the vehicles in the video surveillance;
车辆图片分割模块:用于检测车辆的车脸、车尾、车轮部分,将车辆的车脸、车尾、车轮部分进行分割。Vehicle Image Segmentation Module: It is used to detect the face, rear, and wheel parts of the vehicle, and segment the face, rear, and wheel parts of the vehicle.
车辆全局和局部图像特征提取模块;通过深度多分支卷积神经网络分别对整车图像,车脸图像分块、车尾图像分块、车轮图像分块进行特征提取;Vehicle global and local image feature extraction module; through the deep multi-branch convolutional neural network, feature extraction is performed on the entire vehicle image, the vehicle face image block, the rear image block, and the wheel image block;
车辆全局和局部图像融合模块;然后将各个分支提取的特征进行特征融合,从而能够获取车辆更丰富的特征。The vehicle global and local image fusion module; then the features extracted by each branch are subjected to feature fusion, so that more abundant features of the vehicle can be obtained.
大角度车辆型号识别模块:用于对融合后的特征对大角度车辆型号进行识别,从而识别出车辆测试库中车辆的型号。Large-angle vehicle model identification module: it is used to identify the large-angle vehicle model based on the fused features, so as to identify the vehicle model in the vehicle test library.
上述方案中,视频图像采集模块为设置在4个对角线上的4台高清摄像机。In the above solution, the video image acquisition modules are 4 high-definition cameras arranged on 4 diagonal lines.
与传统的车型识别方法相比,本发明对车辆进行局部分割,通过深层多分支卷积神经网络将全局和局部特征进行提取、融合和分类,使得在识别准确率方面有很大的提升。Compared with the traditional vehicle type recognition method, the present invention performs local segmentation on the vehicle, and extracts, fuses and classifies the global and local features through the deep multi-branch convolutional neural network, so that the recognition accuracy is greatly improved.
附图说明Description of drawings
图1为基于全局和局部特征融合的大角度车型识别方法流程图。Figure 1 is a flow chart of a large-angle vehicle recognition method based on global and local feature fusion.
图2为一种基于全局和局部特征融合的大角度车型识别系统结构图。Figure 2 is a structural diagram of a large-angle vehicle recognition system based on global and local feature fusion.
图3为深层多分支卷积神经网络结构图。Figure 3 is a structural diagram of a deep multi-branch convolutional neural network.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in combination with specific examples and with reference to the accompanying drawings.
如图1所示,一种基于全局和局部特征融合的大角度车型识别方法和系统,具体步骤如下:As shown in Figure 1, a large-angle vehicle identification method and system based on global and local feature fusion, the specific steps are as follows:
步骤S1:当车辆经过车型识别采集区(道路交通十字路口)时,定位车辆的位置,并且截取出包含车辆的图像。Step S1: When the vehicle passes through the vehicle type identification collection area (road traffic intersection), locate the position of the vehicle, and intercept the image containing the vehicle.
步骤S2:对截取的包含车辆的图像进行预处理。Step S2: Perform preprocessing on the intercepted image containing the vehicle.
步骤S21:获取道路交通十字路口包含车辆图片的信息。Step S21: Acquiring information on road traffic intersections containing vehicle pictures.
步骤S22:将获取的图像使用标注框对图像进行裁剪,得到去除复杂背景的车辆图片。Step S22: Crop the acquired image using a label frame to obtain a vehicle image with complex background removed.
步骤S23:得到车辆图片之后,使用目标检测SSD算法分别检测车辆的车脸部分、车尾部分和车轮部分,得到车脸图像分块、车尾图像分块、车轮图像分块。Step S23: After obtaining the vehicle picture, use the target detection SSD algorithm to detect the face part, the rear part and the wheel part of the vehicle respectively, and obtain the face image block, the rear image block, and the wheel image block.
所述目标检测SSD算法具体包括:The target detection SSD algorithm specifically includes:
(1)输入去除复杂背景的车辆图片,进行前向传播得到车辆的基本特征;(1) Input the vehicle picture with the complex background removed, and perform forward propagation to obtain the basic characteristics of the vehicle;
(2)在特征的各个位置设置不同大小、不同长宽比的候选区域;(2) Set candidate regions of different sizes and different aspect ratios at each position of the feature;
(3)将候选区域和真实框进行匹配;(3) Match the candidate area with the real frame;
(4)通过预测器将每个候选区域的位置偏移量预测和类别置信度输出;(4) Output the position offset prediction and category confidence of each candidate area through the predictor;
(5)通过多任务的损失函数经过反向转播计算并调整每个层的权重。其中多任务损失函数为位置损失函数(lloc)和置信度损失函数(lconf)的和。(5) Through the multi-task loss function, the weight of each layer is calculated and adjusted through reverse broadcast. The multi-task loss function is the sum of the position loss function (l loc ) and the confidence loss function (l conf ).
多任务损失函数公式如下:The multi-task loss function formula is as follows:
其中,N代表匹配的候选框区域的个数,代表权重因子。Among them, N represents the number of matching candidate frame regions, Represents the weight factor.
置信度损失函数公式如下:The confidence loss function formula is as follows:
其中,c表示置信度。Among them, c represents confidence.
位置损失函数公式如下:The position loss function formula is as follows:
其中,l代表预测框,g代表真实值,d代表候选区域框,(cx,cy)代表中心点,宽为w,高为h。Among them, l represents the prediction frame, g represents the real value, d represents the candidate area frame, (cx, cy) represents the center point, the width is w, and the height is h.
步骤S24:将车辆图片、车脸图像分块、车尾图像分块、车轮图像分块分别进行旋转和镜像,用于数据增强,对增强后的车辆图片和各个分块图片裁剪成统一大小,构建车辆数据库。Step S24: Rotating and mirroring the vehicle image, the vehicle face image block, the rear image block, and the wheel image block respectively for data enhancement, and cutting the enhanced vehicle image and each block image into a uniform size, Build a vehicle database.
步骤S3:构建深层多分支卷积神经网络,将车辆图片、车脸图像分块、车尾图像分块、车轮图像分块导入到所述的深层多分支卷积神经网络中对车辆的全局和局部特征进行特征训练,然后将车辆图片特征和各个分块特征进行特征融合。Step S3: Construct a deep multi-branch convolutional neural network, and import vehicle pictures, car face image blocks, car rear image blocks, and wheel image blocks into the deep multi-branch convolutional neural network for the global sum of the vehicle. The local features are used for feature training, and then the vehicle image features and each block feature are used for feature fusion.
所述的深层多分支卷积神经网络如图3所示,其具体包括:车辆图片分支依次连接的卷积层Conv1、池化层Pool1、卷积层Conv2、池化层Pool2、卷积层Conv3、池化层Pool3、卷积层Conv4、池化层Pool4,车脸图像分块分支依次连接的卷积层Conv5、池化层Pool5、卷积层Conv6、池化层Pool6、卷积层Conv7、池化层Pool7、卷积层Conv8、池化层Pool8,车尾图像分块分支依次连接的卷积层Conv9、池化层Pool9、卷积层Conv10、池化层Pool10、卷积层Conv11、池化层Pool11、卷积层Conv12、池化层Pool12,车轮图像分块分支依次连接的卷积层Conv13、池化层Pool13、卷积层Conv14、池化层Pool14、卷积层Conv15、池化层Pool15、卷积层Conv16、池化层Pool16,还包括所述池化层Pool4通过全连接层Fc1与连接层Concat连接,所述池化层Pool8通过全连接层Fc2与连接层Concat连接,所述池化层Pool12通过全连接层Fc3与连接层Concat连接,所述池化层Pool16通过全连接层Fc4与连接层Concat连接,还包括所述分类层Softmax+coco_loss通过全连接层Fc5与连接层Concat连接。The deep multi-branch convolutional neural network as shown in Figure 3 specifically includes: a convolutional layer Conv1, a pooling layer Pool1, a convolutional layer Conv2, a pooling layer Pool2, and a convolutional layer Conv3 connected successively by vehicle picture branches , pooling layer Pool3, convolutional layer Conv4, pooling layer Pool4, the convolutional layer Conv5, pooling layer Pool5, convolutional layer Conv6, pooling layer Pool6, convolutional layer Conv7, Pooling layer Pool7, convolutional layer Conv8, pooling layer Pool8, convolutional layer Conv9, pooling layer Pool9, convolutional layer Conv10, pooling layer Pool10, convolutional layer Conv11, pooling layer Layer Pool11, convolutional layer Conv12, pooling layer Pool12, convolutional layer Conv13, pooling layer Pool13, convolutional layer Conv14, pooling layer Pool14, convolutional layer Conv15, pooling layer Pool15, the convolutional layer Conv16, and the pooling layer Pool16 also include that the pooling layer Pool4 is connected to the connection layer Concat through the fully connected layer Fc1, and the pooling layer Pool8 is connected to the connection layer Concat through the fully connected layer Fc2. The pooling layer Pool12 is connected to the connection layer Concat through the fully connected layer Fc3, the pooling layer Pool16 is connected to the connection layer Concat through the fully connected layer Fc4, and the classification layer Softmax+coco_loss is connected to the connection layer Concat through the fully connected layer Fc5 connect.
所述卷积层Conv通过卷积核对输入的图像进行卷积运算,然后使用神经元激活函数计算卷积的输出值。The convolution layer Conv performs a convolution operation on the input image through a convolution kernel, and then uses a neuron activation function to calculate an output value of the convolution.
所述池化层Pool对卷积层输出的特征进行压缩,简化深度网络的计算复杂度,并且提取主要特征。The pooling layer Pool compresses the features output by the convolutional layer, simplifies the computational complexity of the deep network, and extracts main features.
所述全连接层Fc是将上一层的每个节点都与相邻层的所有节点相连接。The fully connected layer Fc connects each node of the upper layer with all nodes of the adjacent layer.
所述连接层Concat是将上述每个全连接层输出的特征进行融合。The connection layer Concat is to fuse the features output by each fully connected layer above.
所述分类层Softmax+coco_loss是将连接层输入的特征进行分类。The classification layer Softmax+coco_loss classifies the features input by the connection layer.
所述特征融合具体包括:The feature fusion specifically includes:
车辆图像分块权重系数为:w1=k1/(k1+k2+k3+k4);The vehicle image block weight coefficient is: w1=k1/(k1+k2+k3+k4);
车脸图像分块权重系数为:w2=k2/(k1+k2+k3+k4);The block weight coefficient of the car face image is: w2=k2/(k1+k2+k3+k4);
车尾图像分块权重系数为:w3=k2/(k1+k2+k3+k4);The block weight coefficient of the rear image is: w3=k2/(k1+k2+k3+k4);
车轮图像分块权重系数为:w4=k2/(k1+k2+k3+k4);The wheel image block weight coefficient is: w4=k2/(k1+k2+k3+k4);
其中k1是车辆图像分块的权重,k2是车脸图像分块的权重,k3是车尾图像分块的权重,k4是车轮图像分块的权重定义车辆图像分块输出为x1,车脸图像分块输出为x2,车尾图像分块输出为x3,车轮图像输出为x4,最终的特征融合输出为:y=w1*x1+w2*x2+w3*x3+w4*x4。Among them, k1 is the weight of the vehicle image block, k2 is the weight of the car face image block, k3 is the weight of the rear image block, and k4 is the weight of the wheel image block. Define the output of the vehicle image block as x1, and the car face image The block output is x2, the rear image block output is x3, the wheel image output is x4, and the final feature fusion output is: y=w1*x1+w2*x2+w3*x3+w4*x4.
步骤S4:通过Softmax loss分类损失函数和coco_loss损失函数对融合后的特征进行特征学习。Step S4: Perform feature learning on the fused features through the Softmax loss classification loss function and the coco_loss loss function.
所述Softmax损失函数使用下式计算得到每一类的概率输出The Softmax loss function is calculated using the following formula to obtain the probability output of each class
其中,xi为Softmax层第i个节点值,yi为第i个输出值,n为Softmax层的节点个数。Among them, x i is the i-th node value of the Softmax layer, y i is the i-th output value, and n is the number of nodes in the Softmax layer.
所述coco_loss损失函数主要拉近同类样本的特征,拉远不同分类样本的特征。The coco_loss loss function mainly shortens the characteristics of samples of the same type and distances the characteristics of samples of different classifications.
(1)输入特征和中心特征归一化(1) Normalization of input features and center features
其中,ck为第k类目标的特征中心,f(i)表示输入特征,i=1,…,N,即batch_size为N。Among them, c k is the feature center of the kth class object, f (i) represents the input feature, i=1,...,N, that is, the batch_size is N.
(2)计算出输入的特征和每个特征中心的余弦距离(2) Calculate the cosine distance between the input feature and the center of each feature
余弦距离定义为取值范围为[-1,+1],值越大表示相似度越高。The cosine distance is defined as The value range is [-1,+1], and the larger the value, the higher the similarity.
(3)计算coco_loss损失函数(3) Calculate the coco_loss loss function
其中,B表示整个batch。分子项表示输入特征f(i)与其对应的中心特征间的余弦距离;分母项表示输入特征到所有中心特征距离之和。Among them, B represents the entire batch. The numerator term represents the cosine distance between the input feature f (i) and its corresponding central feature; the denominator term represents the sum of the distances from the input feature to all central features.
本发明能够通过深层多分支卷积神经网络提取大角度车辆的多部分丰富的特征,然后将这些丰富的特征进行融合,在识别大角度车型的准确率方面有很大的提升。The present invention can extract multi-part and rich features of large-angle vehicles through a deep multi-branch convolutional neural network, and then fuse these rich features, thereby greatly improving the accuracy of identifying large-angle vehicles.
基于上述方法所设计的一种基于全局和局部特征融合的大角度车型识别系统,如图2所示,包括依次连接的视频图像采集模块、车辆图片检测模块、车辆图片分割模块、车辆全局和局部图像特征提取模块、车辆全局和局部图像特征融合模块、大角度车辆型号识别模块。A large-angle vehicle identification system based on the fusion of global and local features designed based on the above method, as shown in Figure 2, includes video image acquisition module, vehicle image detection module, vehicle image segmentation module, vehicle global and local Image feature extraction module, vehicle global and local image feature fusion module, large-angle vehicle model recognition module.
视频图像采集模块:用于获取车型识别采集区(道路交通十字路口)的车辆监控视频,可以为四台高清摄像机。Video image collection module: used to obtain the vehicle monitoring video in the vehicle identification collection area (road traffic intersection), which can be four high-definition cameras.
车辆图片检测模块:用于对获取的道路交通十字路口监控视频中的车辆进行检测,并且截取出视频监控中的车辆。Vehicle picture detection module: used to detect the vehicles in the acquired road traffic intersection monitoring video, and intercept the vehicles in the video monitoring.
车辆图片分割模块:用于检测车辆的车脸、车尾、车轮部分,将车辆的车脸、车尾、车轮部分进行分割。Vehicle Image Segmentation Module: It is used to detect the face, rear, and wheel parts of the vehicle, and segment the face, rear, and wheel parts of the vehicle.
车辆全局和局部图像特征提取模块:通过深度多分支卷积神经网络分别对整车图像,车脸图像分块、车尾图像分块、车轮图像分块进行特征提取;Vehicle global and local image feature extraction module: through the deep multi-branch convolutional neural network, feature extraction is performed on the entire vehicle image, the vehicle face image block, the rear image block, and the wheel image block;
车辆全局和局部图像特征融合模块:然后将各个分支提取的特征进行特征融合,从而能够获取车辆更丰富的特征;Vehicle global and local image feature fusion module: Then feature fusion is performed on the features extracted by each branch, so that more abundant features of the vehicle can be obtained;
大角度车辆型号识别模块:用于对融合后的特征对大角度车辆型号进行识别,从而识别出车辆测试库中车辆的型号。Large-angle vehicle model identification module: it is used to identify the large-angle vehicle model based on the fused features, so as to identify the vehicle model in the vehicle test library.
当车辆经过交通路口时定位车辆的位置,并且截取出包含车辆的图像,对截取的包含车辆的图像进行预处理,首先使用标注框对截取的包含车辆的图像进行裁剪,得到去除复杂背景的车辆图片,将车辆图片分割为车脸图像分块、车尾图像分块、车轮图像分块。构建深层多分支卷积神经网络,将车辆图片、车脸图像分块、车尾图像分块、车轮图像分块导入到所述的深层多分支卷积神经网络中对车辆的全局和局部特征进行特征训练,然后将车辆图片特征和各个分块特征进行特征融合,再通过分类器对融合后的特征进行分类识别。本发明的有益效果在于能够将大角度车辆的全局和局部特征进行融合,与现有的传统车型识别方法相比,能够明显的提高大角度车型识别的准确率。Locate the position of the vehicle when the vehicle passes through the traffic intersection, and intercept the image containing the vehicle, preprocess the intercepted image containing the vehicle, first use the label frame to crop the intercepted image containing the vehicle, and obtain the vehicle with the complex background removed Image, divide the vehicle image into car face image blocks, car rear image blocks, and wheel image blocks. Build a deep multi-branch convolutional neural network, import vehicle pictures, car face image blocks, car rear image blocks, and wheel image blocks into the deep multi-branch convolutional neural network to perform global and local features of the vehicle Feature training, and then feature fusion of vehicle image features and each block feature, and then classify and identify the fused features through a classifier. The beneficial effect of the present invention is that the global and local features of large-angle vehicles can be fused, and compared with the existing traditional vehicle identification methods, the accuracy of large-angle vehicle identification can be significantly improved.
需要说明的是,尽管以上本发明所述的实施例是说明性的,但这并非是对本发明的限制,因此本发明并不局限于上述具体实施方式中。在不脱离本发明原理的情况下,凡是本领域技术人员在本发明的启示下获得的其它实施方式,均视为在本发明的保护之内。It should be noted that although the above-mentioned embodiments of the present invention are illustrative, they are not intended to limit the present invention, so the present invention is not limited to the above specific implementation manners. Without departing from the principles of the present invention, all other implementations obtained by those skilled in the art under the inspiration of the present invention are deemed to be within the protection of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810463134.5A CN108681707A (en) | 2018-05-15 | 2018-05-15 | Wide-angle model recognizing method and system based on global and local Fusion Features |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810463134.5A CN108681707A (en) | 2018-05-15 | 2018-05-15 | Wide-angle model recognizing method and system based on global and local Fusion Features |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108681707A true CN108681707A (en) | 2018-10-19 |
Family
ID=63805307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810463134.5A Pending CN108681707A (en) | 2018-05-15 | 2018-05-15 | Wide-angle model recognizing method and system based on global and local Fusion Features |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108681707A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109359696A (en) * | 2018-10-29 | 2019-02-19 | 重庆中科云丛科技有限公司 | A kind of vehicle money recognition methods, system and storage medium |
CN109886312A (en) * | 2019-01-28 | 2019-06-14 | 同济大学 | A bridge vehicle wheel detection method based on multi-layer feature fusion neural network model |
CN109902563A (en) * | 2019-01-17 | 2019-06-18 | 桂林远望智能通信科技有限公司 | A kind of multi-angle model recognizing method and system |
CN109919072A (en) * | 2019-02-28 | 2019-06-21 | 桂林电子科技大学 | Fine vehicle type recognition and flow statistics method based on deep learning and trajectory tracking |
CN109948610A (en) * | 2019-03-14 | 2019-06-28 | 西南交通大学 | A fine-grained classification method of vehicles in video based on deep learning |
CN110084230A (en) * | 2019-04-11 | 2019-08-02 | 北京百度网讯科技有限公司 | Vehicle body direction detection method and device based on image |
CN110211039A (en) * | 2019-04-29 | 2019-09-06 | 西安电子科技大学 | A kind of image processing method and its device |
CN110348463A (en) * | 2019-07-16 | 2019-10-18 | 北京百度网讯科技有限公司 | The method and apparatus of vehicle for identification |
CN110472503A (en) * | 2019-07-11 | 2019-11-19 | 桂林电子科技大学 | A kind of road target detection method, device and storage medium |
CN110689481A (en) * | 2019-01-17 | 2020-01-14 | 成都通甲优博科技有限责任公司 | Vehicle type identification method and device |
CN110765954A (en) * | 2019-10-24 | 2020-02-07 | 浙江大华技术股份有限公司 | Vehicle weight recognition method, equipment and storage device |
CN110991255A (en) * | 2019-11-11 | 2020-04-10 | 智慧互通科技有限公司 | Method for detecting fake-licensed vehicle based on deep learning algorithm |
CN111340026A (en) * | 2020-03-05 | 2020-06-26 | 苏州科达科技股份有限公司 | Training method of vehicle annual payment identification model and vehicle annual payment identification method |
CN111382787A (en) * | 2020-03-06 | 2020-07-07 | 芯薇(上海)智能科技有限公司 | Target detection method based on deep learning |
CN109447095B (en) * | 2018-10-30 | 2020-09-29 | 上海七牛信息技术有限公司 | Visual attribute identification method, device and storage medium |
CN112101282A (en) * | 2020-09-25 | 2020-12-18 | 北京瞰天科技有限公司 | Aquatic target identification method and device, electronic equipment and storage medium |
CN112233071A (en) * | 2020-09-28 | 2021-01-15 | 国网浙江省电力有限公司杭州供电公司 | Multi-granularity hidden danger detection method and system based on power transmission network picture in complex environment |
CN112598646A (en) * | 2020-12-23 | 2021-04-02 | 山东产研鲲云人工智能研究院有限公司 | Capacitance defect detection method and device, electronic equipment and storage medium |
CN113177133A (en) * | 2021-04-23 | 2021-07-27 | 深圳依时货拉拉科技有限公司 | Image retrieval method, device, equipment and storage medium |
CN113221604A (en) * | 2020-02-05 | 2021-08-06 | 北京京东乾石科技有限公司 | Target identification method and device, storage medium and electronic equipment |
CN113657462A (en) * | 2021-07-28 | 2021-11-16 | 讯飞智元信息科技有限公司 | Method for training vehicle recognition model, vehicle recognition method and computing device |
WO2022027873A1 (en) * | 2020-08-05 | 2022-02-10 | 智慧互通科技有限公司 | Vehicle reidentification method and device based on multimodal information fusion |
CN115100509A (en) * | 2022-07-15 | 2022-09-23 | 山东建筑大学 | Image recognition method and system based on multi-branch block-level attention enhancement network |
CN115761659A (en) * | 2023-01-09 | 2023-03-07 | 南京隼眼电子科技有限公司 | Recognition model construction method, vehicle type recognition method, electronic device, and storage medium |
CN118762047A (en) * | 2024-09-06 | 2024-10-11 | 通号通信信息集团有限公司 | Adaptive image segmentation method, system, device and medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104680795A (en) * | 2015-02-28 | 2015-06-03 | 武汉烽火众智数字技术有限责任公司 | Vehicle type recognition method and device based on partial area characteristic |
US20150254531A1 (en) * | 2014-03-07 | 2015-09-10 | Tata Consultancy Services Limited | Multi range object detection device and method |
CN105488517A (en) * | 2015-11-30 | 2016-04-13 | 杭州全实鹰科技有限公司 | Vehicle brand model identification method based on deep learning |
CN106127107A (en) * | 2016-06-14 | 2016-11-16 | 宁波熵联信息技术有限公司 | The model recognizing method that multi-channel video information based on license board information and vehicle's contour merges |
CN106529446A (en) * | 2016-10-27 | 2017-03-22 | 桂林电子科技大学 | Vehicle type identification method and system based on multi-block deep convolutional neural network |
CN106875693A (en) * | 2017-03-29 | 2017-06-20 | 广西信路威科技发展有限公司 | A kind of method and system of vehicle feature recognition |
CN107330463A (en) * | 2017-06-29 | 2017-11-07 | 南京信息工程大学 | Model recognizing method based on CNN multiple features combinings and many nuclear sparse expressions |
CN107729818A (en) * | 2017-09-21 | 2018-02-23 | 北京航空航天大学 | A kind of multiple features fusion vehicle recognition methods again based on deep learning |
-
2018
- 2018-05-15 CN CN201810463134.5A patent/CN108681707A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150254531A1 (en) * | 2014-03-07 | 2015-09-10 | Tata Consultancy Services Limited | Multi range object detection device and method |
CN104680795A (en) * | 2015-02-28 | 2015-06-03 | 武汉烽火众智数字技术有限责任公司 | Vehicle type recognition method and device based on partial area characteristic |
CN105488517A (en) * | 2015-11-30 | 2016-04-13 | 杭州全实鹰科技有限公司 | Vehicle brand model identification method based on deep learning |
CN106127107A (en) * | 2016-06-14 | 2016-11-16 | 宁波熵联信息技术有限公司 | The model recognizing method that multi-channel video information based on license board information and vehicle's contour merges |
CN106529446A (en) * | 2016-10-27 | 2017-03-22 | 桂林电子科技大学 | Vehicle type identification method and system based on multi-block deep convolutional neural network |
CN106875693A (en) * | 2017-03-29 | 2017-06-20 | 广西信路威科技发展有限公司 | A kind of method and system of vehicle feature recognition |
CN107330463A (en) * | 2017-06-29 | 2017-11-07 | 南京信息工程大学 | Model recognizing method based on CNN multiple features combinings and many nuclear sparse expressions |
CN107729818A (en) * | 2017-09-21 | 2018-02-23 | 北京航空航天大学 | A kind of multiple features fusion vehicle recognition methods again based on deep learning |
Non-Patent Citations (3)
Title |
---|
CHEN CHAOCUN, ET AL: "《Vehicle type recognition based on multi-branch and multi-layer features》", 《2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC). IEEE》 * |
甘凯今 等: "《融合整体与局部特征的车辆型号识别方法》", 《现代电子技术》 * |
蔡晓东: "《基于多分支卷积神经网络的车辆图像比对方法》", 《电视技术》 * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109359696A (en) * | 2018-10-29 | 2019-02-19 | 重庆中科云丛科技有限公司 | A kind of vehicle money recognition methods, system and storage medium |
CN109359696B (en) * | 2018-10-29 | 2021-04-02 | 重庆中科云从科技有限公司 | Vehicle money identification method, system and storage medium |
CN109447095B (en) * | 2018-10-30 | 2020-09-29 | 上海七牛信息技术有限公司 | Visual attribute identification method, device and storage medium |
CN110689481A (en) * | 2019-01-17 | 2020-01-14 | 成都通甲优博科技有限责任公司 | Vehicle type identification method and device |
CN109902563A (en) * | 2019-01-17 | 2019-06-18 | 桂林远望智能通信科技有限公司 | A kind of multi-angle model recognizing method and system |
CN109886312A (en) * | 2019-01-28 | 2019-06-14 | 同济大学 | A bridge vehicle wheel detection method based on multi-layer feature fusion neural network model |
CN109886312B (en) * | 2019-01-28 | 2023-06-06 | 同济大学 | A bridge vehicle wheel detection method based on multi-layer feature fusion neural network model |
CN109919072A (en) * | 2019-02-28 | 2019-06-21 | 桂林电子科技大学 | Fine vehicle type recognition and flow statistics method based on deep learning and trajectory tracking |
CN109948610A (en) * | 2019-03-14 | 2019-06-28 | 西南交通大学 | A fine-grained classification method of vehicles in video based on deep learning |
CN110084230B (en) * | 2019-04-11 | 2021-05-28 | 北京百度网讯科技有限公司 | Image-based vehicle body direction detection method and device |
CN110084230A (en) * | 2019-04-11 | 2019-08-02 | 北京百度网讯科技有限公司 | Vehicle body direction detection method and device based on image |
CN110211039A (en) * | 2019-04-29 | 2019-09-06 | 西安电子科技大学 | A kind of image processing method and its device |
CN110472503A (en) * | 2019-07-11 | 2019-11-19 | 桂林电子科技大学 | A kind of road target detection method, device and storage medium |
CN110348463A (en) * | 2019-07-16 | 2019-10-18 | 北京百度网讯科技有限公司 | The method and apparatus of vehicle for identification |
CN110765954A (en) * | 2019-10-24 | 2020-02-07 | 浙江大华技术股份有限公司 | Vehicle weight recognition method, equipment and storage device |
CN110991255A (en) * | 2019-11-11 | 2020-04-10 | 智慧互通科技有限公司 | Method for detecting fake-licensed vehicle based on deep learning algorithm |
CN110991255B (en) * | 2019-11-11 | 2023-09-08 | 智慧互通科技股份有限公司 | Method for detecting fake-licensed car based on deep learning algorithm |
CN113221604A (en) * | 2020-02-05 | 2021-08-06 | 北京京东乾石科技有限公司 | Target identification method and device, storage medium and electronic equipment |
CN111340026A (en) * | 2020-03-05 | 2020-06-26 | 苏州科达科技股份有限公司 | Training method of vehicle annual payment identification model and vehicle annual payment identification method |
CN111382787A (en) * | 2020-03-06 | 2020-07-07 | 芯薇(上海)智能科技有限公司 | Target detection method based on deep learning |
WO2022027873A1 (en) * | 2020-08-05 | 2022-02-10 | 智慧互通科技有限公司 | Vehicle reidentification method and device based on multimodal information fusion |
CN112101282A (en) * | 2020-09-25 | 2020-12-18 | 北京瞰天科技有限公司 | Aquatic target identification method and device, electronic equipment and storage medium |
CN112101282B (en) * | 2020-09-25 | 2024-04-26 | 北京瞰天科技有限公司 | Water target identification method and device, electronic equipment and storage medium |
CN112233071A (en) * | 2020-09-28 | 2021-01-15 | 国网浙江省电力有限公司杭州供电公司 | Multi-granularity hidden danger detection method and system based on power transmission network picture in complex environment |
CN112598646A (en) * | 2020-12-23 | 2021-04-02 | 山东产研鲲云人工智能研究院有限公司 | Capacitance defect detection method and device, electronic equipment and storage medium |
CN112598646B (en) * | 2020-12-23 | 2024-06-11 | 山东产研鲲云人工智能研究院有限公司 | Capacitance defect detection method and device, electronic equipment and storage medium |
CN113177133A (en) * | 2021-04-23 | 2021-07-27 | 深圳依时货拉拉科技有限公司 | Image retrieval method, device, equipment and storage medium |
CN113177133B (en) * | 2021-04-23 | 2024-03-29 | 深圳依时货拉拉科技有限公司 | Image retrieval method, device, equipment and storage medium |
CN113657462A (en) * | 2021-07-28 | 2021-11-16 | 讯飞智元信息科技有限公司 | Method for training vehicle recognition model, vehicle recognition method and computing device |
CN115100509A (en) * | 2022-07-15 | 2022-09-23 | 山东建筑大学 | Image recognition method and system based on multi-branch block-level attention enhancement network |
CN115100509B (en) * | 2022-07-15 | 2022-11-29 | 山东建筑大学 | Image identification method and system based on multi-branch block-level attention enhancement network |
CN115761659A (en) * | 2023-01-09 | 2023-03-07 | 南京隼眼电子科技有限公司 | Recognition model construction method, vehicle type recognition method, electronic device, and storage medium |
CN118762047A (en) * | 2024-09-06 | 2024-10-11 | 通号通信信息集团有限公司 | Adaptive image segmentation method, system, device and medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108681707A (en) | Wide-angle model recognizing method and system based on global and local Fusion Features | |
CN110084139B (en) | Vehicle weight recognition method based on multi-branch deep learning | |
CN109033950B (en) | Vehicle parking violation detection method based on multi-feature fusion cascaded deep model | |
CN111553205A (en) | Method, system, medium and video surveillance system for vehicle re-identification without license plate information | |
CN103714181B (en) | A kind of hierarchical particular persons search method | |
CN114627447A (en) | Road vehicle tracking method and system based on attention mechanism and multi-target tracking | |
CN105335716A (en) | Improved UDN joint-feature extraction-based pedestrian detection method | |
CN110717387A (en) | A real-time vehicle detection method based on UAV platform | |
CN111274886B (en) | Deep learning-based pedestrian red light running illegal behavior analysis method and system | |
CN108830254B (en) | A fine-grained vehicle detection and recognition method based on data balance strategy and dense attention network | |
CN111738300A (en) | An Optimal Algorithm for Detection and Recognition of Traffic Signs and Signal Lights | |
CN111008574A (en) | A Trajectory Analysis Method of Key Personnel Based on Body Recognition Technology | |
CN106056102A (en) | Road vehicle classification method based on video image analysis | |
CN114882351A (en) | Multi-target detection and tracking method based on improved YOLO-V5s | |
Zhang et al. | Vehicle detection in UAV aerial images based on improved YOLOv3 | |
CN115063836A (en) | Pedestrian tracking and re-identification method based on deep learning | |
Feng et al. | A benchmark dataset and multi-scale attention network for semantic traffic light detection | |
CN108256551A (en) | A kind of vehicle checking method based on region convolutional neural networks | |
CN104200202A (en) | Upper human body detection method based on accumulative perceptron | |
CN115578621B (en) | An image recognition method based on multi-source data fusion | |
CN114821510B (en) | Lane line detection method and device based on improved U-Net network | |
Xia et al. | Research on Traffic Accident Detection Based on Vehicle Perspective | |
Zhou et al. | Feature Pyramid SSD: outdoor object detection algorithm for blind people | |
Drisya et al. | Detection of Motorcyclists without Helmet from Traffic Video using Deep Learning Techniques | |
Liu et al. | UDP-YOLO: High efficiency and real-time performance of autonomous driving technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181019 |
|
RJ01 | Rejection of invention patent application after publication |