CN108664990B - 综合熵方法和密度聚类方法的窃电检测方法及装置 - Google Patents

综合熵方法和密度聚类方法的窃电检测方法及装置 Download PDF

Info

Publication number
CN108664990B
CN108664990B CN201810270822.XA CN201810270822A CN108664990B CN 108664990 B CN108664990 B CN 108664990B CN 201810270822 A CN201810270822 A CN 201810270822A CN 108664990 B CN108664990 B CN 108664990B
Authority
CN
China
Prior art keywords
curve
user
abnormal
index
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810270822.XA
Other languages
English (en)
Other versions
CN108664990A (zh
Inventor
陈启鑫
郑可迪
王毅
康重庆
夏清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201810270822.XA priority Critical patent/CN108664990B/zh
Priority to PCT/CN2018/094537 priority patent/WO2019184131A1/zh
Publication of CN108664990A publication Critical patent/CN108664990A/zh
Priority to US16/844,798 priority patent/US11249120B2/en
Application granted granted Critical
Publication of CN108664990B publication Critical patent/CN108664990B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/066Arrangements for avoiding or indicating fraudulent use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/10Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods using digital techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Data Mining & Analysis (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Alarm Systems (AREA)

Abstract

本发明公开了一种综合熵方法和密度聚类方法的窃电检测方法及装置,其中,方法包括:获取目标区域的待检测时间段内用户智能电表数据和总能耗数据,以得到用户用电曲线集合和非技术性损失数据;并根据用其通过最大信息系数计算方法得到用电量相关性强弱的衡量指标;得到每条曲线的形状异常指标;根据衡量指标和形状异常指标通过k‑均值聚类将每个用户的用电曲线划分为异常曲线和正常曲线,得到电量异常指标和形状异常指标;进而获取用户的电量异常排名和形状异常排名,以得到综合异常排名。该方法能够提高各种窃电模式下检测的准确率,实现了大数据下窃电行为的非监督式检测,增大了适用范围。

Description

综合熵方法和密度聚类方法的窃电检测方法及装置
技术领域
本发明涉及防窃电分析技术领域,特别涉及一种综合熵方法和密度聚类方法的窃电检测方法及装置。
背景技术
近年来,随着智能电表在电网中的普及,窃电者对电表的攻击方式不再局限于传统的物理切断或破坏,出现了运用数字存储技术和网络通讯技术对智能电表进行篡改的新模式。遭到这类新型攻击时,电网公司所获取的智能电表数据可能经过窃电者精心伪造。另一方面,智能电表可实现每天数十次以上频度的用户用电数据记录,为电网公司提供了海量数据。传统意义上对窃电行为的检测主要依靠电网公司派遣技术人员进行人工筛查或通过摄像头来监控窃电行为。这些方法通常会消耗电网公司较多的人力物力,同时依然无法避免通讯和网络中针对智能电表的高级攻击手段。因此,产生了通过智能电表提供的海量用电数据进行窃电检测的新技术,即通过对用户用电量的分析,提取其中的特征,并找出其中的异常用电行为,对窃电者进行更加精准的定位与更加细致的行为分析。
目前,相关技术提出了基于极限学习机神经网络的窃电行为分类方法。相关研究人员也提出了类似的有监督式检测方法,并进行了测试,这一类的方法存在需要提供带窃电者标签的数据集对神经网络进行训练的局限性。因此在检测初期,必须依赖于人工检测并对窃电者的用电曲线进行记录与标记。在相关技术中,研究人员将非监督式学习的聚类方法,包括k-均值聚类、高斯混合模型聚类和吸引子传播算法等应用于窃电检测。非监督式学习的方法不需要有标签的数据集,更关注用电曲线的形状异常,但是检测准确率较低。
然而,窃电用户对智能电表篡改行为的多样性为窃电检测带来极大的挑战,现在的攻击行为不再直接使电表记录的用电量归零,而是可以由用户来创造数据。用户可以根据实时电价的变化修改自己的用电曲线,最终降低电费。经过用户篡改后的用电曲线可能在形状上偏离原有的曲线,也可能保持了原有形状,但幅值变得更低,以产生电量上的偏差。因此,单纯从曲线形状或电量角度进行的分析无法覆盖所有篡改的方式,难以保证实际应用中的检测准确率。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种综合熵方法和密度聚类方法的窃电方法,该方法可以提高各种窃电模式下检测的准确率。
本发明的另一个目的在于提出一种综合熵方法和密度聚类方法的窃电检测装置。
为达到上述目的,本发明一方面实施例提出了一种综合熵方法和密度聚类方法的窃电检测方法,包括以下步骤:获取目标区域的待检测时间段内用户智能电表数据和总能耗数据,以得到用户用电曲线集合和非技术性损失数据;根据所述用户用电曲线集合和非技术性损失数据通过最大信息系数计算方法得到每个用户的用电曲线与非技术性损失的相关性,以得到用电量相关性强弱的衡量指标;通过基于快速搜索密度峰值的聚类方法获取标幺用电曲线集合中每条曲线的邻域密度和到更高密度区域的距离,以得到所述每条曲线的形状异常指标;根据所述衡量指标和所述形状异常指标通过k-均值聚类将所述每个用户的用电曲线划分为异常曲线和正常曲线,并获取所有异常曲线的所述衡量指标和所述形状异常指标的均值,以作为电量异常指标和形状异常指标;以及根据所述电量异常指标和所述形状异常指标获取用户的电量异常排名和形状异常排名,并获取所述电量异常排名和所述形状异常排名计算算术平均值,以得到综合异常排名。
本发明实施例的综合熵方法和密度聚类方法的窃电检测方法,通过获取用户用电曲线集合和非技术性损失数据、电量相关性强弱的衡量指标和每条用电曲线的形状异常指标,并通过k-均值聚类划分用电曲线类别,得到用户的电量异常排名和形状异常排名,并根据其算术平均值得到综合异常排名,进而完成对窃电模式的检测,具有提高各种窃电模式下检测的准确率,实现大数据下窃电行为的非监督式检测,增大适用范围的优点。
另外,根据本发明上述实施例的综合熵方法和密度聚类方法的窃电检测方法还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述获取目标区域的待检测时间段内用户智能电表数据和总能耗数据,以得到用户用电曲线集合和非技术性损失数据,进一步包括:获得所述目标区域的待检测时间段内所有用户的用电曲线;通过总用电量序列减去各时刻所有用户用电量之和得到所述待检测时间段内目标区域由窃电因素造成的非技术性损失;将每个时刻的非技术性损失按日整理为对应的区域损失曲线。
进一步地,在本发明的一个实施例中,所述根据所述用户用电曲线集合和非技术性损失数据通过最大信息系数计算方法得到每个用户的用电曲线与非技术性损失的相关性,以得到用电量相关性强弱的衡量指标,进一步包括:对待检测的每一日获取所述区域损失曲线和所述每个用户的用电曲线之间的最大信息系数,以得到每一用户曲线与区域损失之间电量相关性的强弱指标;并且,所述通过基于快速搜索密度峰值的聚类方法获取标幺用电曲线集合中每条曲线的邻域密度和到更高密度区域的距离,以得到所述每条曲线的形状异常指标,进一步包括:对所有的用电曲线分别进行标幺化,且保留曲线的形状特点;获取标幺用户曲线之间的欧式距离矩阵,并通过所述基于快速搜索密度峰值的聚类方法生成截断距离,并获取每条标幺曲线的密度特征;根据所述密度特征得到所述每条曲线的形状异常指标。
进一步地,在本发明的一个实施例中,所述非技术性损失数据的计算公式为:
Figure GDA0002511068920000031
其中,et为非技术性损失数据,Et为观察表所记录的用电量,xit为智能电表所记录的用户i在t时段的用电量,t=1、2…、M×T;
所述区域损失曲线的表达公式为:
ej=[e(j-1)·T+1 … ej·T],
其中,ej为区域损失曲线,j=1、2…、M代表日下标。
进一步地,在本发明的一个实施例中,所述标幺化用户曲线集合为:
Figure GDA0002511068920000032
其中,
Figure GDA0002511068920000033
为标幺化用户曲线集合,cij为标幺化用户曲线;
所述每条曲线的形状异常指标为:
Figure GDA0002511068920000034
其中,ζp为每条曲线的形状异常指标,ρp为标幺化曲线的邻域密度,δp为到更高密度区域的距离。
为达到上述目的,本发明另一方面实施例提出了一种综合熵方法和密度聚类方法的窃电检测装置,包括:第一获取模块,用于获取目标区域的待检测时间段内用户智能电表数据和总能耗数据,以得到用户用电曲线集合和非技术性损失数据;第二获取模块,用于根据所述用户用电曲线集合和非技术性损失数据通过最大信息系数计算方法得到每个用户的用电曲线与非技术性损失的相关性,以得到用电量相关性强弱的衡量指标;第三获取模块,用于通过基于快速搜索密度峰值的聚类方法获取标幺用电曲线集合中每条曲线的邻域密度和到更高密度区域的距离,以得到所述每条曲线的形状异常指标;划分模块,用于根据所述衡量指标和所述形状异常指标通过k-均值聚类将所述每个用户的用电曲线划分为异常曲线和正常曲线,并获取所有异常曲线的所述衡量指标和所述形状异常指标的均值,以作为电量异常指标和形状异常指标;以及计算模块,用于根据所述电量异常指标和所述形状异常指标获取用户的电量异常排名和形状异常排名,并获取所述电量异常排名和所述形状异常排名计算算术平均值,以得到综合异常排名。
本发明实施例的综合熵方法和密度聚类方法的窃电检测装置,通过获取用户用电曲线集合和非技术性损失数据、电量相关性强弱的衡量指标和每条用电曲线的形状异常指标,并通过k-均值聚类划分用电曲线类别,得到用户的电量异常排名和形状异常排名,并根据其算术平均值得到综合异常排名,进而完成对窃电模式的检测,具有提高各种窃电模式下检测的准确率,实现大数据下窃电行为的非监督式检测,增大适用范围的优点。
另外,根据本发明上述实施例的综合熵方法和密度聚类方法的窃电检测装置还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,所述第一获取模块,还用于:获得所述目标区域的待检测时间段内所有用户的用电曲线;通过总用电量序列减去各时刻所有用户用电量之和得到所述待检测时间段内目标区域由窃电因素造成的非技术性损失;将每个时刻的非技术性损失按日整理为对应的区域损失曲线。
进一步地,在本发明的一个实施例中,所述第二获取模块还用于:对待检测的每一日获取所述区域损失曲线和所述每个用户的用电曲线之间的最大信息系数,以得到每一用户曲线与区域损失之间电量相关性的强弱指标;所述第三获取模块还用于:对所有的用电曲线分别进行标幺化,且保留曲线的形状特点;获取标幺用户曲线之间的欧式距离矩阵,并通过所述基于快速搜索密度峰值的聚类方法生成截断距离,并获取每条标幺曲线的密度特征;根据所述密度特征得到所述每条曲线的形状异常指标。
进一步地,在本发明的一个实施例中,所述非技术性损失数据的计算公式为:
Figure GDA0002511068920000041
其中,et为非技术性损失数据,Et为观察表所记录的用电量,xit为智能电表所记录的用户i在t时段的用电量,t=1、2…、M×T;
所述区域损失曲线的表达公式为:
ej=[e(j-1)·T+1 … ej·T],
其中,ej为区域损失曲线,j=1、2…、M代表日下标。
进一步地,在本发明的一个实施例中,所述标幺化用户曲线集合为:
Figure GDA0002511068920000042
其中,
Figure GDA0002511068920000043
为标幺化用户曲线集合,cij为标幺化用户曲线;
所述每条曲线的形状异常指标为:
Figure GDA0002511068920000044
其中,ζp为每条曲线的形状异常指标,ρp为标幺化曲线的邻域密度,δp为到更高密度区域的距离。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明实施例的综合熵方法和密度聚类方法的窃电检测方法的流程图;
图2为根据本发明一个实施例的综合熵方法和密度聚类方法的窃电检测方法的流程图;
图3为根据本发明实施例的综合熵方法和密度聚类方法的窃电检测装置的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例提出的综合熵方法和密度聚类方法的窃电检测方法及装置,首先将参照附图描述根据本发明实施例提出的综合熵方法和密度聚类方法的窃电检测方法。
图1是本发明实施例的综合熵方法和密度聚类方法的窃电检测方法流程图,如图1所示,该综合熵方法和密度聚类方法的窃电检测方法包括以下步骤:
在步骤S101中:获取目标区域的待检测时间段内用户智能电表数据和总能耗数据,以得到用户用电曲线集合和非技术性损失数据。
具体而言,如图2所示,在本发明的实施例中,定义用户智能电表在一天中记录的用电读数序列为“用电曲线”;定义记录区域内总用电量的高安全度智能电表为“观察表”;定义N为区域内用户数,M为待检测的天数。
可以理解的是,获得该区域待检测时间段内所有用户的用电曲线,以及观察表所记录的总用电量序列。使用总用电量序列减去各时刻所有用户用电量之和,计算待检测时间段内该区域由窃电等因素造成的电量非技术性损失。
具体地,如图2所示,根据观察表和智能电表的读数计算区域的非技术性损失;设T为每天智能电表或观察表采样的次数,设t代表智能电表或观察表的一个记录周期,区域的非技术性损失et非技术性损失数据的计算公式为:
Figure GDA0002511068920000051
其中,et为非技术性损失数据,Et为观察表所记录的用电量,xit为智能电表所记录的用户i在t时段的用电量,t=1、2…、M×T;
所述区域损失曲线的表达公式为:
ej=[e(j-1)*T+1 … ej*T],
其中,ej为区域损失曲线,j=1、2…、M代表日下标,T为每天智能电表或观察表采样的次数。
在步骤S102中:根据用户用电曲线集合和非技术性损失数据通过最大信息系数计算方法得到每个用户的用电曲线与非技术性损失的相关性,以得到用电量相关性强弱的衡量指标。
可以理解的是,如图2所示,根据户用电曲线集合和非技术性损失数据,并通过对待检测的每一日计算区域损失曲线和各用户用电曲线之间的最大信息系数,得到每一用户曲线与区域损失之间的用电量相关性强弱的衡量指标。
在步骤S103中:通过基于快速搜索密度峰值的聚类方法获取标幺用电曲线集合中每条曲线的邻域密度和到更高密度区域的距离,以得到每条曲线的形状异常指标。
其中,在本发明的一个实施例中,对所有的用电曲线分别进行标幺化,仅保留曲线的形状特点;计算标幺用户曲线之间的欧式距离矩阵,随后使用基于快速搜索密度峰值的聚类方法生成截断距离,并计算每条标幺曲线的密度特征;随后根据密度特征,计算每条曲线的形状异常指标。
具体而言,如图2所示,对每个用户i,i=1、2…、N,令用电曲线cij=[xi,(j-1)T+1 …xi,jT],分别计算ej和cij之间的最大信息系数MIC(ej,cij),具体过程如下所示:
对所有的用户曲线进行标幺化,即除以当日所有时段用电量的最大值,得到标幺化的用户曲线集合,:
Figure GDA0002511068920000061
对M×N条标幺化的曲线
Figure GDA0002511068920000062
计算其两两之间的欧式距离,并从小到大排列,得到MN(MN-1)组距离值d1,2、…、d(MN-1),MN
使用基于快速搜索密度峰值的聚类方法计算截断距离dc以及各标幺化曲线的邻域密度ρp和到更高密度区域的距离δp,p=1、2…、M×N;
根据邻域密度和到更高密度区域的距离,计算曲线p的形状异常程度ζp
Figure GDA0002511068920000063
将ζp与用户i和天数j相对应,得到用户i第j天曲线的形状异常指标Zi,j
在步骤S104中:根据衡量指标和形状异常指标通过k-均值聚类将每个用户的用电曲线划分为异常曲线和正常曲线,并获取所有异常曲线的衡量指标和形状异常指标的均值,以作为电量异常指标和形状异常指标。
在步骤S105中:根据电量异常指标和形状异常指标获取用户的电量异常排名和形状异常排名,并获取电量异常排名和形状异常排名计算算术平均值,以得到综合异常排名。
具体地,步骤S104和步骤S105结合,如图2所示,通过使用k-均值聚类,将每个用户各日的电量相关性指标分成异常和正常两类,计算异常指标的均值作为该用户的电量异常指标,并根据该指标给出每个用户电量异常度排名;使用k-均值聚类将每个用户的用电曲线划分为异常曲线和正常曲线,异常指标的均值作为该用户的形状异常指标,并根据该指标给出每个用户形状异常度排名;计算用户电量异常度排名和形状异常度排名的算术平均值,作为用户的综合异常排名,其具体过程如下所示:
对用户i的M个MIC(ej,cij)值,使用k-均值聚类并取k=2,将M个值划分为两类,令取值较大类的均值为Qi,根据Qi的大小给出N个用户的可疑度排名Rank1,Qi越大对应用户i的Rank1越大;
对用户i的M个Zi,j值,使用k-均值聚类并取k=2,将M个值划分为两类,令取值较大类的均值为Si,根据Si的大小给出N个用户的可疑度排名Rank2,Si越大对应用户i的Rank2越大;
计算Rank1和Rank2的算术平均值Rank,得到用户的综合异常排名:
Figure GDA0002511068920000071
进一步地,通过用户的综合异常排名进而完成对窃电模式的检测,可以提升检测的准确性和适用性。
本发明实施例的综合熵方法和密度聚类方法的窃电检测方法,通过获取用户用电曲线集合和非技术性损失数据、电量相关性强弱的衡量指标和每条用电曲线的形状异常指标,并通过k-均值聚类划分用电曲线类别,得到用户的电量异常排名和形状异常排名,并根据其算术平均值得到综合异常排名,进而完成对窃电模式的检测,具有提高各种窃电模式下检测的准确率,实现大数据下窃电行为的非监督式检测,增大适用范围的优点。
其次参照附图描述根据本发明实施例提出的综合熵方法和密度聚类方法的窃电检测装置。
图3是本发明一个实施例的综合熵方法和密度聚类方法的窃电检测装置的结构示意图。
如图3所示,该综合熵方法和密度聚类方法的窃电检测装置10包括:第一获取模块100、第二获取模块200、第三获取模块300、划分模块400和计算模块500。
其中,第一获取模块100用于获取目标区域的待检测时间段内用户智能电表数据和总能耗数据,以得到用户用电曲线集合和非技术性损失数据。第二获取模块200用于根据用户用电曲线集合和非技术性损失数据通过最大信息系数计算方法得到每个用户的用电曲线与非技术性损失的相关性,以得到用电量相关性强弱的衡量指标。第三获取模块300用于通过基于快速搜索密度峰值的聚类方法获取标幺用电曲线集合中每条曲线的邻域密度和到更高密度区域的距离,以得到每条曲线的形状异常指标。划分模块400用于根据衡量指标和形状异常指标通过k-均值聚类将每个用户的用电曲线划分为异常曲线和正常曲线,并获取所有异常曲线的衡量指标和形状异常指标的均值,以作为电量异常指标和形状异常指标。计算模块500用于根据电量异常指标和形状异常指标获取用户的电量异常排名和形状异常排名,并获取电量异常排名和形状异常排名计算算术平均值,以得到综合异常排名。本发明实施例的窃电检测装置10能够提高各种窃电模式下检测的准确率,实现了大数据下窃电行为的非监督式检测,增大了适用范围。
进一步地,在本发明的一个实施例中,第一获取模块100还用于获得目标区域的待检测时间段内所有用户的用电曲线;通过总用电量序列减去各时刻所有用户用电量之和得到待检测时间段内目标区域由窃电因素造成的非技术性损失;将每个时刻的非技术性损失按日整理为对应的区域损失曲线。
进一步地,在本发明的一个实施例中,第二获取模块200还用于对待检测的每一日获取区域损失曲线和每个用户的用电曲线之间的最大信息系数,以得到每一用户曲线与区域损失之间电量相关性的强弱指标。第三获取模块还用于对所有的用电曲线分别进行标幺化,且保留曲线的形状特点,获取标幺用户曲线之间的欧式距离矩阵,并通过基于快速搜索密度峰值的聚类方法生成截断距离,并获取每条标幺曲线的密度特征;根据密度特征得到每条曲线的形状异常指标。
进一步地,在本发明的一个实施例中,非技术性损失数据的计算公式为:
Figure GDA0002511068920000081
其中,et为非技术性损失数据,Et为观察表所记录的用电量,xit为智能电表所记录的用户i在t时段的用电量,t=1、2…、M×T;
区域损失曲线的表达公式为:
ej=[e(j-1)·T+1 … ej·T],
其中,ej为区域损失曲线,j=1、2…、M代表日下标。
进一步地,在本发明的一个实施例中,标幺化用户曲线集合为:
Figure GDA0002511068920000082
其中,
Figure GDA0002511068920000083
为标幺化用户曲线集合,cij为标幺化用户曲线;
每条曲线的形状异常指标为:
Figure GDA0002511068920000091
其中,ζp为每条曲线的形状异常指标,ρp为标幺化曲线的邻域密度,δp为到更高密度区域的距离。
需要说明的是,前述对综合熵方法和密度聚类方法的窃电检测方法实施例的解释说明也适用于该实施例的装置,此处不再赘述。
本发明实施例的综合熵方法和密度聚类方法的窃电检测装置,通过获取用户用电曲线集合和非技术性损失数据、电量相关性强弱的衡量指标和每条用电曲线的形状异常指标,并通过k-均值聚类划分用电曲线类别,得到用户的电量异常排名和形状异常排名,并根据其算术平均值得到综合异常排名,进而完成对窃电模式的检测,具有提高各种窃电模式下检测的准确率,实现大数据下窃电行为的非监督式检测,增大适用范围的优点。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种综合熵方法和密度聚类方法的窃电检测方法,其特征在于,包括以下步骤:
获取目标区域的待检测时间段内用户智能电表数据和总能耗数据,以得到用户用电曲线集合和非技术性损失数据;
根据所述用户用电曲线集合和非技术性损失数据通过最大信息系数计算方法得到每个用户的用电曲线与非技术性损失的相关性,以得到用电量相关性强弱的衡量指标;
通过基于快速搜索密度峰值的聚类方法获取标幺用电曲线集合中每条曲线的邻域密度和到更高密度区域的距离,以得到所述每条曲线的形状异常指标;
根据所述衡量指标和所述形状异常指标通过k-均值聚类将所述每个用户的用电曲线划分为异常曲线和正常曲线,并获取所有异常曲线的所述衡量指标和所述形状异常指标的均值,以作为电量异常指标和形状异常指标;以及
根据所述电量异常指标和所述形状异常指标获取用户的电量异常排名和形状异常排名,并获取所述电量异常排名和所述形状异常排名计算算术平均值,以得到综合异常排名。
2.根据权利要求1所述的综合熵方法和密度聚类方法的窃电检测方法,其特征在于,所述获取目标区域的待检测时间段内用户智能电表数据和总能耗数据,以得到用户用电曲线集合和非技术性损失数据,进一步包括:
获得所述目标区域的待检测时间段内所有用户的用电曲线;
通过总用电量序列减去各时刻所有用户用电量之和得到所述待检测时间段内目标区域由窃电因素造成的非技术性损失;
将每个时刻的非技术性损失按日整理为对应的区域损失曲线。
3.根据权利要求2所述的综合熵方法和密度聚类方法的窃电检测方法,其特征在于,其中,
所述根据所述用户用电曲线集合和非技术性损失数据通过最大信息系数计算方法得到每个用户的用电曲线与非技术性损失的相关性,以得到用电量相关性强弱的衡量指标,进一步包括:
对待检测的每一日获取所述区域损失曲线和所述每个用户的用电曲线之间的最大信息系数,以得到每一用户曲线与区域损失之间电量相关性的强弱指标;
并且,所述通过基于快速搜索密度峰值的聚类方法获取标幺用电曲线集合中每条曲线的邻域密度和到更高密度区域的距离,以得到所述每条曲线的形状异常指标,进一步包括:
对所有的用电曲线分别进行标幺化,且保留曲线的形状特点;
获取标幺用户曲线之间的欧式距离矩阵,并通过所述基于快速搜索密度峰值的聚类方法生成截断距离,并获取每条标幺曲线的密度特征;
根据所述密度特征得到所述每条曲线的形状异常指标。
4.根据权利要求3所述的综合熵方法和密度聚类方法的窃电检测方法,其特征在于,其中,
所述非技术性损失数据的计算公式为:
Figure FDA0002511068910000021
其中,et为非技术性损失数据,Et为观察表所记录的用电量,xit为智能电表所记录的用户i在t时段的用电量,t=1、2…、M×T;
所述区域损失曲线的表达公式为:
ej=[e(j-1)·T+1 … ej·T],
其中,ej为区域损失曲线,j=1、2…、M代表日下标,T为每天智能电表或观察表采样的次数。
5.根据权利要求4所述的综合熵方法和密度聚类方法的窃电检测方法,其特征在于,其中,
所述标幺化用户曲线集合为:
Figure FDA0002511068910000022
其中,
Figure FDA0002511068910000023
为标幺化用户曲线集合,cij为标幺化用户曲线;
所述每条曲线的形状异常指标为:
Figure FDA0002511068910000024
其中,ζp为每条曲线的形状异常指标,ρp为标幺化曲线的邻域密度,δp为到更高密度区域的距离。
6.一种综合熵方法和密度聚类方法的窃电检测装置,其特征在于,包括:
第一获取模块,用于获取目标区域的待检测时间段内用户智能电表数据和总能耗数据,以得到用户用电曲线集合和非技术性损失数据;
第二获取模块,用于根据所述用户用电曲线集合和非技术性损失数据通过最大信息系数计算方法得到每个用户的用电曲线与非技术性损失的相关性,以得到用电量相关性强弱的衡量指标;
第三获取模块,用于通过基于快速搜索密度峰值的聚类方法获取标幺用电曲线集合中每条曲线的邻域密度和到更高密度区域的距离,以得到所述每条曲线的形状异常指标;
划分模块,用于根据所述衡量指标和所述形状异常指标通过k-均值聚类将所述每个用户的用电曲线划分为异常曲线和正常曲线,并获取所有异常曲线的所述衡量指标和所述形状异常指标的均值,以作为电量异常指标和形状异常指标;以及
计算模块,用于根据所述电量异常指标和所述形状异常指标获取用户的电量异常排名和形状异常排名,并获取所述电量异常排名和所述形状异常排名计算算术平均值,以得到综合异常排名。
7.根据权利要求6所述的综合熵方法和密度聚类方法的窃电检测装置,其特征在于,所述第一获取模块,还用于:
获得所述目标区域的待检测时间段内所有用户的用电曲线;
通过总用电量序列减去各时刻所有用户用电量之和得到所述待检测时间段内目标区域由窃电因素造成的非技术性损失;
将每个时刻的非技术性损失按日整理为对应的区域损失曲线。
8.根据权利要求7所述的综合熵方法和密度聚类方法的窃电检测装置,其特征在于,其中,
所述第二获取模块还用于:
对待检测的每一日获取所述区域损失曲线和所述每个用户的用电曲线之间的最大信息系数,以得到每一用户曲线与区域损失之间电量相关性的强弱指标;
所述第三获取模块还用于:
对所有的用电曲线分别进行标幺化,且保留曲线的形状特点;
获取标幺用户曲线之间的欧式距离矩阵,并通过所述基于快速搜索密度峰值的聚类方法生成截断距离,并获取每条标幺曲线的密度特征;
根据所述密度特征得到所述每条曲线的形状异常指标。
9.根据权利要求8所述的综合熵方法和密度聚类方法的窃电检测装置,其特征在于:
所述非技术性损失数据的计算公式为:
Figure FDA0002511068910000031
其中,et为非技术性损失数据,Et为观察表所记录的用电量,xit为智能电表所记录的用户i在t时段的用电量,t=1、2…、M×T;
所述区域损失曲线的表达公式为:
ej=[e(j-1)·T+1 … ej·T],
其中,ej为区域损失曲线,j=1、2…、M代表日下标,T为每天智能电表或观察表采样的次数。
10.根据权利要求9所述的综合熵方法和密度聚类方法的窃电检测装置,其特征在于:
所述标幺化用户曲线集合为:
Figure FDA0002511068910000041
其中,
Figure FDA0002511068910000042
为标幺化用户曲线集合,cij为标幺化用户曲线;
所述每条曲线的形状异常指标为:
Figure FDA0002511068910000043
其中,ζp为每条曲线的形状异常指标,ρp为标幺化曲线的邻域密度,δp为到更高密度区域的距离。
CN201810270822.XA 2018-03-29 2018-03-29 综合熵方法和密度聚类方法的窃电检测方法及装置 Active CN108664990B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810270822.XA CN108664990B (zh) 2018-03-29 2018-03-29 综合熵方法和密度聚类方法的窃电检测方法及装置
PCT/CN2018/094537 WO2019184131A1 (zh) 2018-03-29 2018-07-04 综合熵方法和密度聚类方法的窃电检测方法及装置
US16/844,798 US11249120B2 (en) 2018-03-29 2020-04-09 Method and device for detecting electricity theft, and computer readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810270822.XA CN108664990B (zh) 2018-03-29 2018-03-29 综合熵方法和密度聚类方法的窃电检测方法及装置

Publications (2)

Publication Number Publication Date
CN108664990A CN108664990A (zh) 2018-10-16
CN108664990B true CN108664990B (zh) 2020-09-18

Family

ID=63782105

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810270822.XA Active CN108664990B (zh) 2018-03-29 2018-03-29 综合熵方法和密度聚类方法的窃电检测方法及装置

Country Status (3)

Country Link
US (1) US11249120B2 (zh)
CN (1) CN108664990B (zh)
WO (1) WO2019184131A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11513148B2 (en) * 2018-10-11 2022-11-29 Hydro-Quebec Method, system and software product to identify installations likely to exhibit an electrical non-conformity
CN109492683A (zh) * 2018-10-30 2019-03-19 国网湖南省电力有限公司 一种针对广域量测电力大数据数据质量的快速在线评估方法
CN110097261B (zh) * 2019-04-17 2022-11-18 三峡大学 一种判断用户用电异常的方法
CN110321934B (zh) * 2019-06-12 2023-05-12 深圳供电局有限公司 一种检测用户用电异常数据的方法及系统
CN111160563B (zh) * 2019-12-02 2023-04-14 国网浙江省电力有限公司 基于极限学习机和密度聚类的海量报文掉线状态分析方法
CN111506624B (zh) * 2020-04-16 2023-05-23 南方电网科学研究院有限责任公司 一种电力缺失数据辨识方法和相关装置
CN111667144B (zh) * 2020-04-30 2023-04-28 北京中电普华信息技术有限公司 用户的识别方法及装置
CN112098714B (zh) * 2020-08-12 2023-04-18 国网江苏省电力有限公司南京供电分公司 一种基于ResNet-LSTM的窃电检测方法及系统
CN112307435B (zh) * 2020-10-30 2024-05-31 三峡大学 一种基于模糊聚类和趋势判断筛查用电量异常的方法
CN112259228B (zh) * 2020-11-12 2023-06-02 湖北理工学院 一种动态注意力网络非负矩阵分解的抑郁症筛选方法
CN112365164B (zh) * 2020-11-13 2023-09-12 国网江苏省电力有限公司扬州供电分公司 基于改进密度峰值快速搜索聚类算法的中大型能源用户用能特性画像方法
CN112730938B (zh) * 2020-12-15 2023-05-02 北京科东电力控制系统有限责任公司 一种基于用电采集大数据的窃电用户判断方法
CN112684248B (zh) * 2020-12-29 2022-03-29 广东电网有限责任公司中山供电局 一种基于数据回流的高危电能计量装置锁定方法
CN113284002A (zh) * 2021-04-09 2021-08-20 南方电网数字电网研究院有限公司 用电数据异常检测方法、装置、计算机设备和存储介质
CN113128596A (zh) * 2021-04-21 2021-07-16 广东电网有限责任公司汕尾供电局 一种窃电检测方法、装置及计算机可读存储介质
CN115622720A (zh) * 2021-07-13 2023-01-17 中移物联网有限公司 一种网络异常检测方法、装置及检测设备
CN114218522B (zh) * 2021-12-02 2024-04-09 清华大学 基于信息传递熵的台区用户贡献度测算方法及窃电排查方法
CN114638555B (zh) * 2022-05-18 2022-09-16 国网江西综合能源服务有限公司 基于多层正则化极限学习机的用电行为检测方法及系统
CN116933157A (zh) * 2022-08-02 2023-10-24 国网山东省电力公司蒙阴县供电公司 一种窃电检测方法
CN116187773B (zh) * 2022-12-02 2023-10-03 大唐七台河发电有限责任公司 一种用于电厂储存电能的损失分析方法及系统
CN115912359B (zh) * 2023-02-23 2023-07-25 豪派(陕西)电子科技有限公司 基于大数据的数字化安全隐患识别排查治理方法
US11899516B1 (en) 2023-07-13 2024-02-13 T-Mobile Usa, Inc. Creation of a digital twin for auto-discovery of hierarchy in power monitoring
CN117493857A (zh) * 2023-11-15 2024-02-02 国网四川省电力公司眉山供电公司 一种电能计量异常判别方法、系统、设备及介质
CN117591836B (zh) * 2024-01-19 2024-04-16 广东力创信息技术有限公司 一种管道检测数据分析方法以及相关装置
CN117786582B (zh) * 2024-02-23 2024-05-07 江苏斐能软件科技有限公司 基于数据驱动的用电异常状态智能监测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445578A (zh) * 2011-11-08 2012-05-09 辽宁省电力有限公司葫芦岛供电公司 防窃电稽查监控检测装置
CN106780121A (zh) * 2016-12-06 2017-05-31 广州供电局有限公司 一种基于用电负荷模式分析的用电异常识别方法
CN107145966A (zh) * 2017-04-12 2017-09-08 山大地纬软件股份有限公司 基于逻辑回归概率分析优化模型的反窃电分析预警方法
CN107169145A (zh) * 2017-06-19 2017-09-15 武汉大学 一种基于聚类算法的用户窃电严重等级检测的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2583057A1 (en) * 2006-03-31 2007-09-30 Itron, Inc. Integrated data collection, anomaly detection and investigation, such as integrated mobile utility meter reading, theft detection and investigation system
US7795877B2 (en) * 2006-11-02 2010-09-14 Current Technologies, Llc Power line communication and power distribution parameter measurement system and method
WO2009009878A1 (en) * 2007-07-13 2009-01-22 Kinects Solutions Inc. Transformer meter and system for using same
US9595006B2 (en) * 2013-06-04 2017-03-14 International Business Machines Corporation Detecting electricity theft via meter tampering using statistical methods
US10346934B2 (en) * 2014-08-01 2019-07-09 Amrita Vishwa Vidyapeetham Apparatus for power theft detection on an electrical power grid
EP3436749A4 (en) * 2016-04-01 2019-12-11 Tendril Networks, Inc. ORCHESTRATED ENERGY
CN105866725A (zh) * 2016-04-20 2016-08-17 国网上海市电力公司 一种基于聚类分析和云模型的智能电表故障分类方法
CN106096805A (zh) * 2016-05-10 2016-11-09 华北电力大学 一种基于熵权法特征选择的居民用电负荷分类方法
CN106204335A (zh) * 2016-07-21 2016-12-07 广东工业大学 一种电价执行异常判断方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445578A (zh) * 2011-11-08 2012-05-09 辽宁省电力有限公司葫芦岛供电公司 防窃电稽查监控检测装置
CN106780121A (zh) * 2016-12-06 2017-05-31 广州供电局有限公司 一种基于用电负荷模式分析的用电异常识别方法
CN107145966A (zh) * 2017-04-12 2017-09-08 山大地纬软件股份有限公司 基于逻辑回归概率分析优化模型的反窃电分析预警方法
CN107169145A (zh) * 2017-06-19 2017-09-15 武汉大学 一种基于聚类算法的用户窃电严重等级检测的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electricity Theft Detecting Based on Density-Clustering Method;Kedi Zheng et,al.;《2017 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia)》;20171207;1-5 *

Also Published As

Publication number Publication date
WO2019184131A1 (zh) 2019-10-03
US11249120B2 (en) 2022-02-15
CN108664990A (zh) 2018-10-16
US20200233021A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
CN108664990B (zh) 综合熵方法和密度聚类方法的窃电检测方法及装置
Sun et al. Summary of health-state estimation of lithium-ion batteries based on electrochemical impedance spectroscopy
Koleti et al. A study on the influence of lithium plating on battery degradation
WO2014120887A1 (en) System and methods for identifying, evaluating and predicting land use and agricultural production
Fang et al. A state of health estimation method for lithium-ion batteries based on voltage relaxation model
CN107360147A (zh) 基于topsis和云模型的公有云可信度评估方法及系统
Ezemobi et al. State of health estimation of lithium-ion batteries in electric vehicles under dynamic load conditions
Iurilli et al. Physics-Based SoH Estimation for Li-Ion Cells
Zhang et al. State of health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy and backpropagation neural network
Bi et al. Performance comparison of long short-term memory and a temporal convolutional network for state of health estimation of a lithium-ion battery using its charging characteristics
Xia et al. Using self organizing maps to achieve lithium-ion battery cells multi-parameter sorting based on principle components analysis
Sun et al. Quantitative analysis of degradation modes of lithium-ion battery under different operating conditions
Huang et al. A novel health factor to predict the battery’s state-of-health using a support vector machine approach
Wang et al. An optimized random forest regression model for li-ion battery prognostics and health management
Li et al. Toward group applications: a critical review of the classification strategies of lithium-ion batteries
Dubarry et al. Battery durability and reliability under electric utility grid operations: analysis of on-site reference tests
Yang et al. Lithium-ion battery state of health estimation with multi-feature collaborative analysis and deep learning method
Zhao et al. Heat generation in NMC622 coin cells during electrochemical cycling: Separation of reversible and irreversible heat effects
Pan et al. Lithium plating detection based on electrochemical impedance and internal resistance analyses
Harding et al. Examining the performance of implantable-grade lithium-ion cells after overdischarge and thermally accelerated aging
Cui et al. Study on lifetime decline prediction of lithium-ion capacitors
Hein et al. Aging determination of series-connected lithium-ion cells independent of module design
Yang et al. Data–Driven Fault Diagnosis and Cause Analysis of Battery Pack with Real Data
Csomós et al. Estimation of battery separator area, cell thickness and diffusion coefficient based on non-ideal liquid-phase diffusion modeling
Olarte et al. Automatic identification algorithm of equivalent electrochemical circuit based on electroscopic impedance data for a lead acid battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant