CN108656534B - 利用激光能再循环的增材制造 - Google Patents

利用激光能再循环的增材制造 Download PDF

Info

Publication number
CN108656534B
CN108656534B CN201810216204.7A CN201810216204A CN108656534B CN 108656534 B CN108656534 B CN 108656534B CN 201810216204 A CN201810216204 A CN 201810216204A CN 108656534 B CN108656534 B CN 108656534B
Authority
CN
China
Prior art keywords
laser
laser beam
polarization
additive manufacturing
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810216204.7A
Other languages
English (en)
Other versions
CN108656534A (zh
Inventor
T·A·佩里
B·E·卡尔森
J·J·诺尔蒂
H·蔡
J·P·斯派瑟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN108656534A publication Critical patent/CN108656534A/zh
Application granted granted Critical
Publication of CN108656534B publication Critical patent/CN108656534B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • B22F12/43Radiation means characterised by the type, e.g. laser or electron beam pulsed; frequency modulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Automation & Control Theory (AREA)

Abstract

提供了增材制造系统、区域扫描激光系统以及用于执行增材制造过程的方法。一种示例性增材制造系统包括用于生产激光束的激光发生装置。此外,增材制造系统包括光学元件,其用于形成具有第一偏振的激光束的第一部分以及具有不同于第一偏振的第二偏振的激光束的第二部分以编码激光束中的图像。而且,增材制造系统包括选择性光束分离器,其配置为将激光束的第一部分引导至待烧结或待熔化的材料上。增材制造系统包括再循环系统,其用于接收激光束的第二部分。

Description

利用激光能再循环的增材制造
背景技术
本发明总体涉及增材制造,并且更具体地涉及利用激光束进行区域扫描的增材制造。
用于金属或非金属部件的增材制造(AM)的新技术可以从根本上提高加工速度,以使增材制造在用于生产高容量部件上变得商业可行。目前的粉末床增材制造系统通常通过将薄层粉末沉积到构建区上,然后通过在部件的横截面上方扫描定向能量源(通常是点聚集激光)来选择性地烧结或熔化粉末成为固体层。
区域扫描是增材制造的一项新进展,它通过用部件横截面的相对较大的子区域的高功率激光图像代替点聚集激光,改善烧结或熔化每个单层所需的时间。可以通过将一些数量的子区域拼接在一起来创建部件的每一层。基于现有的激光技术,每个子区域目前可从大约5mm x 5mm升至大约75mm x 75mm。这对于扫描点聚焦来说是一个巨大的收益,其可能是大约0.1mm直径的点。
区域扫描是通过使用定制的非线性光学元件控制入射激光辐射的偏振来完成的。激光功率的来源是自然地单色的、相干的和平面偏振的。为了描述的目的,将假定偏振平面为垂直的。定制的非线性光学元件可以包括DC偏置源、透明电极、光导电涂层(在光谱的蓝色部分中有效)以及当施加静电场时延迟光的偏振的非线性材料。来自偏振激光的辐射引导到非线性光学元件上,该非线性光学元件与要被印刷的部件横截面的子区域的图像精确地一致。子区的图像通过将蓝色光源投射通过数字光投影(DLP)光学元件而形成。被照亮为蓝色的图像区域将导致光导电层导电,这又反过来将电势施加到非线性光学元件,使得穿过那些区域中的非线性光学材料的光的偏振被延迟。在未被蓝色照亮的区域中,非线性光学材料穿过所有光而不改变偏振。选择非线性材料的厚度使得延迟激光辐射的一半波长,这具有选择性地使入射偏振从垂直到水平旋转的效果。
离开非线性光学元件的激光入射到强偏振相关的介电反射镜上。因此,垂直偏振将与水平偏振分离,并可用于烧结或熔化粉末并制造部件。为了使粉末烧结或熔化,粉末颗粒必须暴露于与扫描点聚集激光系统相似量的能量下,这些系统使用200-500W激光器和10mm/S的扫描速度。为了使用大面积技术获得类似的能量密度,激光功率需要在5-100KW范围内,并且激光交互时间需要为每个区域10mS。为了在实践中实现这些高功率,使用光束均化元件将多个较低功率激光器(每个~1KW)组合在一起。依据部件的横截面,每次发射中沉积在部件中的能量数量会有很大的变化,其范围将从百分之几到百分之百不等。这意味着5-100KW激光的很大一部分不用于增材制造工艺,而是放置在某种类型的冷光束收集器中。
因此,期望提供用于在增材制造系统中再循环激光功率的系统。此外,期望提供用于减少增材制造工艺中的废物的方法。此外,根据随后的详细描述和所附权利要求,结合附图和背景技术,其它期望的特征和特性将变得显而易见。
发明内容
提供了增材制造系统、区域扫描激光系统以及用于执行增材制造过程的方法。一种示例性增材制造系统包括用于生产激光束的激光发生装置。此外,增材制造系统包括光学元件,其用于形成具有第一偏振的激光束的第一部分以及具有不同于第一偏振的第二偏振的激光束的第二部分以编码激光束中的图像。而且,增材制造系统包括选择性光束分离器,其配置为将激光束的第一部分引导至待烧结或待熔化的材料上。增材制造系统包括再循环系统,其用于接收激光束的第二部分。
另一实施例提供了一种区域扫描激光系统。区域扫描激光系统包括激光加工系统,其用于形成具有第一偏振的激光束的第一部分以及具有不同于第一偏振的第二偏振的激光束的第二部分以编码激光束中的图像。而且,区域扫描激光系统包括构建腔,其用于接收待烧结或待熔化的材料和用于烧结或熔化材料的激光束的第一部分。此外,区域扫描激光系统包括再循环系统,其用于接收激光束的第二部分并用于再循环激光束的第二部分中的辐射能。
在另一实施例中,一种用于执行增材制造过程的方法包括生产激光束。该方法形成具有第一偏振的激光束的第一部分以及具有不同于第一偏振的第二偏振的激光束的第二部分以编码激光束中的图像。此外,该方法包括将激光束的第一部分引导至待烧结或待熔化的材料上。而且,该方法包括再循环激光束的第二部分。
附图说明
下文将结合以下附图描述本主题,其中相同的附图标记表示相同的元件,并且其中:
图1是根据示例性实施例设置有用于再循环激光功率的再循环系统的增材制造系统的示意图;
图2是用于再循环图1的激光功率的再循环系统实施例的示意图;
图3是用于再循环图1的激光功率的再循环系统的另一实施例的示意图;以及
图4是设置有用于再循环激光功率的再循环系统的另一个实施例的增材制造系统的示意图。
具体实施方式
以下详细描述本质上仅仅是示例性的,并不意图限制本文要求保护的主题。此外,不意图受前面背景技术或以下详细描述中呈现的任何理论的限制。
本文的实施例提供了激光功率在增材制造中的使用。更具体地说,本文的实施例提供激光功率的区域扫描。这种区域扫描提供了将图像投影到材料层上,诸如粉末,例如金属或非金属粉末,以烧结或熔化材料以形成待制造物品的层。在处理激光束以形成图像时,不会将激光的非选定部分引导至粉末层上,并且此前未使用。本文的实施例提供用于处理激光非选定部分以供在增材制造工艺内或外的进一步使用。因此,本文的实施例可通过再循环激光能量来提高增材制造系统的效率。来自基于激光的增材制造系统的废能可以通过使用热电发电机或通过将收集的激光束“再循环”回到过程中来进行再循环。因此,可以降低高生产率增材制造系统的运营成本。
本文的实施例允许使用在100%输出下操作的非常高的功率进行增材制造,并且选择性地将一部分总功率传递到粉末床以烧结或熔化并形成复杂的三维部件。未用于烧结或熔化的剩余能量再循环使得该方法更高效且更具成本效益。实施例可以用于大体积增材工艺中,并且通过消除由点聚集激光方法所需的粉末重涂期间的激光中断造成的任何延迟来利用区域扫描激光系统的高产量能力。虽然本文描述的实施例基于处理金属,但本文的实施例可用于制造金属部件、塑料部件或陶瓷部件的系统中。
图1是示出增材制造系统10的示意图。如图所示,增材制造系统10包括激光发生器12,诸如连续波(CW)激光发生器12,其用于产生激光束13,诸如连续波激光束13。在示例性实施例中,增材制造系统10包括用于产生多个激光束13的多个高功率激光发生器12。在示例性实施例中,激光发生器12可以以约5至约100千瓦(kW)的功率产生激光束。
如图所示,增材制造系统10包括光束均化器16。激光束13作为输入接收至光束均化器16。光束均化器16收集和均化输入的激光束13。因此,光束均化器16从多个激光束13产生并输出较大的均化束17。在示例性实施例中,均化束17具有正方形横截面。
此外,增材制造系统10包括脉冲激光发生器18。脉冲激光发生器18产生脉冲激光束19,其引入至均化束17中。脉冲激光束19可以为中等功率并用于控制构建腔中的烧结或熔化。在示例性实施例中,脉冲激光束19具有从约0.1至约2焦耳的功率、每脉冲具有从约0.1至约2赫兹(Hz)的重复率。
增材制造系统10包括准直器24。如图所示,均化束17和脉冲激光束19形成由准直器24接收的处理束。准直器24从均化束17和脉冲激光束19形成准直光束25。
在图1中,增材制造系统10还包括配置为调制准直光束25以呈现期望图像的调制装置26。具体而言,由调制装置26投影待烧结或熔化的区域的图像。示例性调制装置26是光投影仪,诸如用于投影图像27的数字光投影(DLP)系统。在示例性实施例中,图像27用选定波长的光诸如蓝光进行投影。如图所示,调制装置26可以由计算机28控制以投影选定的图像27。
增材制造系统10包括接收准直光束25和图像27的非线性光学元件30。准直光束25与图像27重叠的部分可以认为是准直光束25的选定部分。准直光束25不与图像27重叠的部分可以认为是准直光束25的未选定部分。在示例性实施例中,非线性光学元件30将准直光束25的选定部分偏振成第一偏振,例如“s偏振”,并且将准直光束25的非选定部分偏振成第二偏振,例如与第一偏振不同的“p偏振”。因此,非线性光学元件30形成图像编码束31。具体地,图像27根据s偏振进行编码。在示例性实施例中,s偏振垂直于p偏振。
如图所示,增材制造系统10包括反射镜34和选择反射镜38。示例性选择反射镜38是介电反射镜,其反射一种偏振的光并允许另一种偏振的光穿过。此外,选择反射镜38可以反射光的部分量以在图像的选定像素处提供灰度估计。
在图1中,图像编码束31由反射镜34完全反射。然后,图像编码束31的部分39由选择反射镜38选择性地反射,并且图像编码束31的部分49穿通选择反射镜38。具体地,其中图像27被编码的光束31的s偏振部分由选择反射镜38反射,以形成烧结或熔化光束39。包括光束的非选定部分的光束31的p偏振部分穿过选择反射镜38。
增材制造系统10包括构建腔40。构建腔室40包括粉末加热器和构建板,粉末定位在构建板上用于增材制造过程。如图1所示,图像束39接收在位于构建板上方的粉末上,并且在图像束39中编码的图像的形状中烧结或熔化粉末。
如本文所述,增材制造系统10设有再循环系统50。再循环系统50接收穿过选择反射镜38的图像编码束31的部分49,即图像编码束31的非选定部分。如下所述,再循环系统50处理图像编码束31的非选定部分49以利用其中的能量。
图2是示出来自图1的再循环系统50的实施例的示意图。在图2中,再循环系统50包括热电发电机60。众所周知,热电发电机60可以包括将激光束的辐射能转化成热能和电能的热电材料。因此,热电发电机60可接收图像编码束的非选定部分49,并将激光的辐射能转化成热能,然后转化成电能。然后可以处理电能61。例如,直流形式的电能61可以从热电发电机60馈送到电力逆变器62,然后本地用于为图1的激光发生器12供电,例如通过用于激光发生器12的公用总线64。可选择地,在逆变器62处转换的功率可以卖回到电业或在图1的增材制造系统10外部使用。
图3是示出来自图1的再循环系统50的另一实施例的示意图。在图3中,再循环系统50又包括热电发电机60。如图所示,热电发电机60接收图像编码束的非选定部分49,并将激光能转化成热能,然后转化成电能。热电发生器60将电能61从图像编码束的非选定部分49传送到图1的增材制造系统10的构建腔40的组件44中。例如,组件44可以是构建板44,粉末层定位在其上用于烧结或熔化以形成待制造的物品。如图所示,能量61可以引导至温度控制器46以将粉末加热器44保持在期望的恒定温度。可选择地,组件44可以是粉末加热器,其用于加热粉末以在构建板上方分层沉积。如图所示,电能61可以被引导至温度控制器46以将粉末加热器44保持在期望的恒定温度。在任一情况下,图像编码束的非选定部分49中的废能用于补充供应到构建腔40的热量,并因此控制构建腔40的总体温度。
图4是示出了再循环系统50耦合至增材制造系统10以减少能量浪费的另一实施例的示意图。在图4的实施例中,激光的辐射能本身再循环并用于增材制造系统10的烧结/熔化过程。换言之,来自进入再循环系统50的激光的部分49的辐射能不转化为热能和电能,而是以激光束的形式用作辐射能,只不过是进一步处理的激光束。在图4中,再循环系统50包括反射镜72,其反射图像编码束的非选定部分49。示例性再循环系统50进一步包括准直器74,其接收图像编码束的非选定部分49以形成准直光束75。
如图所示,再循环系统50还包括偏振操纵装置78,诸如光学波片。在示例性实施例中,再循环系统包括作为偏振操纵装置78的半波片。偏振操纵装置78可利用相位延迟将准直光束75从具有p偏振的光转换为具有s偏振的光以形成操纵光束79。如图所示,反射镜82可以用于将操纵光束作为输入光束83与其它输入激光光束13一起引导至光束均化器16。
为了使烧结/熔化过程良好地工作,入射在非线性光学元件30上的功率必须是恒定的。输入光束83的附加功率可降低构建腔40中的建造质量。因此,必须主动调整增材制造系统10以考虑附加功率。增材制造系统10利用两个激光源的组合,即激光发生器12和脉冲激光发生器18。
在图4的实施例中,分束器86位于光束均化器16的下游和非线性光学元件30的上游。分束器86将处理光束的一小部分,诸如约0.001%至约0.05%,例如约0.01%,引导至检测元件88,诸如光电探测器。处理光束包括均化光束17和脉冲光束19。在示例性实施例中,脉冲能量形成处理光束的大约10%的能量。
光电探测器88将代表处理光束的信号值传送给闭环激光反馈控制电路90。闭环激光反馈控制电路90提供控制信号91以调整主激光发生器12的功率。可以控制测量激光功率和脉冲激光发生器18发光的定时,因为首先要由DLP 26投影要烧结或熔化的区域的图像,必须测量均化器16之后的功率并且调节至恒定值,并且在点燃脉冲激光发生器18之前必须禁用功率调节电路。脉冲激光的重复率可高达约100Hz。当投影DLP中的每个图像时,反馈电路将立即启用,并将在脉冲之间的90%的时间内保持启动。在这段时间结束时,将固定激光发生器的功率输出,并且将禁用在脉冲发射期间反馈电路。
虽然在前面的详细描述中已经呈现了至少一个示例性方面,但是应该理解的是存在大量的变型。还应该理解的是,一个示例性方面或多个示例性方面仅是示例,并且不旨在以任何方式限制要求保护的主题的范围、适用性或配置。而是,前面的详细描述将为本领域技术人员提供用于实现本主题的示例性方面的便利的路线图。理解的是,可以在示例性方面中描述的元件的功能和布置方面做出各种改变而不脱离如所附权利要求中阐述的主题的范围。

Claims (7)

1.一种增材制造系统包括:
激光发生装置,其用于生产激光束;
光学元件,其用于形成具有第一偏振的激光束的第一部分以及具有不同于所述第一偏振的第二偏振的所述激光束的第二部分以编码所述激光束中的图像;
选择性光束分离器,其配置为将所述激光束的所述第一部分引导至待烧结或待熔化的材料上;
再循环系统,其用于接收所述激光束的所述第二部分;以及
包含构建板的构建腔,其中所述再循环系统包括热电发电机,所述热电发电机配置为将来自所述激光束的能量转化为电能,并且其中所述电能被引导至所述构建板以加热所述构建板。
2.如权利要求1所述的增材制造系统,其中所述再循环系统包括逆变器,其耦合至所述热电发电机。
3.如权利要求1所述的增材制造系统,其中所述再循环系统包括:
逆变器,其耦合至所述热电发电机;以及
功率总线,其耦合至所述逆变器以及至所述激光发生装置以向所述激光发生装置提供电力。
4.一种区域扫描激光系统,包括:
激光加工系统,其用于形成具有第一偏振的激光束的第一部分以及具有不同于所述第一偏振的第二偏振的所述激光束的第二部分以编码所述激光束中的图像;
构建腔,其用于接收待烧结或待熔化的材料和用于烧结或熔化所述材料的所述激光束的所述第一部分;以及
再循环系统,其用于接收所述激光束的所述第二部分和用于再循环所述激光束的所述第二部分中的辐射能。
5.如权利要求4所述的区域扫描激光系统,其中所述再循环系统包括:
准直器,其用以准直所述激光束的所述第二部分;以及
偏振操纵装置,其用以从所述激光束的所述第二部分形成具有所述第一偏振的再循环光束。
6.如权利要求5所述的区域扫描激光系统,进一步包括:
激光发生装置,用以产生初始激光束;
光束均化器,其配置为均化由所述激光发生装置生产的所述初始激光束和由所述偏振操纵装置形成的所述再循环光束以形成均化加工光束,其中所述激光加工系统从所述均化加工光束形成所述第一部分和所述第二部分;
检测元件,其配置为分析所述均化加工光束并传送代表所述均化加工光束的信号;以及
控制电路,其配置为接收所述信号并且响应于所述信号向所述激光发生装置提供控制信号。
7.一种用于执行增材制造过程的方法,包括:
生产激光束;
形成具有第一偏振的激光束的第一部分以及具有不同于所述第一偏振的第二偏振的所述激光束的第二部分以编码所述激光束中的图像;
将所述激光束的所述第一部分引导至待烧结或待熔化的材料上;以及
再循环所述激光束的所述第二部分。
CN201810216204.7A 2017-03-28 2018-03-15 利用激光能再循环的增材制造 Active CN108656534B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/471,868 US10471508B2 (en) 2017-03-28 2017-03-28 Additive manufacturing with laser energy recycling
US15/471868 2017-03-28

Publications (2)

Publication Number Publication Date
CN108656534A CN108656534A (zh) 2018-10-16
CN108656534B true CN108656534B (zh) 2021-01-05

Family

ID=63524810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810216204.7A Active CN108656534B (zh) 2017-03-28 2018-03-15 利用激光能再循环的增材制造

Country Status (3)

Country Link
US (1) US10471508B2 (zh)
CN (1) CN108656534B (zh)
DE (1) DE102018106567A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017075277A1 (en) * 2015-10-30 2017-05-04 Seurat Technologies, Inc. Part manipulation using printed manipulation points
JP6619400B2 (ja) * 2017-08-22 2019-12-11 ファナック株式会社 レーザ加工装置
US11668658B2 (en) * 2018-10-08 2023-06-06 Araz Yacoubian Multi-parameter inspection apparatus for monitoring of additive manufacturing parts
US11654635B2 (en) * 2019-04-18 2023-05-23 The Research Foundation For Suny Enhanced non-destructive testing in directed energy material processing
CN110434333B (zh) * 2019-08-13 2021-11-23 浙江工业大学 一种面成型金属增材制造方法
CN112011795A (zh) * 2020-09-25 2020-12-01 陕西天元智能再制造股份有限公司 一种宽光斑激光能量回收装置和激光熔覆头装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014975A (zh) * 2015-08-14 2015-11-04 廖培元 一种立体打印机和用于微重力环境的立体打印机及其方法
CN105745060A (zh) * 2013-09-23 2016-07-06 瑞尼斯豪公司 增材制造设备和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101846B1 (en) * 2002-05-23 2012-01-24 Jon Murray Schroeder Solid state thermoelectric power converter
US9308583B2 (en) 2013-03-05 2016-04-12 Lawrence Livermore National Security, Llc System and method for high power diode based additive manufacturing
US10291156B2 (en) * 2015-10-30 2019-05-14 Ge Aviation Systems Llc Combined hybrid thermionic and thermoelectric generator
US11148319B2 (en) * 2016-01-29 2021-10-19 Seurat Technologies, Inc. Additive manufacturing, bond modifying system and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745060A (zh) * 2013-09-23 2016-07-06 瑞尼斯豪公司 增材制造设备和方法
CN105014975A (zh) * 2015-08-14 2015-11-04 廖培元 一种立体打印机和用于微重力环境的立体打印机及其方法

Also Published As

Publication number Publication date
DE102018106567A1 (de) 2018-10-04
CN108656534A (zh) 2018-10-16
US10471508B2 (en) 2019-11-12
US20180281065A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
CN108656534B (zh) 利用激光能再循环的增材制造
Zavala-Arredondo et al. Laser diode area melting for high speed additive manufacturing of metallic components
US9636775B2 (en) Composite beam generator and powder melting or sintering method using the same
EP3743232B1 (en) Systems and methods for dynamic shaping of laser beam profiles in additive manufacturing
US11235423B2 (en) Laser cladding method and device for implementing same
CN110352104B (zh) 用于基于构建材料的局部热导率来制造部件的系统及方法
RU2019122333A (ru) Способ и системы для формирования изображений в когерентном излучении и управления с обратной связью для модификации материалов
EP3743233B1 (en) Systems and methods for dynamic shaping of laser beam profiles for control of micro-structures in additively manufactured metals
US20120267345A1 (en) Method of manufacturing a component
JP2023026603A (ja) 固体ビーム・ルーティングのための方法、及び光リサイクルのための方法
JPH09504055A (ja) 多重ビームレーザ焼結
CN108941886A (zh) 对激光材料加工的精密标度时间控制
JP2016518516A (ja) 高電力ダイオードに基づく付加製造のためのシステムおよび方法
AU2016273983A1 (en) 3D printing device for producing a spatially extended product
US20200023583A1 (en) Apparatus for additively manufacturing three-dimensional objects
US20200023467A1 (en) Apparatus for additively manufacturing three-dimensional objects
Goffin et al. The use of holographic optical elements (HOE's) to investigate the use of a flat irradiance profile in the control of heat absorption in wire-fed laser cladding
US20200223139A1 (en) Method for operating an apparatus for additively manufacturing three-dimensional objects
Murphy et al. The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation
CN117715717A (zh) 使用光转向和/或动态波束整形进行增材制造
US20230330750A1 (en) Method of operating an irradiation system, irradiation system and apparatus for producing a three-dimensional work piece with polarization control
CN117047130B (zh) 一种先预热后保温的金属3d打印方法
Tomizawa et al. Development of adaptive feedback control system of both spatial and temporal beam shaping for UV-laser light source for RF gun
Gavrilov et al. Transformation of spatial characteristics of excimer laser radiation
Kanesue et al. Target life time of laser ion source for low charge state ion production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant