CN108659440B - A kind of preparation method of secondary swelling and crosslinking to obtain high-strength hydrogel - Google Patents
A kind of preparation method of secondary swelling and crosslinking to obtain high-strength hydrogel Download PDFInfo
- Publication number
- CN108659440B CN108659440B CN201810593094.6A CN201810593094A CN108659440B CN 108659440 B CN108659440 B CN 108659440B CN 201810593094 A CN201810593094 A CN 201810593094A CN 108659440 B CN108659440 B CN 108659440B
- Authority
- CN
- China
- Prior art keywords
- calcium
- hydrogel
- alginate
- acrylamide
- silicate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000017 hydrogel Substances 0.000 title claims abstract description 70
- 238000004132 cross linking Methods 0.000 title claims abstract description 25
- 206010042674 Swelling Diseases 0.000 title claims abstract description 24
- 230000008961 swelling Effects 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000007864 aqueous solution Substances 0.000 claims abstract description 38
- 239000000378 calcium silicate Substances 0.000 claims abstract description 35
- 229910052918 calcium silicate Inorganic materials 0.000 claims abstract description 35
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 claims abstract description 35
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000004115 Sodium Silicate Substances 0.000 claims abstract description 30
- 229910001424 calcium ion Inorganic materials 0.000 claims abstract description 30
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052911 sodium silicate Inorganic materials 0.000 claims abstract description 30
- 239000000648 calcium alginate Substances 0.000 claims abstract description 28
- 235000010410 calcium alginate Nutrition 0.000 claims abstract description 28
- 229960002681 calcium alginate Drugs 0.000 claims abstract description 28
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 claims abstract description 28
- 229920002401 polyacrylamide Polymers 0.000 claims abstract description 27
- 239000002105 nanoparticle Substances 0.000 claims abstract description 22
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 20
- 239000001257 hydrogen Substances 0.000 claims abstract description 20
- 238000002791 soaking Methods 0.000 claims abstract description 20
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 claims abstract description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000661 sodium alginate Substances 0.000 claims abstract description 14
- 235000010413 sodium alginate Nutrition 0.000 claims abstract description 14
- 229940005550 sodium alginate Drugs 0.000 claims abstract description 14
- -1 hydrogen ions Chemical class 0.000 claims abstract description 13
- 238000011065 in-situ storage Methods 0.000 claims abstract description 9
- 239000000741 silica gel Substances 0.000 claims abstract description 9
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 9
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 7
- 230000000694 effects Effects 0.000 claims abstract description 4
- 108010025899 gelatin film Proteins 0.000 claims description 26
- 239000011521 glass Substances 0.000 claims description 19
- 235000010443 alginic acid Nutrition 0.000 claims description 18
- 229920000615 alginic acid Polymers 0.000 claims description 18
- 239000000243 solution Substances 0.000 claims description 17
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 claims description 14
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 13
- 229940072056 alginate Drugs 0.000 claims description 13
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 12
- 159000000007 calcium salts Chemical class 0.000 claims description 12
- 238000005266 casting Methods 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- 239000000499 gel Substances 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 7
- 239000001110 calcium chloride Substances 0.000 claims description 7
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 7
- 230000003993 interaction Effects 0.000 claims description 7
- 239000012528 membrane Substances 0.000 claims description 7
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 6
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 claims description 6
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 6
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 claims description 5
- 229960001126 alginic acid Drugs 0.000 claims description 5
- 239000000783 alginic acid Substances 0.000 claims description 5
- 150000004781 alginic acids Chemical class 0.000 claims description 5
- 238000010382 chemical cross-linking Methods 0.000 claims description 5
- 239000003431 cross linking reagent Substances 0.000 claims description 5
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 claims description 3
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 claims description 3
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 2
- 238000007790 scraping Methods 0.000 claims 2
- 230000003301 hydrolyzing effect Effects 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 230000007062 hydrolysis Effects 0.000 abstract description 3
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 239000002245 particle Substances 0.000 abstract description 2
- 210000000845 cartilage Anatomy 0.000 abstract 1
- 235000012209 glucono delta-lactone Nutrition 0.000 description 12
- 239000000182 glucono-delta-lactone Substances 0.000 description 12
- 229960003681 gluconolactone Drugs 0.000 description 12
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 10
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 description 6
- 229940062672 calcium dihydrogen phosphate Drugs 0.000 description 6
- 229910000389 calcium phosphate Inorganic materials 0.000 description 6
- 235000019691 monocalcium phosphate Nutrition 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 229960005069 calcium Drugs 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 210000001188 articular cartilage Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/24—Homopolymers or copolymers of amides or imides
- C08J2333/26—Homopolymers or copolymers of acrylamide or methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2405/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
- C08J2405/04—Alginic acid; Derivatives thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Polymerisation Methods In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种二次溶胀交联获得高强度水凝胶的制备方法,属于功能材料领域。The invention relates to a preparation method for obtaining high-strength hydrogel by secondary swelling and crosslinking, and belongs to the field of functional materials.
背景技术Background technique
高分子水凝胶是由高分子三维网络与水组成的多元体系,被广泛地应用于工业、农业、生物和材料领域。但是通常的水凝胶强度低,限制了其进一步实际应用。龚剑萍等提出“双层网络”水凝胶的思想,在形成高交联度的刚性第一层网络的凝胶基础上,其内部合成交联度较低的柔性第二层网络。但是该双化学网络交联水凝胶需要两步聚合,制备过程比较复杂【Advanced Materials.2014,26:436-442】。锁志刚等人用一步法制备了高弹性高韧性聚丙烯酰胺/海藻酸钙(PAM/CaAlg)双网络水凝胶【Nature,2012,489(7414):133-136】,此水凝胶具有良好的生物相容性、优良的润滑性和耐磨性,可达到替代软骨组织的要求。Bakarich等采用3D打印技术制备了纤维增强的PAM/CaAlg水凝胶人工关节软骨替代物【ACS Applied Materials&Interfaces,2014,6(18):15998-16006】。但是在生理环境下,上述双网络水凝胶中的交联离子被释放出来,使凝胶的力学性能迅速下降。柳明珠等将二氧化硅引入PAM/CaAlg水凝胶中,提高了该双网络凝胶的断裂应力和杨氏模量【ChemicalEngineering Journal,2014,240(6):331-337】。Kim等人利用介孔分子筛与聚合物之间存在的范德华力和氢键作用,得到了可在生理溶液中较长时间保持力学性能的PAM/CaAlg杂化水凝胶。吴德成等人首先将短链壳聚糖(CS)通过氢键作用整合到聚丙烯酰胺网络中,使其形成CS微晶和缠结网络,得到具有高机械性能的双网络水凝胶【Advanced Materials,2016,28(33),7178-7184】。但是水凝胶在生理环境下的溶胀问题没有解决。Tiller等通过酶引发在双网络水凝胶中形成了均匀分散的纳米磷酸钙,使水凝胶的弹性模量达到了440MPa【Nature,2017,543(7645):407-410】,但是其韧性较差,难以应用于软骨替代。Polymer hydrogels are multi-component systems composed of three-dimensional polymer networks and water, and are widely used in the fields of industry, agriculture, biology and materials. However, the low strength of common hydrogels limits their further practical applications. Gong Jianping et al. proposed the idea of a "double-layer network" hydrogel. On the basis of a gel that forms a rigid first-layer network with a high degree of cross-linking, a flexible second-layer network with a low degree of cross-linking is synthesized inside. However, the dual-chemical network cross-linked hydrogel requires two-step polymerization, and the preparation process is complicated [Advanced Materials. 2014, 26: 436-442]. Suo Zhigang et al. prepared a high-elasticity and high-toughness polyacrylamide/calcium alginate (PAM/CaAlg) double network hydrogel by one-step method [Nature, 2012, 489(7414): 133-136], this hydrogel It has good biocompatibility, excellent lubricity and wear resistance, and can meet the requirements of replacing cartilage tissue. Bakarich et al. used 3D printing technology to prepare fiber-reinforced PAM/CaAlg hydrogel artificial articular cartilage substitutes [ACS Applied Materials & Interfaces, 2014, 6(18): 15998-16006]. However, under physiological conditions, the cross-linked ions in the above-mentioned dual-network hydrogels are released, resulting in a rapid decline in the mechanical properties of the gels. Liu Mingzhu et al. introduced silica into PAM/CaAlg hydrogel, which improved the fracture stress and Young's modulus of the double network gel [Chemical Engineering Journal, 2014, 240(6): 331-337]. Kim et al. utilized the van der Waals forces and hydrogen bonding between mesoporous molecular sieves and polymers to obtain PAM/CaAlg hybrid hydrogels that can maintain mechanical properties in physiological solutions for a long time. Decheng Wu et al. first integrated short-chain chitosan (CS) into the polyacrylamide network through hydrogen bonding to form CS crystallites and entangled networks to obtain dual-network hydrogels with high mechanical properties [Advanced Materials , 2016, 28(33), 7178-7184]. However, the swelling problem of hydrogels in physiological environment has not been solved. Tiller et al. formed uniformly dispersed nano-calcium phosphate in the double-network hydrogel by enzymatic initiation, and the elastic modulus of the hydrogel reached 440MPa [Nature, 2017, 543(7645): 407-410], but its toughness Poor and difficult to apply to cartilage replacement.
本发明提供了一种二次溶胀交联获得高强度水凝胶的制备方法。首先将较低浓度的硅酸钠与丙烯酰胺及海藻酸钠一起溶于水,引发丙烯酰胺聚合,经钙离子交联在水凝胶中原位生成颗粒较大的硅酸钙纳米粒子,随后将该杂化水凝胶重新浸泡到硅酸钠水溶液中,水凝胶适度溶胀使硅酸钠扩散到水凝胶中,再次将溶胀后的水凝胶用钙离子交联,在水凝胶中原位生成更多的硅酸钙纳米粒子。利用葡萄糖酸-δ-内酯水解释放的氢离子与硅酸钙反应,生成表面含介孔硅胶的硅酸钙。介孔硅胶与海藻酸钙和聚丙烯酰胺发生氢键作用,从而提高了水凝胶的强度和在生理环境下的稳定性。The invention provides a preparation method for obtaining high-strength hydrogel by secondary swelling and cross-linking. First, a lower concentration of sodium silicate is dissolved in water together with acrylamide and sodium alginate to initiate the polymerization of acrylamide, and then calcium silicate nanoparticles with larger particles are formed in situ in the hydrogel by calcium ion cross-linking. The hybrid hydrogel was re-immersed in the sodium silicate aqueous solution, the hydrogel swelled moderately so that the sodium silicate diffused into the hydrogel, and the swollen hydrogel was cross-linked with calcium ions again. generate more calcium silicate nanoparticles. The hydrogen ions released by the hydrolysis of glucono-delta-lactone react with calcium silicate to generate calcium silicate containing mesoporous silica gel on the surface. The mesoporous silica undergoes hydrogen bonding with calcium alginate and polyacrylamide, thereby enhancing the strength and stability of the hydrogel under physiological conditions.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明拟解决的技术问题是聚丙烯酰胺/海藻酸钙双网络水凝胶因钙离子流失难以在生理环境下保持高强度、高韧性和低溶胀的问题。In view of the deficiencies of the prior art, the technical problem to be solved by the present invention is that the polyacrylamide/calcium alginate double network hydrogel is difficult to maintain high strength, high toughness and low swelling under physiological environment due to the loss of calcium ions.
本发明解决所述聚丙烯酰胺/海藻酸钙双网络水凝胶因钙离子流失难以在生理环境下保持高强度、高韧性和低溶胀的问题的技术方案是通过二次溶胀交联获得高强度水凝胶。The technical solution of the present invention to solve the problem that the polyacrylamide/calcium alginate double network hydrogel is difficult to maintain high strength, high toughness and low swelling in a physiological environment due to the loss of calcium ions is to obtain high strength through secondary swelling and crosslinking Hydrogels.
本发明提供了一种二次溶胀交联获得高强度水凝胶的制备方法,其特征是包括以下步骤:The invention provides a preparation method for obtaining high-strength hydrogel by secondary swelling and crosslinking, which is characterized by comprising the following steps:
a)称取0.01-2g硅酸钠,5-15g丙烯酰胺,0.5-2g海藻酸钠,丙烯酰胺质量百分比0.03%-0.30%的化学交联剂,一起溶于50-100ml去离子水中,搅拌溶解均匀,静置消泡后得到铸膜液;a) Weigh 0.01-2g of sodium silicate, 5-15g of acrylamide, 0.5-2g of sodium alginate, and a chemical cross-linking agent with a mass percentage of 0.03%-0.30% of acrylamide, dissolve them in 50-100ml of deionized water, and stir Dissolve evenly, and get the casting liquid after standing for defoaming;
b)配制质量百分比为0.5%-50%的可溶性钙盐水溶液;b) preparing a soluble calcium salt aqueous solution with a mass percentage of 0.5%-50%;
c)向步骤a)制备的铸膜液中加入丙烯酰胺质量百分比0.1%-5%的过硫酸铵,丙烯酰胺质量百分比0.1%-5%的亚硫酸氢钠和丙烯酰胺质量百分比0.01%-2%的四甲基乙二胺,搅拌分散均匀后,立即将该溶液倒入干燥清洁的玻璃板上,用刮膜棒刮成厚度均匀的液膜,在N2保护下紫外照射1-30min引发丙烯酰胺聚合,得到化学交联的凝胶膜;c) Add ammonium persulfate with 0.1%-5% mass percentage of acrylamide, 0.1%-5% mass percentage of acrylamide sodium bisulfite and 0.01%-2% mass percentage of acrylamide to the casting solution prepared in step a). % of tetramethylethylenediamine, after stirring and dispersing evenly, pour the solution into a dry and clean glass plate immediately, scrape it into a liquid film with a uniform thickness with a film scraper, and irradiate it with UV light for 1-30min under the protection of N2 . Acrylamide is polymerized to obtain a chemically cross-linked gel film;
d)将步骤c)得到的化学交联的凝胶膜和玻璃板一起浸泡到步骤b)得到的可溶性钙盐水溶液中,浸泡0.1-24h,在浸泡过程中将凝胶膜从玻璃板上揭下来,可溶性钙盐与海藻酸钠反应形成离子交联网络结构的海藻酸钙水凝胶,同时可溶性钙盐与硅酸钠反应在聚丙烯酰胺/海藻酸钙水凝胶中原位生成硅酸钙纳米粒子,硅酸钙与海藻酸分子链之间通过钙离子交联形成有机-无机杂化结构,这些杂化结构提高了海藻酸盐凝胶网络的稳定性,增强了海藻酸盐网络与聚丙烯酰胺网络之间的“纠缠作用”,分担承载网络变形所转移的应力,提高杂化水凝胶的强度,降低了水凝胶在生理环境下的溶胀;d) Immerse the chemically cross-linked gel film obtained in step c) and the glass plate together in the soluble calcium salt solution obtained in step b) for 0.1-24 hours, and peel off the gel film from the glass plate during the soaking process. Then, soluble calcium salts react with sodium alginate to form calcium alginate hydrogels with an ionic cross-linked network structure, while soluble calcium salts react with sodium silicate to in situ generate calcium silicate in polyacrylamide/calcium alginate hydrogels Nanoparticles, calcium silicate and alginic acid molecular chains are cross-linked by calcium ions to form organic-inorganic hybrid structures. These hybrid structures improve the stability of the alginate gel network and enhance the alginate network and polymer. The "entanglement" between the acrylamide networks shares the stress transferred by the deformation of the bearing network, improves the strength of the hybrid hydrogel, and reduces the swelling of the hydrogel in a physiological environment;
e)将步骤d)得到的含硅酸钙的凝胶膜用去离子水清洗去除表面钙离子,浸泡到质量百分比浓度为0.001%-5%的硅酸钠水溶液中0.1-24h,使硅酸钠扩散到溶胀的水凝胶中,然后,将溶胀的水凝胶重新浸泡在可溶性钙盐水溶液0.1-24h进行二次钙离子交联;e) The calcium silicate-containing gel film obtained in step d) is washed with deionized water to remove surface calcium ions, and then soaked in an aqueous sodium silicate solution with a mass percentage concentration of 0.001%-5% for 0.1-24h to make silicic acid The sodium diffuses into the swollen hydrogel, and then the swollen hydrogel is re-immersed in a soluble calcium salt solution for 0.1-24 h for secondary calcium ion crosslinking;
f)配制质量百分比浓度为0.1%-10%的葡萄糖酸-δ-内酯水溶液,将步骤e)得到的二次钙离子交联的凝胶膜浸泡到葡萄糖酸-δ-内酯水溶液中0.1-24h,葡萄糖酸-δ-内酯水解释放出氢离子,氢离子与硅酸钙反应,在硅酸钙纳米粒子表面形成介孔硅胶结构,得到一种在生理环境下保持高强度的杂化水凝胶;介孔硅胶与海藻酸钙和聚丙烯酰胺发生氢键相互作用,再加上纳米粒子的增强效应,提高了聚丙烯酰胺/海藻酸钙水凝胶在生理环境下的力学稳定性和抗溶胀性。f) Prepare an aqueous solution of glucono-δ-lactone with a concentration of 0.1%-10% by mass, and soak the gel film obtained in step e) with secondary calcium ion cross-linking in the aqueous solution of glucono-δ-lactone for 0.1 -24h, the hydrolysis of glucono-δ-lactone releases hydrogen ions, and the hydrogen ions react with calcium silicate to form a mesoporous silica gel structure on the surface of calcium silicate nanoparticles, obtaining a hybrid that maintains high strength in a physiological environment. Hydrogel; Mesoporous silica gel hydrogen bond interaction with calcium alginate and polyacrylamide, coupled with the enhancement effect of nanoparticles, improves the mechanical stability of polyacrylamide/calcium alginate hydrogel in physiological environment and swelling resistance.
本发明所述的化学交联剂为二甲基丙烯酸乙二醇酯、二乙烯基苯、N,N′-亚甲基双丙烯酰胺和二异氰酸酯中的任意一种或两种以上混合物,所述的可溶性钙盐水溶液为硝酸钙、氯化钙、磷酸二氢钙、硫酸钙水溶液中的任意一种或两种以上混合物。The chemical crosslinking agent of the present invention is any one or a mixture of two or more selected from ethylene glycol dimethacrylate, divinylbenzene, N,N'-methylenebisacrylamide and diisocyanate. The soluble calcium salt aqueous solution is any one or a mixture of two or more of calcium nitrate, calcium chloride, calcium dihydrogen phosphate and calcium sulfate aqueous solution.
本发明制备方法简单,不使用任何有机溶剂,因此得到的材料生物相容性好,可以用于人造皮肤、关节软骨替代物和人工肌腱。The preparation method of the invention is simple and does not use any organic solvent, so the obtained material has good biocompatibility and can be used for artificial skin, articular cartilage substitute and artificial tendon.
具体实施方式Detailed ways
下面介绍本发明的具体实施例,但本发明不受实施例的限制。Specific embodiments of the present invention are described below, but the present invention is not limited by the embodiments.
实施例1.Example 1.
a)称取0.01g硅酸钠,5g丙烯酰胺,0.5g海藻酸钠,丙烯酰胺质量百分比0.03%的二甲基丙烯酸乙二醇酯,一起溶于50ml去离子水中,搅拌溶解均匀,静置消泡后得到铸膜液;a) Weigh 0.01g of sodium silicate, 5g of acrylamide, 0.5g of sodium alginate, ethylene glycol dimethacrylate with a mass percentage of 0.03% acrylamide, dissolve them in 50ml of deionized water, stir to dissolve evenly, and let stand After defoaming, the casting liquid is obtained;
b)配制质量百分比为0.5%的硝酸钙水溶液;b) preparing a calcium nitrate aqueous solution with a mass percentage of 0.5%;
c)向步骤a)制备的铸膜液中加入丙烯酰胺质量百分比0.1%的过硫酸铵,丙烯酰胺质量百分比0.1%的亚硫酸氢钠和丙烯酰胺质量百分比0.01%的四甲基乙二胺,搅拌分散均匀后,立即将该溶液倒入干燥清洁的玻璃板上,用刮膜棒刮成厚度均匀的液膜,在N2保护下紫外照射1min引发丙烯酰胺聚合,得到化学交联的凝胶膜;c) adding ammonium persulfate containing 0.1% by mass of acrylamide, sodium bisulfite containing 0.1% by mass of acrylamide and tetramethylethylenediamine containing 0.01% by mass of acrylamide to the casting solution prepared in step a). After stirring and dispersing evenly, the solution was immediately poured into a dry and clean glass plate, and a liquid film with a uniform thickness was scraped with a film scraper. Under the protection of N2 , UV irradiation for 1 min initiated the polymerization of acrylamide to obtain a chemically cross-linked gel. membrane;
d)将步骤c)得到的化学交联的凝胶膜和玻璃板一起浸泡到步骤b)得到的硝酸钙水溶液中,浸泡0.1h,在浸泡过程中将凝胶膜从玻璃板上揭下来,硝酸钙与海藻酸钠反应形成离子交联网络结构的海藻酸钙水凝胶,同时硝酸钙与硅酸钠反应在聚丙烯酰胺/海藻酸钙水凝胶中原位生成硅酸钙纳米粒子,硅酸钙与海藻酸分子链之间通过钙离子交联形成有机-无机杂化结构,这些杂化结构提高了海藻酸盐凝胶网络的稳定性,增强了海藻酸盐网络与聚丙烯酰胺网络之间的“纠缠作用”,分担承载网络变形所转移的应力,提高杂化水凝胶的强度,降低了水凝胶在生理环境下的溶胀;d) soaking the chemically cross-linked gel film obtained in step c) and the glass plate together in the calcium nitrate aqueous solution obtained in step b) for 0.1 h, and peeling off the gel film from the glass plate during the soaking process, Calcium nitrate reacts with sodium alginate to form calcium alginate hydrogel with ionically cross-linked network structure, while calcium nitrate reacts with sodium silicate to in situ generate calcium silicate nanoparticles in polyacrylamide/calcium alginate hydrogel, silicon The organic-inorganic hybrid structure is formed by calcium ion cross-linking between calcium acid and alginic acid molecular chains. These hybrid structures improve the stability of the alginate gel network and enhance the relationship between the alginate network and the polyacrylamide network. The "entanglement" between them can share the stress transferred by the deformation of the bearing network, improve the strength of the hybrid hydrogel, and reduce the swelling of the hydrogel in the physiological environment;
e)将步骤d)得到的含硅酸钙的凝胶膜用去离子水清洗去除表面钙离子,浸泡到质量百分比浓度为0.001%的硅酸钠水溶液中0.1h,使硅酸钠扩散到溶胀的水凝胶中,然后,将溶胀的水凝胶重新浸泡在硝酸钙水溶液0.1h进行二次钙离子交联;e) The calcium silicate-containing gel film obtained in step d) is washed with deionized water to remove surface calcium ions, and soaked in an aqueous solution of sodium silicate with a concentration of 0.001% by mass for 0.1 h, so that the sodium silicate diffuses into the swelling Then, the swollen hydrogel was re-immersed in calcium nitrate aqueous solution for 0.1 h for secondary calcium ion crosslinking;
f)配制质量百分比浓度为0.1%的葡萄糖酸-δ-内酯水溶液,将步骤e)得到的二次钙离子交联的凝胶膜浸泡到葡萄糖酸-δ-内酯水溶液中0.1h,葡萄糖酸-δ-内酯水解释放出氢离子,氢离子与硅酸钙反应,在硅酸钙纳米粒子表面形成介孔硅胶结构,得到一种在生理环境下保持高强度的杂化水凝胶;介孔硅胶与海藻酸钙和聚丙烯酰胺发生氢键相互作用,再加上纳米粒子的增强效应,提高了聚丙烯酰胺/海藻酸钙水凝胶在生理环境下的力学稳定性和抗溶胀性。f) preparing an aqueous solution of glucono-δ-lactone with a concentration of 0.1% by mass, soaking the gel film obtained in step e) with secondary calcium ion cross-linking in the aqueous solution of glucono-δ-lactone for 0.1 h, and the glucose The acid-delta-lactone is hydrolyzed to release hydrogen ions, and the hydrogen ions react with calcium silicate to form a mesoporous silica gel structure on the surface of calcium silicate nanoparticles to obtain a hybrid hydrogel that maintains high strength in a physiological environment; The hydrogen bonding interaction of mesoporous silica gel with calcium alginate and polyacrylamide, coupled with the enhancement effect of nanoparticles, improves the mechanical stability and swelling resistance of polyacrylamide/calcium alginate hydrogels in physiological environments .
实施例2.Example 2.
a)称取2g硅酸钠,15g丙烯酰胺,2g海藻酸钠,丙烯酰胺质量百分比0.30%的二异氰酸酯,一起溶于100ml去离子水中,搅拌溶解均匀,静置消泡后得到铸膜液;a) Weigh 2g of sodium silicate, 15g of acrylamide, 2g of sodium alginate, and diisocyanate with a mass percentage of 0.30% of acrylamide, dissolve them in 100ml of deionized water together, stir and dissolve evenly, and let stand for defoaming to obtain a casting solution;
b)配制质量百分比为50%的氯化钙水溶液;b) preparing a calcium chloride aqueous solution with a mass percentage of 50%;
c)向步骤a)制备的铸膜液中加入丙烯酰胺质量百分比5%的过硫酸铵,丙烯酰胺质量百分比5%的亚硫酸氢钠和丙烯酰胺质量百分比2%的四甲基乙二胺,搅拌分散均匀后,立即将该溶液倒入干燥清洁的玻璃板上,用刮膜棒刮成厚度均匀的液膜,在N2保护下紫外照射30min引发丙烯酰胺聚合,得到化学交联的凝胶膜;c) adding ammonium persulfate of 5% by mass of acrylamide, sodium bisulfite of 5% by mass of acrylamide and tetramethylethylenediamine of 2% by mass of acrylamide to the casting solution prepared in step a), After stirring and dispersing evenly, the solution was immediately poured into a dry and clean glass plate, and a liquid film with a uniform thickness was scraped with a film scraper. Under the protection of N2 , UV irradiation for 30 min initiated the polymerization of acrylamide to obtain a chemically cross-linked gel. membrane;
d)将步骤c)得到的化学交联的凝胶膜和玻璃板一起浸泡到步骤b)得到的氯化钙水溶液中,浸泡24h,在浸泡过程中将凝胶膜从玻璃板上揭下来,氯化钙与海藻酸钠反应形成离子交联网络结构的海藻酸钙水凝胶,同时氯化钙与硅酸钠反应在聚丙烯酰胺/海藻酸钙水凝胶中原位生成硅酸钙纳米粒子,硅酸钙与海藻酸分子链之间通过钙离子交联形成有机-无机杂化结构,这些杂化结构提高了海藻酸盐凝胶网络的稳定性,增强了海藻酸盐网络与聚丙烯酰胺网络之间的“纠缠作用”,分担承载网络变形所转移的应力,提高杂化水凝胶的强度,降低了水凝胶在生理环境下的溶胀;d) soaking the chemically cross-linked gel film obtained in step c) and the glass plate together in the calcium chloride aqueous solution obtained in step b), soaking for 24 hours, and peeling off the gel film from the glass plate during the soaking process, Calcium chloride reacts with sodium alginate to form calcium alginate hydrogel with ionically cross-linked network structure, and calcium chloride reacts with sodium silicate to in situ generate calcium silicate nanoparticles in polyacrylamide/calcium alginate hydrogel , the organic-inorganic hybrid structure is formed by calcium ion cross-linking between calcium silicate and alginic acid molecular chains, these hybrid structures improve the stability of the alginate gel network, strengthen the alginate network and polyacrylamide The "entanglement" between the networks shares the stress transferred by the deformation of the bearing network, improves the strength of the hybrid hydrogel, and reduces the swelling of the hydrogel in a physiological environment;
e)将步骤d)得到的含硅酸钙的凝胶膜用去离子水清洗去除表面钙离子,浸泡到质量百分比浓度为5%的硅酸钠水溶液中24h,使硅酸钠扩散到溶胀的水凝胶中,然后,将溶胀的水凝胶重新浸泡在氯化钙水溶液24h进行二次钙离子交联;e) The calcium silicate-containing gel film obtained in step d) is washed with deionized water to remove surface calcium ions, and soaked in an aqueous solution of sodium silicate with a concentration of 5% by mass for 24 hours, so that the sodium silicate diffuses into the swollen Then, the swollen hydrogel was re-immersed in calcium chloride aqueous solution for 24h for secondary calcium ion crosslinking;
f)配制质量百分比浓度为10%的葡萄糖酸-δ-内酯水溶液,将步骤e)得到的二次钙离子交联的凝胶膜浸泡到葡萄糖酸-δ-内酯水溶液中24h,葡萄糖酸-δ-内酯水解释放出氢离子,氢离子与硅酸钙反应,在硅酸钙纳米粒子表面形成介孔硅胶结构,得到一种在生理环境下保持高强度的杂化水凝胶;介孔硅胶与海藻酸钙和聚丙烯酰胺发生氢键相互作用,再加上纳米粒子的增强效应,提高了聚丙烯酰胺/海藻酸钙水凝胶在生理环境下的力学稳定性和抗溶胀性。f) preparing an aqueous solution of glucono-δ-lactone with a concentration of 10% by mass, soaking the gel film obtained in step e) with secondary calcium ion cross-linking in the aqueous solution of glucono-δ-lactone for 24 hours, and gluconic acid - δ-lactone is hydrolyzed to release hydrogen ions, which react with calcium silicate to form a mesoporous silica gel structure on the surface of calcium silicate nanoparticles to obtain a hybrid hydrogel that maintains high strength in a physiological environment; The hydrogen bonding interaction of porous silica gel with calcium alginate and polyacrylamide, coupled with the reinforcing effect of nanoparticles, improves the mechanical stability and swelling resistance of polyacrylamide/calcium alginate hydrogels in physiological environments.
实施例3.Example 3.
a)称取1g硅酸钠,1g丙烯酰胺,1g海藻酸钠,丙烯酰胺质量百分比0.10%的N,N′-亚甲基双丙烯酰胺,一起溶于60ml去离子水中,搅拌溶解均匀,静置消泡后得到铸膜液;a) Weigh 1 g of sodium silicate, 1 g of acrylamide, 1 g of sodium alginate, and N,N'-methylenebisacrylamide with a mass percentage of 0.10% acrylamide, dissolve them in 60 ml of deionized water, stir to dissolve evenly, and keep the After defoaming, the casting liquid is obtained;
b)配制质量百分比为5%的磷酸二氢钙水溶液;b) preparing a calcium dihydrogen phosphate aqueous solution with a mass percentage of 5%;
c)向步骤a)制备的铸膜液中加入丙烯酰胺质量百分比1%的过硫酸铵,丙烯酰胺质量百分比1%的亚硫酸氢钠和丙烯酰胺质量百分比1%的四甲基乙二胺,搅拌分散均匀后,立即将该溶液倒入干燥清洁的玻璃板上,用刮膜棒刮成厚度均匀的液膜,在N2保护下紫外照射10min引发丙烯酰胺聚合,得到化学交联的凝胶膜;c) adding ammonium persulfate of 1% by mass of acrylamide, sodium hydrogen sulfite of 1% by mass of acrylamide and tetramethylethylenediamine of 1% by mass of acrylamide to the casting solution prepared in step a), After stirring and dispersing evenly, the solution was immediately poured into a dry and clean glass plate, and a liquid film with a uniform thickness was scraped with a film scraper. Under the protection of N2 , UV irradiation was performed for 10 min to initiate the polymerization of acrylamide to obtain a chemically cross-linked gel. membrane;
d)将步骤c)得到的化学交联的凝胶膜和玻璃板一起浸泡到步骤b)得到的磷酸二氢钙水溶液中,浸泡1h,在浸泡过程中将凝胶膜从玻璃板上揭下来,磷酸二氢钙与海藻酸钠反应形成离子交联网络结构的海藻酸钙水凝胶,同时磷酸二氢钙与硅酸钠反应在聚丙烯酰胺/海藻酸钙水凝胶中原位生成硅酸钙纳米粒子,硅酸钙与海藻酸分子链之间通过钙离子交联形成有机-无机杂化结构,这些杂化结构提高了海藻酸盐凝胶网络的稳定性,增强了海藻酸盐网络与聚丙烯酰胺网络之间的“纠缠作用”,分担承载网络变形所转移的应力,提高杂化水凝胶的强度,降低了水凝胶在生理环境下的溶胀;d) soaking the chemically cross-linked gel film obtained in step c) and the glass plate together in the calcium dihydrogen phosphate aqueous solution obtained in step b), soaking for 1 hour, and peeling off the gel film from the glass plate during the soaking process , Calcium dihydrogen phosphate reacts with sodium alginate to form calcium alginate hydrogel with ion cross-linked network structure, while calcium dihydrogen phosphate reacts with sodium silicate to in situ generate silicic acid in polyacrylamide/calcium alginate hydrogel Calcium nanoparticles, calcium silicate and alginic acid molecular chains are cross-linked by calcium ions to form organic-inorganic hybrid structures. These hybrid structures improve the stability of the alginate gel network and enhance the alginate network. The "entanglement" between the polyacrylamide networks shares the stress transferred by the deformation of the bearing network, improves the strength of the hybrid hydrogel, and reduces the swelling of the hydrogel in a physiological environment;
e)将步骤d)得到的含硅酸钙的凝胶膜用去离子水清洗去除表面钙离子,浸泡到质量百分比浓度为1%的硅酸钠水溶液中1h,使硅酸钠扩散到溶胀的水凝胶中,然后,将溶胀的水凝胶重新浸泡在磷酸二氢钙水溶液1h进行二次钙离子交联;e) The calcium silicate-containing gel film obtained in step d) is washed with deionized water to remove surface calcium ions, and soaked in an aqueous solution of sodium silicate with a concentration of 1% by mass for 1 hour, so that the sodium silicate diffuses into the swollen Then, the swollen hydrogel was re-immersed in calcium dihydrogen phosphate aqueous solution for 1 h for secondary calcium ion crosslinking;
f)配制质量百分比浓度为1%的葡萄糖酸-δ-内酯水溶液,将步骤e)得到的二次钙离子交联的凝胶膜浸泡到葡萄糖酸-δ-内酯水溶液中1h,葡萄糖酸-δ-内酯水解释放出氢离子,氢离子与硅酸钙反应,在硅酸钙纳米粒子表面形成介孔硅胶结构,得到一种在生理环境下保持高强度的杂化水凝胶;介孔硅胶与海藻酸钙和聚丙烯酰胺发生氢键相互作用,再加上纳米粒子的增强效应,提高了聚丙烯酰胺/海藻酸钙水凝胶在生理环境下的力学稳定性和抗溶胀性。f) preparing an aqueous solution of glucono-δ-lactone with a concentration of 1% by mass, soaking the gel film obtained in step e) with secondary calcium ion cross-linking in the aqueous solution of glucono-δ-lactone for 1 h, and gluconic acid - δ-lactone is hydrolyzed to release hydrogen ions, which react with calcium silicate to form a mesoporous silica gel structure on the surface of calcium silicate nanoparticles to obtain a hybrid hydrogel that maintains high strength in a physiological environment; The hydrogen bonding interaction of porous silica gel with calcium alginate and polyacrylamide, coupled with the reinforcing effect of nanoparticles, improves the mechanical stability and swelling resistance of polyacrylamide/calcium alginate hydrogels in physiological environments.
实施例4.Example 4.
a)称取1.5g硅酸钠,10g丙烯酰胺,1.5g海藻酸钠,丙烯酰胺质量百分比0.10%的二乙烯基苯,一起溶于80ml去离子水中,搅拌溶解均匀,静置消泡后得到铸膜液;a) Weigh 1.5g of sodium silicate, 10g of acrylamide, 1.5g of sodium alginate, and divinylbenzene with a mass percentage of 0.10% of acrylamide, dissolve them in 80ml of deionized water together, stir to dissolve evenly, and leave to stand for defoaming to obtain casting liquid;
b)配制质量百分比为1%的硫酸钙水溶液;b) preparing a calcium sulfate aqueous solution with a mass percentage of 1%;
c)向步骤a)制备的铸膜液中加入丙烯酰胺质量百分比1%的过硫酸铵,丙烯酰胺质量百分比1%的亚硫酸氢钠和丙烯酰胺质量百分比1%的四甲基乙二胺,搅拌分散均匀后,立即将该溶液倒入干燥清洁的玻璃板上,用刮膜棒刮成厚度均匀的液膜,在N2保护下紫外照射3min引发丙烯酰胺聚合,得到化学交联的凝胶膜;c) adding ammonium persulfate of 1% by mass of acrylamide, sodium hydrogen sulfite of 1% by mass of acrylamide and tetramethylethylenediamine of 1% by mass of acrylamide to the casting solution prepared in step a), After stirring and dispersing evenly, the solution was immediately poured into a dry and clean glass plate, and a liquid film with a uniform thickness was scraped with a film scraper. Under the protection of N2 , UV irradiation was performed for 3 min to initiate the polymerization of acrylamide to obtain a chemically cross-linked gel. membrane;
d)将步骤c)得到的化学交联的凝胶膜和玻璃板一起浸泡到步骤b)得到的硫酸钙水溶液中,浸泡2h,在浸泡过程中将凝胶膜从玻璃板上揭下来,硫酸钙与海藻酸钠反应形成离子交联网络结构的海藻酸钙水凝胶,同时硫酸钙与硅酸钠反应在聚丙烯酰胺/海藻酸钙水凝胶中原位生成硅酸钙纳米粒子,硅酸钙与海藻酸分子链之间通过钙离子交联形成有机-无机杂化结构,这些杂化结构提高了海藻酸盐凝胶网络的稳定性,增强了海藻酸盐网络与聚丙烯酰胺网络之间的“纠缠作用”,分担承载网络变形所转移的应力,提高杂化水凝胶的强度,降低了水凝胶在生理环境下的溶胀;d) Soak the chemically cross-linked gel film obtained in step c) and the glass plate together in the calcium sulfate aqueous solution obtained in step b), soak for 2 h, peel off the gel film from the glass plate during the soaking process, and remove the gel film from the glass plate with sulfuric acid. Calcium reacts with sodium alginate to form calcium alginate hydrogel with an ionically cross-linked network structure, while calcium sulfate reacts with sodium silicate to in situ generate calcium silicate nanoparticles in polyacrylamide/calcium alginate hydrogel, silicic acid Organic-inorganic hybrid structures are formed between calcium and alginate molecular chains through calcium ion cross-linking. These hybrid structures improve the stability of the alginate gel network and enhance the interaction between the alginate network and the polyacrylamide network. The "entanglement" of the hybrid hydrogel can share the stress transferred by the deformation of the bearing network, improve the strength of the hybrid hydrogel, and reduce the swelling of the hydrogel in the physiological environment;
e)将步骤d)得到的含硅酸钙的凝胶膜用去离子水清洗去除表面钙离子,浸泡到质量百分比浓度为2%的硅酸钠水溶液中2h,使硅酸钠扩散到溶胀的水凝胶中,然后,将溶胀的水凝胶重新浸泡在硫酸钙水溶液2h进行二次钙离子交联;e) The calcium silicate-containing gel film obtained in step d) is washed with deionized water to remove surface calcium ions, and soaked in an aqueous solution of sodium silicate with a concentration of 2% by mass for 2 hours, so that the sodium silicate diffuses into the swollen Then, the swollen hydrogel was re-immersed in calcium sulfate aqueous solution for 2 h for secondary calcium ion crosslinking;
f)配制质量百分比浓度为2%的葡萄糖酸-δ-内酯水溶液,将步骤e)得到的二次钙离子交联的凝胶膜浸泡到葡萄糖酸-δ-内酯水溶液中2h,葡萄糖酸-δ-内酯水解释放出氢离子,氢离子与硅酸钙反应,在硅酸钙纳米粒子表面形成介孔硅胶结构,得到一种在生理环境下保持高强度的杂化水凝胶;介孔硅胶与海藻酸钙和聚丙烯酰胺发生氢键相互作用,再加上纳米粒子的增强效应,提高了聚丙烯酰胺/海藻酸钙水凝胶在生理环境下的力学稳定性和抗溶胀性。f) preparing an aqueous solution of glucono-δ-lactone with a concentration of 2% by mass, soaking the gel film obtained in step e) with secondary calcium ion cross-linking in the aqueous solution of glucono-δ-lactone for 2 hours, and gluconic acid - δ-lactone is hydrolyzed to release hydrogen ions, and the hydrogen ions react with calcium silicate to form a mesoporous silica gel structure on the surface of calcium silicate nanoparticles to obtain a hybrid hydrogel that maintains high strength in a physiological environment; The hydrogen bonding interaction of porous silica gel with calcium alginate and polyacrylamide, coupled with the reinforcing effect of nanoparticles, improved the mechanical stability and swelling resistance of polyacrylamide/calcium alginate hydrogels in physiological environments.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810593094.6A CN108659440B (en) | 2018-06-08 | 2018-06-08 | A kind of preparation method of secondary swelling and crosslinking to obtain high-strength hydrogel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810593094.6A CN108659440B (en) | 2018-06-08 | 2018-06-08 | A kind of preparation method of secondary swelling and crosslinking to obtain high-strength hydrogel |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108659440A CN108659440A (en) | 2018-10-16 |
CN108659440B true CN108659440B (en) | 2020-06-16 |
Family
ID=63774435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810593094.6A Active CN108659440B (en) | 2018-06-08 | 2018-06-08 | A kind of preparation method of secondary swelling and crosslinking to obtain high-strength hydrogel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108659440B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109289947B (en) * | 2018-09-29 | 2020-09-25 | 浙江大学 | Gel-based micro-fluidic chip based on secondary crosslinking and manufacturing method thereof |
CN110655661B (en) * | 2019-09-30 | 2022-03-25 | 常州大学 | A kind of preparation method of polyacrylic acid-polyacrylamide double network hydrogel |
CN111286814B (en) * | 2020-03-18 | 2021-07-20 | 东华大学 | A method for preparing nanocomposite fibers by using grooved hydrogel coagulation |
CN113527723B (en) * | 2021-08-13 | 2022-10-04 | 东北石油大学 | A kind of discontinuous phase modulation agent and its preparation method and application |
CN115432995B (en) * | 2022-06-28 | 2023-09-12 | 广州市北二环交通科技有限公司 | Porous brick prepared from engineering waste slurry |
CN115554462B (en) * | 2022-10-31 | 2023-09-22 | 西安交通大学 | Anti-swelling injectable hydrogel adhesive and preparation method thereof |
CN116807520A (en) * | 2023-06-28 | 2023-09-29 | 南方医科大学 | Method for minimally invasive extraction of tissue fluid without damage and pain |
CN118562158A (en) * | 2024-06-06 | 2024-08-30 | 南京大学 | A photovoltaic cooling and moisture absorbing double network hydrogel and its preparation method and application |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103205006B (en) * | 2013-04-02 | 2015-04-22 | 天津工业大学 | Surface patterning high-strength and high-toughness hybrid hydrogel membrane and preparation method thereof |
-
2018
- 2018-06-08 CN CN201810593094.6A patent/CN108659440B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN108659440A (en) | 2018-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108659440B (en) | A kind of preparation method of secondary swelling and crosslinking to obtain high-strength hydrogel | |
CN109021256A (en) | A kind of hybrid cross-linked and pre-stretching obtains the preparation method of low swelling high intensity hydrogel | |
CN108714246B (en) | Preparation method of high-strength hydrogel cartilage substitute capable of being combined with subchondral bone | |
CN103205006B (en) | Surface patterning high-strength and high-toughness hybrid hydrogel membrane and preparation method thereof | |
CN105348545A (en) | Preparation method of ultra-high-strength gelatin/collagen-based hydrogel | |
Ma et al. | Anticorrosion properties of epoxy-nanochitosan nanocomposite coating | |
CN105175755B (en) | High stretching dual network physical cross-linking hydrogel of a kind of high intensity and preparation method thereof | |
CN107540883B (en) | A kind of preparation method of carboxymethyl chitosan/graphene oxide/poly(N-isopropylacrylamide) nanocomposite hydrogel | |
CN104140630A (en) | Chitosan-based double-network hydrogel and preparation method thereof | |
CN112759774B (en) | Mechanically-enhanced gelatin frozen hydrogel and preparation method and application thereof | |
JP2017505366A5 (en) | ||
CN108729223B (en) | Preparation method of fiber-reinforced high-strength hydrogel capable of slowly releasing calcium ions | |
CN106947020A (en) | A kind of preparation method of the chitosan-based hydrogel of high intensity | |
CN105936674B (en) | A kind of preparation method of ultraviolet light 3D printing alginic acid hydrogel matrix | |
WO2020156291A1 (en) | Physical and chemical double cross-linked network high-strength gelatin hydrogel and preparation method therefor | |
CN113563534B (en) | A kind of composite polyacrylamide gel and its preparation method and application | |
CN110105482B (en) | A kind of self-healing hydrogel and preparation method thereof | |
CN110773007B (en) | Calcium alginate hydrogel filtering membrane containing black phosphorus/graphene oxide and preparation method thereof | |
CN113234237B (en) | Preparation method of high-strength nanocellulose/alginic acid composite hydrogel | |
CN108785743A (en) | A kind of preparation method of the double-template molecular engram high intensity hydrogel of inducible stem cell cartilage differentiation | |
CN110240713A (en) | A kind of preparation method of double network chitosan hydrogel | |
CN109125813A (en) | A kind of conductive adherency hydrogel preparation method and application for tissue repair | |
CN109942745A (en) | A kind of preparation method of double cross-linked hydrogel | |
CN106866996A (en) | A kind of fast preparation method of silk fibroin matter gel | |
CN106519287A (en) | Preparation method of cellulose based conductive hydrogel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211210 Address after: 546700 tongyouping area, Mengshan County, Wuzhou City, Guangxi Zhuang Autonomous Region Patentee after: Guangxi Qingmiao New Material Co., Ltd Address before: No. 399 Bingshui Road, Xiqing District, Tianjin, Tianjin Patentee before: TIANJIN POLYTECHNIC University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211215 Address after: 543000 building 3, No.1 Xingyu Road, Wuzhou Industrial Park, Guangxi Zhuang Autonomous Region Patentee after: Wuzhou Miaomiao Technology Co.,Ltd. Address before: 546700 tongyouping area, Mengshan County, Wuzhou City, Guangxi Zhuang Autonomous Region Patentee before: Guangxi Qingmiao New Material Co., Ltd |
|
TR01 | Transfer of patent right |