CN108664733A - 棱边特征曲面拓扑逼近重建方法 - Google Patents

棱边特征曲面拓扑逼近重建方法 Download PDF

Info

Publication number
CN108664733A
CN108664733A CN201810448989.0A CN201810448989A CN108664733A CN 108664733 A CN108664733 A CN 108664733A CN 201810448989 A CN201810448989 A CN 201810448989A CN 108664733 A CN108664733 A CN 108664733A
Authority
CN
China
Prior art keywords
point
neighborhood
seamed edge
boundary
point set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810448989.0A
Other languages
English (en)
Inventor
孙殿柱
汪思腾
李延瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201810448989.0A priority Critical patent/CN108664733A/zh
Publication of CN108664733A publication Critical patent/CN108664733A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Image Generation (AREA)

Abstract

本发明提供一种棱边特征曲面拓扑逼近重建方法,属于产品数字化设计与制造领域。通过对点云平坦连通区域进行分割、扩展和重建等步骤,实现对平坦区域重建,对延拓后的平坦区域重建结果进行求交,通过曲面裁剪的方法重建棱边特征。在点云分割和扩展过程中,基于采样点邻域高斯映射聚类算法和种子点增长算法相结合的方式保证平坦曲面分割的正确性,将增益优化后的边界样点邻域点集作为曲面局部样本,以避免非均匀采样数据因边界邻域缺失而导致的曲面重建错误。该方法重建的棱边尖锐特征准确,不含孔洞和棱边凹痕,对非均匀采样数据具有良好的适应性。

Description

棱边特征曲面拓扑逼近重建方法
技术领域
本发明提供一种实物表面样点棱边特征曲面拓扑逼近重建方法,属于产品逆向工程技术领域。
背景技术
工业产品逆向工程中,实物表面棱边特征重建结果的形位精度对后续的设计分析和再制造有重要的影响。由于曲面采样数据通常为缺乏任何特征信息的散乱点集,在基于此类数据的曲面重建过程中,目前曲面拓扑重建技术未能实现棱边特征的精确重建,因此棱边特征区域的正确重建问题一直深受关注。
曲面重建经典算法通常假设采样数据来自光滑曲面,因而难以用于重建含棱边特征的曲面。T.K.Dey等基于高斯加权拉普拉斯图和Reeb图相组合来识别和重建棱边特征曲线,在 Delaunay剖分过程中,将特征曲线上采样点和非尖锐特征点加权保护,以提高棱边特征重建形位精度。Weber等通过识别特征点局部逼近特征曲线,将特征点用作修改MLS投影点的局部邻域指标,并对局部点邻域进行分段和增强,使分段光滑的表面保持所有的尖锐特征。 Lipman Y等同样对移动最小二乘法(MLS)投影方法上改进,算法定义检测奇异性指标域(SIF),使用SIF来指导MLS框架中的局部多项式拟合来重建曲面,通过使用连续的奇异性指示域,使得算法能够对奇点精细重构。
综上所述,现有的棱边特征区域重建方法均以优化棱边特征为目标,在重建过程中对棱边特征点加以保护来提高重建形位精度。但是当曲面采样数据含有噪声且为非均匀采样数据时,易出现凹痕等错误,导致棱边形位精度难以保证。因此,提供一种能够重建棱边特征且对非均匀采样数据有良好的适应性的重建方法已成为本领域技术人员亟待解决的技术问题。
发明内容
本发明要解决的技术问题是:克服现有技术不足,提供一种实物表面样点棱边特征曲面重建方法,快速、准确重建棱边曲面特征。
为解决上述技术问题,本发明所采用的技术方案是一种实物表面样点棱边特征曲面拓扑逼近重建方法,其特征在于步骤依次为:(1)读取数据点集G,以尖锐特征区域样点为界限,基于平坦区域连通性,对点集进行分割处理,获取分割后点集集合Gi,i=1,2,3,…;(2) 获取Gi的边界点邻域点集并进行增益优化,以边界点法向约束优化后邻域点集的均值点对点集集合Gi进行扩展;(3)基于零等值面重建算法对扩展后的点集进行曲面重建并细分,得到曲面集合H(Gi);(4)提取H(Gi)中各曲面相交线,将交线段端点坐标和相交三角面片内部端点作为细分点进行剖分重建棱边特征曲面;(5)输出棱边特征曲面和平坦区域曲面,曲面重建完成。
为实现发明目的,所述实物表面样点棱边特征曲面拓扑逼近重建方法,其特征在于步骤(1)中所述以尖锐特征区域样点为界限,基于平坦区域连通性,对点集进行分割处理方法,具体步骤为:(1)读取采样数据点集G,采用局部邻域拟合法计算点集法向并进行法向统一; (2)估算采样数据点云曲率;(3)设定采样点邻域高斯映射聚类算法阈值剔除采样数据尖锐特征点;(4)对剩余采样点按照曲率值大小进行排序;(5)将曲率值最小的采样点作为种子点增长算法的起始种子点;(6)查询种子点近邻点,计算近邻点的法向与种子点法向之间的角度。若角度小于算法设定的阈值,把该种子点从排序列表中删除;否则执行步骤(8);(7) 若种子点邻近点的曲率值小于设定阈值,则将其近邻点作为种子增长算法新的种子点;(8) 重复执行步骤(6)和(7)直至不再有新的种子点,则完成一块联通区域的分割;(9)将识别所得平坦联通区域点集并入集合U中,对G'=G-U中样点重复执行步骤(4)-(8),直至中样点的最小曲率值大于设定的曲率阈值为止,则完成所有联通区域分割。
为实现发明目的,所述实物表面样点棱边特征曲面拓扑逼近重建方法,其特征在于步骤(2)中所述非特征区域点集扩展方法,具体为:设x为分块点集Gi边界点,xi是x的近邻点集;非特征区域点集扩展步骤为:(1)获取边界点x邻域点集λ(x);(2)求解邻域参考均值点T;(3)对邻域点集λ(x)进行增益优化;优化过程具体为:沿公式
反向偏移λ(x)的均值点T(x)和T的欧氏距离至tx点,重新搜索tx近邻点加入λ(x)并合并为λ'(x),若d(T,T(λ(x)))大于d(T,T(λ'(x))),说明λ'(x)更能反映原始曲面形状;将将偏移、搜索和合并的过程迭代计算,直至d(T,T(λ'(x)))不小于d(T,T(λ(x))),则邻域点集增益优化结束;(4)将λ'(x)均值点向x所在平面投影得到点R(x);(5)以x与R(x)之差为方向向量对投影点偏移得到扩展点;(6)对Gi点集中所有边界点执行上述步骤完成所有非特征区域点集扩展;上述过程步骤(2)中均值参考点的求解步骤为:①查询边界点集中目标边界点近邻点集,求解其三个坐标值方差,以三个坐标轴中方差最大的轴坐标大小将目标点和近邻点集进行排序;②用三次Bezier曲线插值法求解排序点集构成的曲线;③求解目标样点、实际均值点和邻域样本中距目标样点最远点构成平面的法线S;④计算过目标样点且同时垂直于其在边界曲线处的切线和S的直线方程F;⑤计算直线F上距目标点r/2的点,以距离T(x)较近的点为均值参考点。
本发明与现有技术相比,具有以下优点:
(1)对边界点邻域进行增益优化,可一定程度上弥补采样数据不均与导致的拓扑邻域信息缺失,对非均匀数据有较好的适应性,有效避免非均匀采样数据中因边界邻域缺失而导致的曲面重建错误。
(2)可有效避免直接对曲面棱边特征进行重建出现孔洞等错误,提高曲面棱边重建的形位精度。
附图说明
图1是本发明棱边特征曲面拓扑逼近重建方法的程序实现流程图;
图2是边界样点邻域缺失和增益优化后偏移结果示意图;
图3是实施例一中fandisk采样数据在点云分割、扩展和重建步骤效果图;
图4是实施例一中fandisk采样数据最终重建结果的整体和局部棱边特征效果图。
具体实施方式
下面结合附图及实施例对本发明作进一步说明。
图1是本发明棱边特征曲面拓扑逼近重建方法程序实现流程图,通过避免直接对棱边特征重建,基于点云平坦区域联通性对点云进行分割,以边界点邻域点集作为曲面局部样本反映曲面局部特征对点集向外扩展,通过重建扩展后的点云数据,提取各曲面彼此相交的特征线,将交线段端点坐标和三角形内部端点作为细分点进行剖分重建棱边特征。
图2是边界样点邻域缺失和增益优化后偏移结果,将边界点的k-近邻点集作为曲面局部样本能够反映曲面的局部特征,但是k邻域点集的获取主要基于欧氏距离,通常会偏向局部样点分布密集区域,若某一区域同时包含样点分布稀疏区和样点分布密集区,则会导致点云偏移歪斜,最终导致该处重建出现孔洞等错误;对样点邻域进行增益优化,使邻域点集向稀疏区域适度扩展,能够有效避免偏移点歪斜错误,其优化过程为:沿公式
反向偏移λ(x)的均值点T(x)和T的欧氏距离至tx点,重新搜索tx近邻点加入λ(x)并合并为λ'(x),若d(T,T(λ(x)))大于d(T,T(λ'(x))),说明λ'(x)更能反映原始曲面形状;将将偏移、搜索和合并的过程迭代计算,直至d(T,T(λ'(x)))不小于d(T,T(λ(x))),则邻域点集增益优化结束。
图3是fandisk采样数据在本发明中点云分割、扩展和非特征区域重建及细分的结果。如图3所示,通过设定尖锐特征识别阈值,将更多尖锐特征附近点剔除,能够为平坦联通区域分割提供隐形的分割线,从而保证了点云分割的正确性;如[0013]所述,对边界点邻域进行增益优化后,能够适应非均匀采样数据情况,从而提高点云扩展的正确性;为保证重建的曲面足够光滑,在非特征区域曲面重建后对网格模型进行自适应细分,其细分步骤具体为:设三角面片t的法矢为其邻域三角面片集合X中各面片法矢为k为集合X中三角面片数,采用公式
计算当前三角面片t与其邻域三角面片集合X中各面片法矢点积的方差,将其近似表示当前三角面片的曲率,f(t)的取值范围区间为[0,1],越接近0则越平坦,否则越陡峭。三角网格细分过程如下:
(1)读取三角网格数据,采用k-d树建立三角网格曲面空间索引结构;(2)计算三角面片法矢点积方差;(3)判断三角形三条边与其公共边所在三角面片曲率值是否大于预设阈值,若至少有一条边大于预设阈值,执行步骤(4),否则执行步骤(5);(4)设共边两三角面片为(v1,v2,v3)、(v1,v2,v4),其公共边(v1,v2)大于设定阈值,则在这条边插入新点vE,计算公式为:(5)重复步骤(3)和(4),直至曲面所有三角网格面片细分结束;(6)对三角网格每个点进行重定位;设网格点v的邻接点vi(i=0,1,···k-1),重定位后的 v的坐标vV为:式中β为各邻接点的权值,采用公式计算。
实施例一:对fandisk采样数据应用本文所述方法进行曲面重建。fandisk点云含有棱边特征和自由曲面,并且总体分布非常不均匀。通过观察图4可知,本文方法能够较好重建棱边尖锐特征,对非均匀采样数据有较好的适应性。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (3)

1.一种实物表面样点棱边特征曲面拓扑逼近重建方法,其特征在于步骤依次为:(1)读取数据点集G,以尖锐特征区域样点为界限,基于平坦区域连通性,对点集进行分割处理,获取平坦区域分割后点集集合Gi,i=1,2,3,…;(2)获取Gi的边界点邻域点集并进行增益优化,以边界点法向约束优化后邻域点集的均值点对点集集合Gi进行扩展;(3)基于零等值面重建算法对扩展后的点集进行曲面重建并细分,得到曲面集合H(Gi);(4)提取H(Gi)中各曲面相交线,将交线段端点坐标和相交三角面片内部端点作为细分点进行剖分重建棱边特征曲面;(5)输出棱边特征曲面和平坦区域曲面,曲面重建完成。
2.根据权利要求1所述实物表面样点棱边特征曲面拓扑逼近重建方法,其特征在于步骤(1)中以尖锐特征区域样点为界限,基于平坦区域连通性,对点集进行分割处理方法,具体步骤为:(1)读取采样数据点集G,采用局部邻域拟合法计算点集法向并进行法向统一;(2)估算采样数据点云曲率;(3)设定采样点邻域高斯映射聚类算法阈值剔除采样数据尖锐特征点;(4)对剩余采样点按照曲率值大小进行排序;(5)将曲率值最小的采样点作为种子点增长算法的起始种子点;(6)查询种子点近邻点,计算近邻点的法向与种子点法向之间的角度。若角度小于算法设定的阈值,把该种子点从排序列表中删除;否则执行步骤(8);(7)若种子点邻近点的曲率值小于设定阈值,则将其近邻点作为种子增长算法新的种子点;(8)重复执行步骤(6)和(7)直至不再有新的种子点,则完成一块联通区域的分割;(9)将识别所得平坦联通区域点集并入集合U中,对G'=G-U中样点重复执行步骤(4)-(8),直至G'中样点的最小曲率值大于设定的曲率阈值为止,则完成所有联通区域分割。
3.根据权利要求1所述实物表面样点棱边特征曲面拓扑逼近重建方法,其特征在于步骤(2)非特征区域点集扩展方法,具体为:设x为分块点集Gi边界点,xi是x的近邻点集;非特征区域点集扩展步骤为:(1)获取边界点x邻域点集λ(x);(2)求解邻域参考均值点T;(3)对邻域点集λ(x)进行增益优化;优化过程具体为:沿公式
反向偏移λ(x)的均值点T(x)和T的欧氏距离至tx点,重新搜索tx近邻点加入λ(x)并合并为λ'(x),若d(T,T(λ(x)))大于d(T,T(λ'(x))),说明λ'(x)更能反映原始曲面形状;将将偏移、搜索和合并的过程迭代计算,直至d(T,T(λ'(x)))不小于d(T,T(λ(x))),则邻域点集增益优化结束;(4)将λ'(x)均值点向x所在平面投影得到点R(x);(5)以x与R(x)之差为方向向量对投影点偏移得到扩展点;(6)对Gi点集中所有边界点执行上述步骤完成所有非特征区域点集扩展;上述过程步骤(2)中均值参考点T的求解步骤为:①查询边界点集中目标边界点近邻点集,求解其三个坐标值方差,以三个坐标轴中方差最大的轴坐标大小将目标点和近邻点集进行排序;②用三次Bezier曲线插值法求解排序点集构成的曲线;③求解目标样点、实际均值点和邻域样本中距目标样点最远点构成平面的法线S;④计算过目标样点且同时垂直于其在边界曲线处的切线和S的直线方程F;⑤计算直线F上距目标点r/2的点,以距离T(x)较近的点为均值参考点。
CN201810448989.0A 2018-05-11 2018-05-11 棱边特征曲面拓扑逼近重建方法 Pending CN108664733A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810448989.0A CN108664733A (zh) 2018-05-11 2018-05-11 棱边特征曲面拓扑逼近重建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810448989.0A CN108664733A (zh) 2018-05-11 2018-05-11 棱边特征曲面拓扑逼近重建方法

Publications (1)

Publication Number Publication Date
CN108664733A true CN108664733A (zh) 2018-10-16

Family

ID=63778702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810448989.0A Pending CN108664733A (zh) 2018-05-11 2018-05-11 棱边特征曲面拓扑逼近重建方法

Country Status (1)

Country Link
CN (1) CN108664733A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110222599A (zh) * 2019-05-21 2019-09-10 西安理工大学 一种基于高斯映射的步态识别方法
CN110322464A (zh) * 2019-06-30 2019-10-11 华中科技大学 一种基于三维点云的小曲率薄壁零件边界提取方法
CN110349252A (zh) * 2019-06-30 2019-10-18 华中科技大学 一种基于点云边界构建小曲率零件实际加工曲线的方法
CN112287944A (zh) * 2019-07-23 2021-01-29 山东理工大学 实物表面采样数据局部形貌标架量化及特征识别方法
CN112836415A (zh) * 2021-02-26 2021-05-25 英特工程仿真技术(大连)有限公司 一种电磁场非匹配棱边元的插值方法
CN114419055A (zh) * 2022-01-26 2022-04-29 中国科学院数学与系统科学研究院 一种基于高斯像的可展面分割-拟合方法
CN114677481A (zh) * 2022-05-31 2022-06-28 中国飞机强度研究所 空天飞机地面测试的理想加热曲面等效逼近模型构建方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793349A2 (en) * 2005-12-05 2007-06-06 Siemens Medical Solutions USA, Inc. Method and aparatus for discrete mesh filleting and rounding through ball pivoting
CN104821015A (zh) * 2015-05-27 2015-08-05 山东理工大学 实物表面样点α-shape曲面拓扑重建方法
CN105046751A (zh) * 2015-06-29 2015-11-11 山东理工大学 保持实物表面样点棱边特征的Cocone曲面重建方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793349A2 (en) * 2005-12-05 2007-06-06 Siemens Medical Solutions USA, Inc. Method and aparatus for discrete mesh filleting and rounding through ball pivoting
CN104821015A (zh) * 2015-05-27 2015-08-05 山东理工大学 实物表面样点α-shape曲面拓扑重建方法
CN105046751A (zh) * 2015-06-29 2015-11-11 山东理工大学 保持实物表面样点棱边特征的Cocone曲面重建方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WANG SITENG等: "Application of SVM based on FOA optimization in fault diagnosis of rotating machinery", 《2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE》 *
孙殿柱等: "基于局部样本增益优化的α-shape曲面拓扑重建", 《机械工程学报》 *
魏亮: "基于局部样本增益优化的曲面重建研究", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110222599A (zh) * 2019-05-21 2019-09-10 西安理工大学 一种基于高斯映射的步态识别方法
CN110222599B (zh) * 2019-05-21 2021-09-10 西安理工大学 一种基于高斯映射的步态识别方法
CN110322464A (zh) * 2019-06-30 2019-10-11 华中科技大学 一种基于三维点云的小曲率薄壁零件边界提取方法
CN110349252A (zh) * 2019-06-30 2019-10-18 华中科技大学 一种基于点云边界构建小曲率零件实际加工曲线的方法
CN112287944A (zh) * 2019-07-23 2021-01-29 山东理工大学 实物表面采样数据局部形貌标架量化及特征识别方法
CN112836415A (zh) * 2021-02-26 2021-05-25 英特工程仿真技术(大连)有限公司 一种电磁场非匹配棱边元的插值方法
CN112836415B (zh) * 2021-02-26 2023-12-05 英特工程仿真技术(大连)有限公司 一种电磁场非匹配棱边元的插值方法
CN114419055A (zh) * 2022-01-26 2022-04-29 中国科学院数学与系统科学研究院 一种基于高斯像的可展面分割-拟合方法
CN114677481A (zh) * 2022-05-31 2022-06-28 中国飞机强度研究所 空天飞机地面测试的理想加热曲面等效逼近模型构建方法

Similar Documents

Publication Publication Date Title
CN108664733A (zh) 棱边特征曲面拓扑逼近重建方法
Sohn et al. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction
CN104008553B (zh) 融合影像梯度信息和分水岭方法的裂缝检测方法
CN104299260B (zh) 一种基于sift和lbp的点云配准的接触网三维重建方法
CN106023298B (zh) 基于局部泊松曲面重建的点云刚性配准方法
CN102938161B (zh) 一种基于Mean Shift的三维形状自动分割方法
CN107610061B (zh) 一种基于二维投影的保边点云孔洞修补方法
CN109146838A (zh) 一种基于几何特征与区域融合的g显带粘连染色体分割方法
CN111145228A (zh) 基于局部轮廓点与形状特征融合的异源图像配准方法
Gold et al. Map generalization by skeleton retraction
CN108830899B (zh) 一种基于几何特征的快速自适应角点结合的圆心检测方法
CN111784725B (zh) 光条中心提取方法
KR101549155B1 (ko) 라이다 자료를 활용한 구조물의 직선경계 추출방법
CN112085675A (zh) 深度图像去噪方法、前景分割方法及人体运动监测方法
CN103839274B (zh) 一种基于几何比例关系的扩展目标跟踪方法
CN108230452B (zh) 一种基于纹理合成的模型补洞方法
CN109118476A (zh) 一种零部件边缘轮廓完整性检测方法及装置
CN104821015B (zh) 实物表面样点α-shape曲面拓扑重建方法
CN103236056B (zh) 基于模板匹配的图像分割方法
Sacchi et al. Curvature estimation for segmentation of triangulated surfaces
CN108010114B (zh) 基本图元点云曲面的几何形状识别方法以及特征识别方法
CN106355178A (zh) 基于分层聚类和拓扑连接模型的海量点云自适应简化方法
CN105678708B (zh) 一种适用于已配准多视角有序点云的整体优化方法
Omidalizarandi et al. Segmentation and classification of point clouds from dense aerial image matching
CN109917418B (zh) 一种激光雷达无反射区域的测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181016