CN108662989A - 一种基于三维激光扫描的车灯轮廓质量检测方法 - Google Patents

一种基于三维激光扫描的车灯轮廓质量检测方法 Download PDF

Info

Publication number
CN108662989A
CN108662989A CN201810710544.5A CN201810710544A CN108662989A CN 108662989 A CN108662989 A CN 108662989A CN 201810710544 A CN201810710544 A CN 201810710544A CN 108662989 A CN108662989 A CN 108662989A
Authority
CN
China
Prior art keywords
car light
point
data
industrial robot
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810710544.5A
Other languages
English (en)
Inventor
卢印举
段明义
石彦华
张建平
苏玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Institute of Technology
Original Assignee
Zhengzhou Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou Institute of Technology filed Critical Zhengzhou Institute of Technology
Priority to CN201810710544.5A priority Critical patent/CN108662989A/zh
Publication of CN108662989A publication Critical patent/CN108662989A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Abstract

本发明涉及基于三维激光扫描的车灯轮廓质量检测方法,可有效解决人工测量过程中的效率低下、测量精度低以及可靠性差,保证不了产品质量的问题。由PC机、工业机器人、3D激光传感器构成用于车灯轮廓质量检测的三维激光扫描测量系统,及获取车灯轮廓激光扫描数据;以车灯轮廓激光扫描数据为处理对象,通过车灯边界点和标准车灯模具边界点的识别,以标准车灯模具为基准,对车灯三维轮廓数据与标准的车灯三维轮廓数据进行比对,检测车灯轮廓质量,本发明方法新颖独特,易操作,测量准确,生产效率和自动化程度高,同时也具有低成本的特点,有利于车灯生产时对车灯质量进行严格控制的同时,降低车灯生产成本,经济和社会效益显著。

Description

一种基于三维激光扫描的车灯轮廓质量检测方法
技术领域
本发明涉及车灯,特别是一种基于三维激光扫描的车灯轮廓质量检测方法。
背景技术
汽车是交通运输的重要工具,特别是随着经济水平的不断提高,汽车制造行业的快速发展,人们对汽车质量的要求也变得越来越高。在汽车制造业中,车灯的设计和制造占据着非常重要的位置,车灯的造型设计已经和汽车整体外形的设计制造融为一体,不可分割。同时,也越来越重视车灯产品的质量和造型美观,期望车灯不仅仅要具备由自由、光滑的曲面构成的配光反射器壳体,同时需要有结构完善的衬框和轮廓边界线条流畅美观大方的、质量好的车灯面罩,这些要求使得车灯生产企业越来越重视车灯的外形设计与制造。
汽车车灯在按照产品设计图纸的生产过程中,夹具和加工机床的精度、产品加工工艺以及操作者的操作技术水平等因素对车灯的加工精度及质量有着显著的影响,同时,由于车灯的塑料原材料在注塑成型的过程中会形成轮廓变形、有熔接痕等缺陷,因此,实际生产加工出来的汽车车灯在形状和精度方面无法达到设计目的要求。因此,汽车车灯轮廓质量的测量具有实用价值。
车灯轮廓的变形虽然是客观存在的,目前,针对车灯轮廓质量的测量方法主要有两种,一种方法是传统的人工检测法,生产企业针对不同的车灯类型,都按照车灯待安装的车体部分设计制造出标准的车体模具,根据被测车灯的结构特征、精度高低、功能要求和加工工艺因素等方面,选择合理的分段、测量点的数目及布置方法,利用塞规对测车灯各测量点的安装间隙进行测量。这种方法主观性强,观测角度、观测距离、观测环境等因素影响测量者对产品质量的测量精度,测量误差较大。另一种方法是利用三坐标测量机进行测量。结合被测车灯的实际情况以及产品特征,利用三坐标测量仪对车灯轮廓边界上的特征关键点进行逐点的测量,由于三坐标测量仪设备价格昂贵、测量周期长以及低下的测量效率,无法满足车灯产品的批量检测。
发明内容
针对上述情况,为克服现有技术之缺陷,本发明之目的就是提供一种基于三维激光扫描的车灯轮廓质量检测方法,可有效解决人工测量过程中的效率低下、测量精度低以及可靠性差,保证不了产品质量的问题。
本发明解决的技术方案是,一种基于三维激光扫描的车灯轮廓质量检测方法,由PC机、工业机器人、3D激光传感器构成用于车灯轮廓质量检测的三维激光扫描测量系统,及获取车灯轮廓激光扫描数据;以车灯轮廓激光扫描数据为处理对象,通过车灯边界点和标准车灯模具边界点的识别,以标准车灯模具为基准,对车灯三维轮廓数据(信息)与标准的车灯三维轮廓数据(信息)进行比对,检测车灯轮廓质量,具体包括以下步骤:
一、设备安装
由PC机、工业机器人、3D激光传感器构成车灯激光三维轮廓质量检测系统;
(1)将标准的车灯模具固定放置在车灯质量检测工作台,将待检车灯按照工件形状对应方式放置在标准模具上,在车灯质量检测工作台旁边固定安装工业机器人;
(2)3D激光传感器安装在工业机器人的法兰盘上;
(3)PC机安装在车灯质量检测工作台的旁边;
(4)PC机通过RS232串口与工业机器人连接;
(5)PC机通过以太网与3D激光传感器连接;
(6)PC机结合工业机器人实时反馈位置数据(信息)和3D激光传感器测量数据,形成车灯轮廓激光扫描数据;
二、建立测量系统坐标系:
车灯轮廓测量系统的坐标系包括工业机器人基坐标系XYZ、法兰盘坐标系x1y1z1和3D激光传感器坐标系xyz,如图3所示,法兰盘坐标系x1y1z1为过渡坐标系;
工业机器人带动3D激光传感器沿着3D激光传感器坐标系直线运动,扫描被测物体,获取数据,由工业机器人控制柜反馈给计算机,并将数据转换到工业机器人基坐标系下;
三、获取车灯轮廓数据
利用PC机对工业机器人和3D激光传感器开机进行初始化;利用工业机器人,对车灯的曲面形状、大小和放置的位置进行扫描;PC机通过以太网获取3D激光器的测量数据,同时结合工业机器人反馈的坐标位置数据(信息),形成车灯轮廓的一条扫描数据数;
四、车灯轮廓质量检测,方法是:
沿着工业机器人基坐标的Y轴,工业机器人带动激光传感器对车灯和标准的车灯模具进行扫描,得到Y轴上某点位置的一条车灯轮廓扫描数据线,即车灯轮廓扫描数据在工具坐标系XZ坐标平面上的位置坐标数据,该数据采用二元形式对扫描数据进行描述,分别对应数据点在XZ坐标平面的X轴上的坐标投影和Y轴上的坐标投影检测,得到完整的车灯质量轮廓数据,实现基于三维激光扫描的车灯轮廓质量检测。
本发明方法新颖独特,易操作,测量准确,生产效率和自动化程度高,同时也具有低成本的特点,有利于车灯生产时对车灯质量进行严格控制的同时,降低车灯生产成本,经济和社会效益显著。
附图说明
图1为本发明的工艺流程图。
图2为本发明圆球球心求取的工艺流程图。
图3为本发明各坐标系位置关系示意图。
图4为本发明测量数据示意图。
图5为本发明模具边界点示意图。
具体实施方式
以下结合附图和具体情况对本发明的具体实施方式作详细说明。
本发明在具体实施中,一种基于三维激光扫描的车灯轮廓质量检测方法,由PC机、工业机器人、3D激光传感器构成用于车灯轮廓质量检测的三维激光扫描测量系统,及获取车灯轮廓激光扫描数据;以车灯轮廓激光扫描数据为处理对象,通过车灯边界点和标准车灯模具边界点的识别,以标准车灯模具为基准,对车灯三维轮廓数据(信息)与标准的车灯三维轮廓数据(信息)进行比对,检测车灯轮廓质量,具体包括以下步骤:
一、设备安装
由PC机、工业机器人、3D激光传感器构成车灯激光三维轮廓质量检测系统;
(1)将标准的车灯模具固定放置在车灯质量检测工作台,将待检车灯按照工件形状对应方式放置在标准模具上,在车灯质量检测工作台旁边固定安装工业机器人;
(2)3D激光传感器安装在工业机器人的法兰盘上;
(3)PC机安装在车灯质量检测工作台的旁边;
(4)PC机通过RS232串口与工业机器人连接;
(5)PC机通过以太网与3D激光传感器连接;
(6)PC机结合工业机器人实时反馈位置数据(信息)和3D激光传感器测量数据,形成车灯轮廓激光扫描数据;
二、建立测量系统坐标系:
车灯轮廓测量系统的坐标系包括工业机器人基坐标系XYZ、法兰盘坐标系x1y1z1和3D激光传感器坐标系xyz,如图3所示,法兰盘坐标系x1y1z1为过渡坐标系;
工业机器人带动3D激光传感器沿着3D激光传感器坐标系直线运动,扫描被测物体,获取数据,由工业机器人控制柜反馈给计算机,并将数据转换到工业机器人基坐标系下;
车灯轮廓测量系统的坐标系和式(1)实现3D激光传感器坐标系到工业机器人基坐标系之间的变换:
R1为3×3的正交矩阵;
T为平移向量;
三、获取车灯轮廓数据
(1)初始化:PC机、工业机器人和3D激光传感器开机,PC机对工业机器人和3D激光传感器开机进行初始化;
①PC机通过RS232接口连接到工业机器人;
②PC机通过以太网与3D激光器相连来完成控制指令传递与测量数据获取;
(2)PC机根据车灯的曲面形状,大小和放置的位置,规划好工业机器人的扫描路径数据(信息);
(3)工业机器人按照参数配置,工业机器人到达预定初始位置,同时,PC机启动3D激光器的工作状态;
(4)工业机器人在向目标运动过程中,PC机遵循RS232接口协议PC机向工业机器人发送包含查询工业机器人当前的位置数据(信息)的指令包,将工业机器人当前位置数据(信息)与姿态数据(信息)一起发送给PC机;
(5)PC机通过以太网获取3D激光器的测量数据,同时结合工业机器人反馈的坐标位置数据(信息),形成车灯轮廓的一条扫描数据数;
四、车灯轮廓质量检测,方法是:
沿着工业机器人基坐标的Y轴,工业机器人带动激光传感器对车灯和标准的车灯模具进行扫描,得到Y轴上某点位置的一条车灯轮廓扫描数据线,即车灯轮廓扫描数据在工具坐标系XZ坐标平面上的位置坐标数据,该数据采用二元形式对扫描数据进行描述,分别对应数据点在XZ坐标平面的X轴上的坐标投影和Y轴上的坐标投影,数据单位采用毫米(mm),具体是:
(1)获取车灯、模具的激光扫描测量数据后,在XZ坐标系中,利用二元式p1(x1,z1),p2(x2,z2),…pi(xi,zi),…pn(xn,zn)记录存储所获取到的一条车灯轮廓扫描数据点为p1,p2,…,pl,pl+1,…,pn
n--获得车灯轮廓扫描数据的数据点个数;
pi(xi,zi)--车灯扫描激光线测量数据上的第i个数据点;
xi--车灯扫描数据线的第i个数据点在X轴上的坐标,单位:毫米;
zi--车灯扫描数据线的第i个数据点在Z轴上的坐标,单位:毫米;
(2)分析车灯轮廓扫描数据激光线,在车灯表面、模具表面上形成了两段连续的数据点,车灯轮廓边界点位于第一段数据的右边端点处,模具边界点位于第二段数据凸起的顶点处,数据点记录为:p1点为激光线的起点,pl点为车灯轮廓边界点,pl+1点为激光线在pl右端的起始点,pn点为激光线最右端的点;
(3)设置车灯轮廓边界点判断阈值等于0.3mm,设置车灯轮廓扫描数据点当前处理的点在所获取车灯轮廓扫描数据中的位置k=1;
(4)将k取值与车灯轮廓扫描数据的数据点个数n进行大小比较,当k≥n,说明当前该条车灯轮廓扫描数据点车灯轮廓质量检测完毕,跳出本条车灯轮廓扫描数据点的处理,转入步骤(1)处理下一条车灯轮廓扫描数据点;否则继续执行;
(5)根据式(2)计算激光扫描线上点pk(xk,zk)的相邻点Z轴坐标差△Zk
Δzk=|zk-zk-1| 式(2)
Δzk--点pk(xk,zk)的相邻点与相邻点pk+1(xk+1,zk+1)的Z轴坐标差,单位:毫米;
zk--激光线上点pk(xk,zk)在Z轴上投影坐标,单位:毫米;
zk-1--激光线上点pk-1(xk-1,zk-1)在Z轴上投影坐标,单位:毫米。
(6)根据式(3)判断点pk(xk,zk)的相邻点Z轴坐标差是否满足要求:
Δzk≥δSET 式(3)
δSET--表示车灯轮廓边界点判断阈值,单位:毫米;
Δzk--点pk(xk,zk)的相邻点Z轴坐标差,单位:毫米;
当pk(xk,zk)的Δzk满足式(3),则该点是车灯激光扫描线的拐点,也就是车灯的轮廓边界点,记录该点XZ平面上的对应的坐标;当pk(xk,zk)的Δzk不满足式(3),则该点不是车灯的轮廓边界点,则车灯轮廓扫描数据点当前处理的点在所获取车灯轮廓扫描数据中的位置k增加1,重复步骤(5)-(6)判断下一个点pk+1(xk+1,zk+1)是否为车灯的轮廓边界点;
(7)记录存储当前车灯轮廓扫描数据点的车灯轮廓边界点为pl
(8)利用pl+1(xl+1,zl+1),pl+2(xl+2,zl+2),…pn(xn,zn)表示标准的车灯模具扫描数据在XZ坐标系中的点。在pl+1和ph点之间选取连续的M个点,其坐标依次为pl+1(xl+1,zl+1),pl+2(xl+2,zl+2),…,pl+M(xl+M,zl+M),在点ph右边同样选取连续的M个pl+1+N-M(xl+1+N-M,zl+1+N-M),pl+2+N-M(xl+2+N-M,zl+2+N-M),…,pl+N(xl+N,zl+N);
(9)采用最小二乘法原理对pl+1(xl+1,zl+1),pl+2(xl+2,zl+2),…,pl+M(xl+M,zl+M)进行直线拟合,根据式(4)得到拟合的直线f1(x)=a1x+b1
a1--直线f1(x)的斜率;
b1--直线f1(x)在Z轴的平移量,单位:毫米;
xi--车灯扫描数据线的点在X轴上的坐标,单位:毫米;
zi--车灯扫描数据线的点在Z轴上的坐标,单位:毫米;
M--拟合直线的数据点的数量;
(10)采用最小二乘法对pl+1+N-M(xl+1+N-M,zl+1+N-M),pl+2+N-M(xl+2+N-M,zl+2+N-M),…,pl+N(xl+N,zl+N)进行直线拟合,根据式(5)得到拟合的直线f2(x)=a2x+b2
a2--直线f2(x)的斜率;
b2--直线f2(x)在Z轴的平移量,单位:毫米;
xi--车灯扫描数据线的点在X轴上的坐标,单位:毫米;
zi--车灯扫描数据线的点在Z轴上的坐标,单位:毫米;
M--拟合直线的数据点的数量;
(11)根据式(6)计算直线f1(x)=a1x+b1和f2(x)=a2x+b2的交点C(xh,zh):
xh--交点C(xh,zh)在X轴上的坐标,单位:毫米;
zh--交点C(xh,zh)在Z轴上的坐标,单位:毫米;
a1--直线f1(x)的斜率;
a2--直线f2(x)的斜率;
b1--直线f1(x)在Z轴的平移量,单位:毫米;
b2--直线f2(x)在Z轴的平移量,单位:毫米;
(12)记录存储当前车灯轮廓扫描数据点的车灯模具轮廓点记录为ph
(13)Y轴上某点位置的车灯轮廓扫描数据的车灯轮廓边界点和模具边界点识别完毕之后,对某个Y轴上下一点位置的车灯轮廓扫描数据按照(1)-(12)步骤进行车灯轮廓扫描数据的车灯轮廓边界点和模具边界点识别;
(14)对Y轴上所有位置的车灯轮廓扫描数据进行车灯轮廓边界点识别,确定车灯轮廓边界点阈值δSET,并记录存储车灯轮廓边界点和模具边界点,直到整个车灯扫描完毕,对所有的边界点进行拼接,从而得到完整的车灯质量轮廓数据;
要指出的是,车灯轮廓边界点阈值δSET是十分重要的,如果将该阈值设置得太低的话,则会得到很多的车灯轮廓边界点,这一点与车灯轮廓边界点的唯一性相矛盾;如果将该阈值设置得太高的话,则会错失正确的车灯轮廓边界点。通常参数采用柔性设计,也就算是说通过大量的实验得到该阈值,并且不同的型号的车灯其边界阈值也有所变化。
为了保证使用效果和使用方便,所述的工业机器人型号为:SD500,该工业机器人的主要技术参数描述:手腕负载3KG,最大工作半径500mm,6个自由度,定位精度为±0.02mm,运行位姿的重复性精度达到了0.01mm,运行路径的精确度在0.21mm与0.38mm之间,其运行路径重复性精度为0.07-0.16mm,上海新时达电气股份有限公司制造。
所述的3D激光传感器的型号为:LLT2900-25,该3D激光传感器将激光发射源和图像传感器集合于一体,且内置了处理器采集到的原始数据,其主要技术参数描述为:X轴1280测量点/扫描线,Z轴分辨率2μm,扫描频率2000Hz,高度方向测量范围25mm,德国米铱公司制造。
所述的PC机通常为普通的台式计算机或者笔记本式计算机。
本发明方法新颖独特,易操作,自动化程度高,工作效率高,测试准确,有效保证车灯的产品质量,并经实地试验和应用,取得了非常好的有益技术效果,有很强的实用价值,有关试验资料如下:
1、车灯轮廓扫描路径设置
在测量环境温度为15±2℃,测量环境湿度为5%的条件下,工业机器人的某条运动路径的各点设置如表1所示:
表1 工业机器人的各运动路径点设置
其中,点0为路径一运动起点,点1为路径一终点,点2为路径一运动起点,点3为路径二终点,点4为路径三运动起点,点5为路径三终点,点6为路径四运动起点,点7为路径四终点。
2、车灯轮廓质量检测数据
车灯轮廓质量检验目标是车灯轮廓最大允许误差为±0.05mm。速度设置为20mm/s,3D激光传感器的数据采集速度为200帧/秒,曝光值设置为350us,X轴的分辨率为0.13mm,Z轴分辨率为0.09mm。工业机器人带动激光传感器采集车灯边缘轮廓线测量数据。选取车灯的其中一条车灯边缘轮廓扫描数据线,在车灯边缘轮廓扫描数据线上任意选取测量点A1、A2、A3,各点的坐标值如表2所示。测量点A1、A2、A3在标准车灯模具的坐标值如表3所示。
表2 点A1、A2、A3(单位:mm)
位置点 X轴 Y轴 Z轴
A1 251.032 -279.799 -12.213
A2 250.015 -240.699 3.211
A3 246.003 -205.899 11.123
表3 标准车灯模具点A1、A2、A3单位:mm)
位置点 X轴 Y轴 Z轴
A1 251.012 -279.801 -12.198
A2 250.014 -240.701 3.199
A3 246.012 -205.901 11.119
从表2和表3中可以看出,在点A1、A2、A3处的三维轮廓测量误差为0.047mm、0.087mm、0.042mm,三点均小于车灯边缘轮廓测量的最大允许误差0.1mm,说明车灯质量合格。
3、车灯轮廓质量检测重复性试验
在验证了车灯轮廓质量检测方法的准确有效性后,进一步分析讨论测量的重复性、稳定性。
在相同的条件下,重复测量车灯总成在A1点处的三维轮廓值10次,10次重复测量工业机器人的运行起点为表1中的点2,运行终点为表1中的点3,运行速度为30mm/s,激光传感器的曝光值为350us、采样速度为200帧/秒、X轴分辨率为0.13mm,10次测量得到的数据如表4所示。
表4 A1点处车灯与模具10次重复测量数据(单位:mm)
从表4可以看出,10次重复测量测得A1点处车灯轮廓误差平均值为0.057,且10次测量中最大的测量误差为0.079mm,小于车灯边缘轮廓测量的最大允许误差0.1mm,精度平均提高43%,而且经反复试验,均取得了相同或相近似的结果,验证了本发明测量方法的稳定可靠,有效保证了车灯轮廓的测量,保证产品质量,具有很强的实际应用价值,经济和社会效益显著。

Claims (5)

1.一种基于三维激光扫描的车灯轮廓质量检测方法,其特征在于,由PC机、工业机器人、3D激光传感器构成用于车灯轮廓质量检测的三维激光扫描测量系统,及获取车灯轮廓激光扫描数据;以车灯轮廓激光扫描数据为处理对象,通过车灯边界点和标准车灯模具边界点的识别,以标准车灯模具为基准,对车灯三维轮廓数据与标准的车灯三维轮廓数据进行比对,检测车灯轮廓质量,包括以下步骤:
一、设备安装
由PC机、工业机器人、3D激光传感器构成车灯激光三维轮廓质量检测系统;
(1)将标准的车灯模具固定放置在车灯质量检测工作台,将待检车灯按照工件形状对应方式放置在标准模具上,在车灯质量检测工作台旁边固定安装工业机器人;
(2)3D激光传感器安装在工业机器人的法兰盘上;
(3)PC机安装在车灯质量检测工作台的旁边;
(4)PC机通过RS232串口与工业机器人连接;
(5)PC机通过以太网与3D激光传感器连接;
(6)PC机结合工业机器人实时反馈位置数据和3D激光传感器测量数据,形成车灯轮廓激光扫描数据;
二、建立测量系统坐标系:
车灯轮廓测量系统的坐标系包括工业机器人基坐标系XYZ、法兰盘坐标系x1y1z1和3D激光传感器坐标系xyz,法兰盘坐标系x1y1z1为过渡坐标系;
工业机器人带动3D激光传感器沿着3D激光传感器坐标系直线运动,扫描被测物体,获取数据,由工业机器人控制柜反馈给计算机,并将数据转换到工业机器人基坐标系下;
三、获取车灯轮廓数据
利用PC机对工业机器人和3D激光传感器开机进行初始化;利用工业机器人,对车灯的曲面形状、大小和放置的位置进行扫描;PC机通过以太网获取3D激光器的测量数据,同时结合工业机器人反馈的坐标位置数据,形成车灯轮廓的一条扫描数据数;
四、车灯轮廓质量检测,方法是:
沿着工业机器人基坐标的Y轴,工业机器人带动激光传感器对车灯和标准的车灯模具进行扫描,得到Y轴上某点位置的一条车灯轮廓扫描数据线,即车灯轮廓扫描数据在工具坐标系XZ坐标平面上的位置坐标数据,该数据采用二元形式对扫描数据进行描述,分别对应数据点在XZ坐标平面的X轴上的坐标投影和Y轴上的坐标投影检测,得到完整的车灯质量轮廓数据,实现基于三维激光扫描的车灯轮廓质量检测。
2.根据权利要求1所述的基于三维激光扫描的车灯轮廓质量检测方法,其特征在于,由PC机、工业机器人、3D激光传感器构成用于车灯轮廓质量检测的三维激光扫描测量系统,及获取车灯轮廓激光扫描数据;以车灯轮廓激光扫描数据为处理对象,通过车灯边界点和标准车灯模具边界点的识别,以标准车灯模具为基准,对车灯三维轮廓数据与标准的车灯三维轮廓数据进行比对,检测车灯轮廓质量,具体包括以下步骤:
一、设备安装
由PC机、工业机器人、3D激光传感器构成车灯激光三维轮廓质量检测系统;
(1)将标准的车灯模具固定放置在车灯质量检测工作台,将待检车灯按照工件形状对应方式放置在标准模具上,在车灯质量检测工作台旁边固定安装工业机器人;
(2)3D激光传感器安装在工业机器人的法兰盘上;
(3)PC机安装在车灯质量检测工作台的旁边;
(4)PC机通过RS232串口与工业机器人连接;
(5)PC机通过以太网与3D激光传感器连接;
(6)PC机结合工业机器人实时反馈位置数据和3D激光传感器测量数据,形成车灯轮廓激光扫描数据;
二、建立测量系统坐标系:
车灯轮廓测量系统的坐标系包括工业机器人基坐标系XYZ、法兰盘坐标系x1y1z1和3D激光传感器坐标系xyz,法兰盘坐标系x1y1z1为过渡坐标系;
工业机器人带动3D激光传感器沿着3D激光传感器坐标系直线运动,扫描被测物体,获取数据,由工业机器人控制柜反馈给计算机,并将数据转换到工业机器人基坐标系下;
车灯轮廓测量系统的坐标系和式(1)实现3D激光传感器坐标系到工业机器人基坐标系之间的变换:
R1为3×3的正交矩阵;
T为平移向量;
三、获取车灯轮廓数据
(1)初始化:PC机、工业机器人和3D激光传感器开机,PC机对工业机器人和3D激光传感器开机进行初始化;
①PC机通过RS232接口连接到工业机器人;
②PC机通过以太网与3D激光器相连来完成控制指令传递与测量数据获取;
(2)PC机根据车灯的曲面形状,大小和放置的位置,规划好工业机器人的扫描路径数据;
(3)工业机器人按照参数配置,工业机器人到达预定初始位置,同时,PC机启动3D激光器的工作状态;
(4)工业机器人在向目标运动过程中,PC机遵循RS232接口协议PC机向工业机器人发送包含查询工业机器人当前的位置数据的指令包,将工业机器人当前位置数据与姿态数据一起发送给PC机;
(5)PC机通过以太网获取3D激光器的测量数据,同时结合工业机器人反馈的坐标位置数据,形成车灯轮廓的一条扫描数据数;
四、车灯轮廓质量检测,方法是:
沿着工业机器人基坐标的Y轴,工业机器人带动激光传感器对车灯和标准的车灯模具进行扫描,得到Y轴上某点位置的一条车灯轮廓扫描数据线,即车灯轮廓扫描数据在工具坐标系XZ坐标平面上的位置坐标数据,该数据采用二元形式对扫描数据进行描述,分别对应数据点在XZ坐标平面的X轴上的坐标投影和Y轴上的坐标投影,数据单位采用毫米(mm),具体是:
(1)获取车灯、模具的激光扫描测量数据后,在XZ坐标系中,利用二元式p1(x1,z1),p2(x2,z2),…pi(xi,zi),…pn(xn,zn)记录存储所获取到的一条车灯轮廓扫描数据点为p1,p2,…,pl,pl+1,…,pn
n--获得车灯轮廓扫描数据的数据点个数;
pi(xi,zi)--车灯扫描激光线测量数据上的第i个数据点;
xi--车灯扫描数据线的第i个数据点在X轴上的坐标,单位:毫米;
zi--车灯扫描数据线的第i个数据点在Z轴上的坐标,单位:毫米;
(2)分析车灯轮廓扫描数据激光线,在车灯表面、模具表面上形成了两段连续的数据点,车灯轮廓边界点位于第一段数据的右边端点处,模具边界点位于第二段数据凸起的顶点处,数据点记录为:p1点为激光线的起点,pl点为车灯轮廓边界点,pl+1点为激光线在pl右端的起始点,pn点为激光线最右端的点;
(3)设置车灯轮廓边界点判断阈值等于0.3mm,设置车灯轮廓扫描数据点当前处理的点在所获取车灯轮廓扫描数据中的位置k=1;
(4)将k取值与车灯轮廓扫描数据的数据点个数n进行大小比较,当k≥n,说明当前该条车灯轮廓扫描数据点车灯轮廓质量检测完毕,跳出本条车灯轮廓扫描数据点的处理,转入步骤(1)处理下一条车灯轮廓扫描数据点;否则继续执行;
(5)根据式(2)计算激光扫描线上点pk(xk,zk)的相邻点Z轴坐标差△Zk
Δzk=|zk-zk-1| 式(2)
Δzk--点pk(xk,zk)的相邻点与相邻点pk+1(xk+1,zk+1)的Z轴坐标差,单位:毫米;
zk--激光线上点pk(xk,zk)在Z轴上投影坐标,单位:毫米;
zk-1--激光线上点pk-1(xk-1,zk-1)在Z轴上投影坐标,单位:毫米,
(6)根据式(3)判断点pk(xk,zk)的相邻点Z轴坐标差是否满足要求:
Δzk≥δSET 式(3)
δSET--表示车灯轮廓边界点判断阈值,单位:毫米;
Δzk--点pk(xk,zk)的相邻点Z轴坐标差,单位:毫米;
当pk(xk,zk)的Δzk满足式(3),则该点是车灯激光扫描线的拐点,也就是车灯的轮廓边界点,记录该点XZ平面上的对应的坐标;当pk(xk,zk)的Δzk不满足式(3),则该点不是车灯的轮廓边界点,则车灯轮廓扫描数据点当前处理的点在所获取车灯轮廓扫描数据中的位置k增加1,重复步骤(5)-(6)判断下一个点pk+1(xk+1,zk+1)是否为车灯的轮廓边界点;
(7)记录存储当前车灯轮廓扫描数据点的车灯轮廓边界点为pl
(8)利用pl+1(xl+1,zl+1),pl+2(xl+2,zl+2),…pn(xn,zn)表示标准的车灯模具扫描数据在XZ坐标系中的点,在pl+1和ph点之间选取连续的M个点,其坐标依次为pl+1(xl+1,zl+1),pl+2(xl+2,zl+2),…,pl+M(xl+M,zl+M),在点ph右边同样选取连续的M个pl+1+N-M(xl+1+N-M,zl+1+N-M),pl+2+N-M(xl+2+N-M,zl+2+N-M),…,pl+N(xl+N,zl+N);
(9)采用最小二乘法原理对pl+1(xl+1,zl+1),pl+2(xl+2,zl+2),…,pl+M(xl+M,zl+M)进行直线拟合,根据式(4)得到拟合的直线f1(x)=a1x+b1
a1--直线f1(x)的斜率;
b1--直线f1(x)在Z轴的平移量,单位:毫米;
xi--车灯扫描数据线的点在X轴上的坐标,单位:毫米;
zi--车灯扫描数据线的点在Z轴上的坐标,单位:毫米;
M--拟合直线的数据点的数量;
(10)采用最小二乘法对pl+1+N-M(xl+1+N-M,zl+1+N-M),pl+2+N-M(xl+2+N-M,zl+2+N-M),…,pl+N(xl+N,zl+N)进行直线拟合,根据式(5)得到拟合的直线f2(x)=a2x+b2
a2--直线f2(x)的斜率;
b2--直线f2(x)在Z轴的平移量,单位:毫米;
xi--车灯扫描数据线的点在X轴上的坐标,单位:毫米;
zi--车灯扫描数据线的点在Z轴上的坐标,单位:毫米;
M--拟合直线的数据点的数量;
(11)根据式(6)计算直线f1(x)=a1x+b1和f2(x)=a2x+b2的交点C(xh,zh):
xh--交点C(xh,zh)在X轴上的坐标,单位:毫米;
zh--交点C(xh,zh)在Z轴上的坐标,单位:毫米;
a1--直线f1(x)的斜率;
a2--直线f2(x)的斜率;
b1--直线f1(x)在Z轴的平移量,单位:毫米;
b2--直线f2(x)在Z轴的平移量,单位:毫米;
(12)记录存储当前车灯轮廓扫描数据点的车灯模具轮廓点记录为ph
(13)Y轴上某点位置的车灯轮廓扫描数据的车灯轮廓边界点和模具边界点识别完毕之后,对某个Y轴上下一点位置的车灯轮廓扫描数据按照(1)-(12)步骤进行车灯轮廓扫描数据的车灯轮廓边界点和模具边界点识别;
(14)对Y轴上所有位置的车灯轮廓扫描数据进行车灯轮廓边界点识别,确定车灯轮廓边界点阈值δSET,并记录存储车灯轮廓边界点和模具边界点,直到整个车灯扫描完毕,对所有的边界点进行拼接,从而得到完整的车灯质量轮廓数据。
3.根据权利要求1或2所述的基于三维激光扫描的车灯轮廓质量检测方法,其特征在于,所述的工业机械器人型号为SD500,手腕负载3KG,最大工作半径500mm,6个自由度,定位精度为±0.02mm,运行位姿的重复性精度达到了0.01mm,运行路径的精确度在0.21mm与0.38mm之间,其运行路径重复性精度为0.07-0.16mm。
4.根据权利要求1或2所述的基于三维激光扫描的车灯轮廓质量检测方法,其特征在于,所述的3D激光传感器的型号为:LLT2900-25,该3D激光传感器将激光发射源和图像传感器集合于一体,且内置了处理器采集到的原始数据,X轴1280测量点/扫描线,Z轴分辨率2μm,扫描频率2000Hz,高度方向测量范围25mm。
5.根据权利要求1或2所述的基于三维激光扫描的车灯轮廓质量检测方法,其特征在于,所述的PC机为台式计算机或者笔记本式计算机。
CN201810710544.5A 2018-07-02 2018-07-02 一种基于三维激光扫描的车灯轮廓质量检测方法 Pending CN108662989A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810710544.5A CN108662989A (zh) 2018-07-02 2018-07-02 一种基于三维激光扫描的车灯轮廓质量检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810710544.5A CN108662989A (zh) 2018-07-02 2018-07-02 一种基于三维激光扫描的车灯轮廓质量检测方法

Publications (1)

Publication Number Publication Date
CN108662989A true CN108662989A (zh) 2018-10-16

Family

ID=63773393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810710544.5A Pending CN108662989A (zh) 2018-07-02 2018-07-02 一种基于三维激光扫描的车灯轮廓质量检测方法

Country Status (1)

Country Link
CN (1) CN108662989A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109341579A (zh) * 2018-10-26 2019-02-15 巨轮(广州)机器人与智能制造有限公司 车灯外形检测方法
CN109883349A (zh) * 2019-01-24 2019-06-14 深圳市新杰斯锐电子科技有限公司 一种变压器引脚检测系统
CN110645900A (zh) * 2019-09-26 2020-01-03 东北大学 边坡影像实时获取装置、边坡裂缝实时识别形变监测方法
CN114590199A (zh) * 2021-11-30 2022-06-07 常州市辉睿车业有限公司 一种led车灯故障诊断反馈系统
CN115841484A (zh) * 2022-12-30 2023-03-24 武汉誉城千里建工有限公司 一种基于三维激光扫描的钢结构焊接质量检测系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU974115A1 (ru) * 1980-11-03 1982-11-15 Предприятие П/Я А-1705 Устройство дл контрол цилиндрических линз
US5129010A (en) * 1989-12-15 1992-07-07 Kabushiki Kaisha Toyoto Chuo Kenkyusho System for measuring shapes and dimensions of gaps and flushnesses on three dimensional surfaces of objects
CN103837095A (zh) * 2014-03-18 2014-06-04 华中科技大学 一种三维激光扫描方法及装置
CN103968771A (zh) * 2014-05-14 2014-08-06 上海理工大学 仪表盘与仪表台的间隙面差测量方法
CN203772217U (zh) * 2014-02-27 2014-08-13 上海思琢自动化科技有限公司 非接触式柔性在线尺寸测量装置
WO2015059136A1 (de) * 2013-10-25 2015-04-30 Zumtobel Lighting Gmbh Melanopische leuchte
CN106705956A (zh) * 2017-02-28 2017-05-24 南京工程学院 工业机器人末端位姿快速测量装置及其测量方法
CN107127755A (zh) * 2017-05-12 2017-09-05 华南理工大学 一种三维点云的实时采集装置及机器人打磨轨迹规划方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU974115A1 (ru) * 1980-11-03 1982-11-15 Предприятие П/Я А-1705 Устройство дл контрол цилиндрических линз
US5129010A (en) * 1989-12-15 1992-07-07 Kabushiki Kaisha Toyoto Chuo Kenkyusho System for measuring shapes and dimensions of gaps and flushnesses on three dimensional surfaces of objects
WO2015059136A1 (de) * 2013-10-25 2015-04-30 Zumtobel Lighting Gmbh Melanopische leuchte
CN203772217U (zh) * 2014-02-27 2014-08-13 上海思琢自动化科技有限公司 非接触式柔性在线尺寸测量装置
CN103837095A (zh) * 2014-03-18 2014-06-04 华中科技大学 一种三维激光扫描方法及装置
CN103968771A (zh) * 2014-05-14 2014-08-06 上海理工大学 仪表盘与仪表台的间隙面差测量方法
CN106705956A (zh) * 2017-02-28 2017-05-24 南京工程学院 工业机器人末端位姿快速测量装置及其测量方法
CN107127755A (zh) * 2017-05-12 2017-09-05 华南理工大学 一种三维点云的实时采集装置及机器人打磨轨迹规划方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109341579A (zh) * 2018-10-26 2019-02-15 巨轮(广州)机器人与智能制造有限公司 车灯外形检测方法
CN109883349A (zh) * 2019-01-24 2019-06-14 深圳市新杰斯锐电子科技有限公司 一种变压器引脚检测系统
CN110645900A (zh) * 2019-09-26 2020-01-03 东北大学 边坡影像实时获取装置、边坡裂缝实时识别形变监测方法
CN114590199A (zh) * 2021-11-30 2022-06-07 常州市辉睿车业有限公司 一种led车灯故障诊断反馈系统
CN114590199B (zh) * 2021-11-30 2023-08-11 常州市辉睿车业有限公司 一种led车灯故障诊断反馈系统
CN115841484A (zh) * 2022-12-30 2023-03-24 武汉誉城千里建工有限公司 一种基于三维激光扫描的钢结构焊接质量检测系统
CN115841484B (zh) * 2022-12-30 2023-04-25 武汉誉城千里建工有限公司 一种基于三维激光扫描的钢结构焊接质量检测系统

Similar Documents

Publication Publication Date Title
CN109489580B (zh) 一种航空发动机叶片表面加工的在机点云检测及补偿方法
CN108662989A (zh) 一种基于三维激光扫描的车灯轮廓质量检测方法
CN108801914B (zh) 一种对多沟槽型面板材成形缺陷的检测方法及检测系统
Sun et al. Laser displacement sensor in the application of aero-engine blade measurement
Sładek et al. The hybrid contact–optical coordinate measuring system
CN114041168A (zh) 自动化360度密集点对象检验
CN107315391B (zh) 一种数控机床在线检测的预行程误差补偿方法
CN205383997U (zh) 一种锥光全息三维扫描装置
CN107289876A (zh) 多轴联动的视觉、激光复合式非接触测量装置及测量方法
CN109084699A (zh) 一种基于固定点的车灯轮廓测量系统的标定方法
Kapłonek et al. Laser methods based on an analysis of scattered light for automated, in-process inspection of machined surfaces: A review
CN116402792A (zh) 一种基于三维点云的空间孔位对接方法
Cheng et al. Integrated laser/CMM system for the dimensional inspection of objects made of soft material
CN111546330A (zh) 一种自动化工件坐标系标定方法
CN109141329B (zh) 一种基于一维触发式测头的滚珠丝杆在线测量方法
Chen et al. Examining the profile accuracy of grinding wheels used for microdrill fluting by an image-based contour matching method
Modica et al. Can a low cost sensing system be exploited for high precision machining?
Li et al. A high-speed in situ measuring method for inner dimension inspection
Zexiao et al. Modeling and calibration of a structured-light-sensor-based five-axis scanning system
CN116466649A (zh) 一种基于三维激光扫描分析的机床加工系统
CN110405259A (zh) 基于多传感器集成测量的自由曲面类零件加工系统
CN110021027B (zh) 一种基于双目视觉的切边点计算方法
Achelker et al. Performance evaluation of machine tool probe for in-process inspection of 2d and 3d geometries
Rekas et al. Gapi nski
Chekh et al. Extrinsic calibration and kinematic modelling of a laser line triangulation sensor integrated in an intelligent fixture with 3 degrees of freedom

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181016