CN108656114B - Control method of flexible mechanical arm - Google Patents
Control method of flexible mechanical arm Download PDFInfo
- Publication number
- CN108656114B CN108656114B CN201810469011.2A CN201810469011A CN108656114B CN 108656114 B CN108656114 B CN 108656114B CN 201810469011 A CN201810469011 A CN 201810469011A CN 108656114 B CN108656114 B CN 108656114B
- Authority
- CN
- China
- Prior art keywords
- vibration
- slow
- fast
- controller
- time scale
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000003044 adaptive effect Effects 0.000 claims abstract description 24
- 239000011159 matrix material Substances 0.000 claims description 25
- 238000011156 evaluation Methods 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 17
- 230000006870 function Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 238000012804 iterative process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000005624 perturbation theories Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/1635—Programme controls characterised by the control loop flexible-arm control
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Feedback Control In General (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种柔性机械臂的控制方法,包括:在慢时间尺度下根据给定位置信息和反馈位置信息,运用自适应动态规划算法设计慢控制器;在慢时间尺度下进行振动估计以得到慢时间尺度下的振动量估计值;在快时间尺度下根据慢时间尺度下的振动量估计值和反馈振动信息重构快变量,并根据快变量,运用自适应动态规划算法设计快控制器;将慢控制器和快控制器组合实现对柔性机械臂的位置和振动的控制。根据本发明的控制方法,能够在不使用系统模型的情况下,实现对柔性机械臂位置和振动的最优控制。
The invention discloses a control method of a flexible manipulator, which comprises the following steps: designing a slow controller by using an adaptive dynamic programming algorithm according to given position information and feedback position information in a slow time scale; Obtain the estimated value of vibration on the slow time scale; reconstruct the fast variable based on the estimated value of the vibration on the slow time scale and feedback vibration information on the fast time scale, and design the fast controller according to the fast variable using an adaptive dynamic programming algorithm ; Combine the slow controller and the fast controller to control the position and vibration of the flexible manipulator. According to the control method of the present invention, the optimal control of the position and vibration of the flexible manipulator can be realized without using a system model.
Description
技术领域technical field
本发明涉及柔性机械臂控制技术领域,特别涉及一种柔性机械臂的控制方法。The invention relates to the technical field of flexible mechanical arm control, in particular to a control method of a flexible mechanical arm.
背景技术Background technique
柔性机械臂以其运动速度快、有效载荷与机器人重量比高、制造消耗低、工作空间大等优点,在航空、建筑等领域得到了广泛的应用。考虑到其特殊的物体结构特性,柔性机械臂的运动包括宏观的刚体转动和微观的柔性振动,二者之间高度耦合。且柔性机械臂具有非线性、无穷阶和参数不确定等特性,因此,如何提高定位精度,同时避免因柔性引起的振动,是一个具有挑战性的问题。Flexible manipulators have been widely used in aviation, construction and other fields due to their advantages of fast movement speed, high payload-to-robot weight ratio, low manufacturing consumption, and large working space. Considering its special object structure characteristics, the motion of the flexible manipulator includes macroscopic rigid body rotation and microscopic flexible vibration, and the two are highly coupled. Moreover, the flexible manipulator has the characteristics of nonlinearity, infinite order, and parameter uncertainty. Therefore, how to improve the positioning accuracy while avoiding the vibration caused by flexibility is a challenging problem.
基于柔性机械臂的动力学模型,现有研究成果可以分为两类,一类是基于柔性机械臂刚柔耦合模型直接设计控制器,这类方法的优点是充分考虑并利用柔性机械臂动态特性,可应用传统PID控制、变结构控制、鲁棒控制、神经网络控制、模糊控制、自适应控制等方法设计控制器。另一方面,考虑到柔性机械臂双时间尺度特性,将奇异摄动方法引入复杂柔性机械臂系统的建模与控制当中,在不同时间尺度下分别设计控制器,从已有的研究成果可以看出,该方法设计的控制器设计过程简单,控制器性能好。Based on the dynamic model of the flexible manipulator, the existing research results can be divided into two categories. One is to directly design the controller based on the rigid-flexible coupling model of the flexible manipulator. The advantage of this method is to fully consider and utilize the dynamic characteristics of the flexible manipulator. , the controller can be designed using traditional PID control, variable structure control, robust control, neural network control, fuzzy control, adaptive control and other methods. On the other hand, considering the dual time scale characteristics of flexible manipulators, the singular perturbation method is introduced into the modeling and control of complex flexible manipulator systems, and controllers are designed at different time scales. From the existing research results, it can be seen that The controller designed by this method has a simple design process and good controller performance.
虽然在柔性机械臂控制方面已经取得了很多成果,但大多数控制策略都是基于动力学模型的。然而,柔性机械臂系统具有不确定性。因此,利用输入和系统状态来研究柔性机械臂的控制是一个热点问题。经过对现有的关于柔性机械臂控制方法相关文献的检索发现,利用模糊控制器实现对柔性机械臂的无模型复合控制器已做了相关研究。但模糊控制器需要同时调整多个参数,很难达到最优控制性能。而已有的利用线性二次型设计的最优控制器虽具有较好的控制性能,但需要精确的系统参数。因此,研究柔性机械臂的无模型最优控制具有重要的现实意义。Although many achievements have been made in the control of flexible manipulators, most of the control strategies are based on dynamic models. However, flexible manipulator systems have uncertainties. Therefore, using the input and system state to study the control of flexible manipulators is a hot issue. Through the retrieval of the existing literature on the control method of flexible manipulators, it is found that the model-free composite controller of flexible manipulators has been researched by using fuzzy controllers. However, the fuzzy controller needs to adjust multiple parameters at the same time, so it is difficult to achieve the optimal control performance. While the existing optimal controller using linear quadratic design has good control performance, it needs precise system parameters. Therefore, it is of great practical significance to study the model-free optimal control of flexible manipulators.
发明内容SUMMARY OF THE INVENTION
本发明旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本发明的目的在于提出一种柔性机械臂的控制方法,能够在不使用系统模型的情况下,实现对柔性机械臂位置和振动的最优控制。The present invention aims to solve one of the technical problems in the above technologies at least to a certain extent. Therefore, the purpose of the present invention is to propose a control method of a flexible manipulator, which can realize optimal control of the position and vibration of the flexible manipulator without using a system model.
为达到上述目的,本发明提出了一种柔性机械臂的控制方法,包括:在慢时间尺度下根据给定位置信息和反馈位置信息,运用自适应动态规划(ADP,Adaptive DynamicProgramming)算法设计慢控制器;在慢时间尺度下进行振动估计以得到慢时间尺度下的振动量估计值;在快时间尺度下根据所述慢时间尺度下的振动量估计值和反馈振动信息重构快变量,并根据所述快变量,运用自适应动态规划算法设计快控制器;将所述慢控制器和所述快控制器组合实现对所述柔性机械臂的位置和振动的控制。In order to achieve the above purpose, the present invention proposes a control method for a flexible manipulator, including: designing a slow control by using an adaptive dynamic programming (ADP, Adaptive Dynamic Programming) algorithm according to a given position information and feedback position information under a slow time scale The vibration estimation is performed on the slow time scale to obtain the estimated value of the vibration quantity on the slow time scale; the fast variable is reconstructed according to the estimated value of the vibration quantity on the slow time scale and the feedback vibration information on the fast time scale, and according to For the fast variable, an adaptive dynamic programming algorithm is used to design a fast controller; the slow controller and the fast controller are combined to control the position and vibration of the flexible robotic arm.
根据本发明实施例的柔性机械臂的控制方法,通过在慢时间尺度下根据给定位置信息和反馈位置信息,运用自适应动态规划算法设计慢控制器,并在慢时间尺度下进行振动估计以得到慢时间尺度下的振动量估计值,以及在快时间尺度下根据慢时间尺度下的振动量估计值和反馈振动信息重构快变量,并根据快变量,运用自适应动态规划算法设计快控制器,然后将慢控制器和快控制器组合实现对柔性机械臂的位置和振动的控制,由此,能够在不使用系统模型的情况下,实现对柔性机械臂位置和振动的最优控制。According to the control method of the flexible manipulator according to the embodiment of the present invention, the slow controller is designed by using the adaptive dynamic programming algorithm according to the given position information and the feedback position information in the slow time scale, and vibration estimation is performed in the slow time scale to obtain Obtain the estimated value of vibration in the slow time scale, and reconstruct the fast variable according to the estimated value of the vibration in the slow time scale and feedback vibration information in the fast time scale, and use the adaptive dynamic programming algorithm to design the fast control according to the fast variable Then, the slow controller and the fast controller are combined to realize the control of the position and vibration of the flexible manipulator, so that the optimal control of the position and vibration of the flexible manipulator can be realized without using the system model.
另外,根据本发明上述实施例提出的柔性机械臂的控制方法还可以具有如下附加的技术特征:In addition, the control method for the flexible robotic arm proposed according to the above embodiments of the present invention may also have the following additional technical features:
根据本发明的一个实施例,所述自适应动态规划算法包括:According to an embodiment of the present invention, the adaptive dynamic programming algorithm includes:
步骤一:给定初始控制律u=-K0x+κ,其中,K0∈Rm×n,为初始增益矩阵,κ为探测噪声,计算δxx、Ixx、Ixu,直到满足其中,δxx、Ixx、Ixu为学习过程中用来收集状态和输入信息的矩阵,Step 1: Given the initial control law u=-K 0 x+κ, where K 0 ∈ R m×n is the initial gain matrix, κ is the detection noise, calculate δ xx , I xx , I xu , until satisfying Among them, δ xx , I xx , I xu are the matrices used to collect state and input information in the learning process,
δxx=[μ(x(t1))-μ(x(t0)),μ(x(t2))-μ(x(t1)),...,μ(x(tl))-μ(x(tl-1)δ xx =[μ(x(t 1 ))-μ(x(t 0 )),μ(x(t 2 ))-μ(x(t 1 )),...,μ(x(t l ))-μ(x(t l-1 )
0≤t0<t1<...<tl 0≤t 0 <t 1 <...<t l
其中,表示克罗内克积;in, represents the Kronecker product;
步骤二:利用公式求解Pk和Kk+1,Pk为迭代过程中求出的Riccati方程正定解,Kk为迭代过程中的反馈增益矩阵,其中,Step 2: Use the formula Solve P k and K k+1 , where P k is the positive definite solution of the Riccati equation obtained in the iterative process, and K k is the feedback gain matrix in the iterative process, where,
γ(Pk)=[p11p12...2p1n p222p23...2pn-1pnn]T γ(P k )=[p 11 p 12 ... 2p 1n p 22 2p 23 ... 2p n-1 p nn ] T
vec(M)表示矩阵M的向量化,即vec(Mg×h)=[m11m21...m1h m2h...mgh]T;vec(M) represents the vectorization of matrix M, that is, vec(M g×h )=[m 11 m 21 ... m 1h m 2h ... m gh ] T ;
步骤三:令k←k+1,如果||Pk-Pk-1||>α,α>0,返回步骤二,否则进入步骤四;Step 3: Let k←k+1, if ||P k -P k-1 ||>α, α>0, go back to
步骤四:令K*=Kk,得到最优控制律u=-K*x。Step 4: Set K * =K k to obtain the optimal control law u=-K * x.
根据本发明的一个实施例,在慢时间尺度下根据给定位置信息和反馈位置信息,运用自适应动态规划算法设计慢控制器,具体包括:According to an embodiment of the present invention, an adaptive dynamic programming algorithm is used to design a slow controller according to the given position information and feedback position information under the slow time scale, which specifically includes:
定义位置误差ec=θ-θd,其中,θd为给定位置信息,θ为反馈位置信息;Define the position error e c =θ-θ d , where θ d is the given position information, and θ is the feedback position information;
定义新的变量将描述柔性机械臂的慢子系统模型重写为其中, 上标s表示慢动态;define new variable The slow subsystem model describing the flexible manipulator is rewritten as in, The superscript s indicates slow motion;
选择评价函数其中,Qs=(Qs)T≥0,Rs=(Rs)T>0,(As,(Qs)1/2)可观;Choose an evaluation function Among them, Q s =(Q s ) T ≥0, R s =(R s ) T >0, (A s ,(Q s ) 1/2 ) is considerable;
利用所述自适应动态规划算法,其中,x=xs,u=us,为初始反馈增益矩阵,得到慢控制器 Using the adaptive dynamic programming algorithm, where x=x s , u=u s , is the initial feedback gain matrix to get the slow controller
根据本发明的一个实施例,在慢时间尺度下进行振动估计以得到慢时间尺度下的振动量估计值,具体包括:According to an embodiment of the present invention, performing vibration estimation on a slow time scale to obtain an estimated vibration value on a slow time scale specifically includes:
考虑到随机误差的存在,将慢时间尺度下的振动量估计值zs与us之间的关系式zs=a+bus写成其中,vi代表随机误差,为测量数据;Considering the existence of random errors, the relational expression z s =a+bu s between the estimated vibration value z s and u s in the slow time scale is written as where v i represents random error, for measurement data;
利用最小二乘法,将评价函数J定义为求极值:Using the least squares method, the evaluation function J is defined as Find the extreme value:
得到a和b的近似值:Get approximations for a and b:
从而得到慢时间尺度下的振动量估计值 Thereby, the estimated value of vibration in slow time scale is obtained
根据本发明的一个实施例,所述快变量zf=k·q-zs,其中,k为刚度矩阵K中的最小值,q为所述反馈振动信息。According to an embodiment of the present invention, the fast variable z f =k·qz s , where k is the minimum value in the stiffness matrix K, and q is the feedback vibration information.
根据本发明的一个实施例,根据所述快变量,运用自适应动态规划算法设计快控制器,具体包括:According to an embodiment of the present invention, according to the fast variables, an adaptive dynamic programming algorithm is used to design a fast controller, which specifically includes:
定义新的变量将描述柔性机械臂的快子系统模型重写为其中,上标f表示快动态;define new variable The fast subsystem model describing the flexible manipulator is rewritten as in, The superscript f means fast dynamic;
选择评价函数其中,Qf=(Qf)T≥0,Rf=(Rf)T>0,(Af,(Qf)1/2)可观;Choose an evaluation function Wherein, Q f =(Q f ) T ≥0, R f =(R f ) T >0, (A f ,(Q f ) 1/2 ) is considerable;
利用所述自适应动态规划算法,其中,x=xf,u=uf,为初始反馈增益矩阵,得到快控制器 Using the adaptive dynamic programming algorithm, where x=x f , u=u f , is the initial feedback gain matrix to get the fast controller
根据本发明的一个实施例,将所述慢控制器和所述快控制器组合实现对所述柔性机械臂的位置和振动的控制,具体包括:According to an embodiment of the present invention, combining the slow controller and the fast controller to control the position and vibration of the flexible robotic arm specifically includes:
将u总=us+uf作为所述柔性机械臂的动力学模型 Take utotal =us+ uf as the dynamic model of the flexible manipulator
的输入,实现对所述柔性机械臂的位置和振动的控制,其中,M为正定惯性矩阵,G为非线性项。 The input of , realizes the control of the position and vibration of the flexible manipulator, where M is a positive definite inertia matrix, and G is a nonlinear term.
附图说明Description of drawings
图1为根据本发明实施例的柔性机械臂的控制方法的流程图;1 is a flowchart of a control method of a flexible robotic arm according to an embodiment of the present invention;
图2为根据本发明一个实施例的柔性机械臂的控制系统的示意图;2 is a schematic diagram of a control system of a flexible robotic arm according to an embodiment of the present invention;
图3为根据本发明一个实施例的跟踪Ksd收敛曲线图;FIG. 3 is a diagram according to an embodiment of the present invention. Track the K sd convergence curve;
图4为根据本发明一个实施例的跟踪Kfd收敛曲线图;FIG. 4 is a diagram according to an embodiment of the present invention. Track the K fd convergence curve;
图5为本发明实施例的控制方法与模糊控制器作用下的轨迹跟踪对比图;Fig. 5 is the control method of the embodiment of the present invention and the trajectory tracking comparison diagram under the action of the fuzzy controller;
图6为本发明实施例的控制方法与模糊控制器作用下的一阶模态曲线对比图;6 is a comparison diagram of a first-order modal curve under the action of a control method according to an embodiment of the present invention and a fuzzy controller;
图7为本发明实施例的控制方法与模糊控制器作用下的二阶模态曲线对比图。FIG. 7 is a comparison diagram of a second-order modal curve under the action of a control method according to an embodiment of the present invention and a fuzzy controller.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, and are intended to explain the present invention and should not be construed as limiting the present invention.
下面结合附图来描述本发明实施例的柔性机械臂的控制方法。The following describes the control method of the flexible manipulator according to the embodiment of the present invention with reference to the accompanying drawings.
首先可利用拉格朗日法和假设模态法建立柔性机械臂的动力学模型:First, the dynamic model of the flexible manipulator can be established by using the Lagrangian method and the hypothetical mode method:
其中,M为正定惯性矩阵,G为非线性项,K为刚度矩阵,u总为驱动柔性机械臂的电机的输入,θ表示位置信息,q表示振动信息。Among them, M is the positive definite inertia matrix, G is the nonlinear term, K is the stiffness matrix, u is always the input of the motor driving the flexible manipulator, θ is the position information, and q is the vibration information.
基于奇异摄动理论,可将柔性机械臂的控制系统分解为快、慢两个子系统。Based on the singular perturbation theory, the control system of the flexible manipulator can be decomposed into two subsystems, fast and slow.
其中,慢子系统:Among them, the slow subsystem:
快子系统:Fast subsystem:
其中,ε=1/k,εz=q,β=εK,k为刚度矩阵K中最小值,上标s,f分别表示慢动态和快动态。in, ε=1/k, εz=q, β=εK, k is the minimum value in the stiffness matrix K, and the superscripts s and f represent slow dynamic and fast dynamic, respectively.
将慢、快控制器组合在一起,得到:Combining slow and fast controllers together, we get:
u总=us+uf (5) utotal = u s + u f (5)
基于Tikhonov定理,慢、快子系统状态变量与原系统状态变量之间的关系如下:Based on Tikhonov's theorem, the relationship between the state variables of the slow and fast subsystems and the state variables of the original system is as follows:
q=1/k(zs+zf)+O(ε) (7)q=1/k(z s +z f )+O(ε) (7)
目前的柔性机械臂控制器设计方法大多基于完全已知或部分未知的动力学模型,而本发明研究柔性机械臂的无模型组合控制问题。Most of the current flexible manipulator controller design methods are based on completely known or partially unknown dynamic models, while the present invention studies the model-free combined control problem of the flexible manipulator.
鉴于上述基于奇异摄动理论分解的快、慢两个子系统,本发明可在不同时间尺度下设计控制器,并将在不同时间尺度下所设计控制器进行组合,用以对柔性机械臂进行控制,具体如下。In view of the above-mentioned fast and slow subsystems decomposed based on singular perturbation theory, the present invention can design controllers at different time scales, and combine the controllers designed at different time scales to control the flexible manipulator. ,details as follows.
如图1所示,本发明实施例的柔性机械臂的控制方法,包括以下步骤:As shown in FIG. 1 , the control method of the flexible robotic arm according to the embodiment of the present invention includes the following steps:
S1,在慢时间尺度下根据给定位置信息和反馈位置信息,运用自适应动态规划算法设计慢控制器。S1, according to the given position information and feedback position information under the slow time scale, use the adaptive dynamic programming algorithm to design the slow controller.
其中,自适应动态规划算法包括:Among them, the adaptive dynamic programming algorithm includes:
步骤一:给定初始控制律:Step 1: Given the initial control law:
u=-K0x+κ (8)u=-K 0 x+κ (8)
其中,K0∈Rm×n,为初始增益矩阵,κ为探测噪声,计算δxx、Ixx、Ixu,直到满足:Among them, K 0 ∈R m×n is the initial gain matrix, κ is the detection noise, and δ xx , I xx , and I xu are calculated until they satisfy:
其中,δxx、Ixx、Ixu为学习过程中用来收集状态和输入信息的矩阵,Among them, δ xx , I xx , I xu are the matrices used to collect state and input information in the learning process,
δxx=[μ(x(t1))-μ(x(t0)),μ(x(t2))-μ(x(t1)),...,μ(x(tl))-μ(x(tl-1)δ xx =[μ(x(t 1 ))-μ(x(t 0 )),μ(x(t 2 ))-μ(x(t 1 )),...,μ(x(t l ))-μ(x(t l-1 )
0≤t0<t1<...<tl 0≤t 0 <t 1 <...<t l
其中,表示克罗内克积;in, represents the Kronecker product;
步骤二:利用公式(10)求解Pk和Kk+1,Pk为迭代过程中求出的Riccati方程正定解,Kk为迭代过程中的反馈增益矩阵。Step 2: Use formula (10) to solve P k and K k+1 , where P k is the positive definite solution of the Riccati equation obtained in the iterative process, and K k is the feedback gain matrix in the iterative process.
其中:in:
γ(Pk)=[p11p12...2p1np222p23...2pn-1pnn]T γ(P k )=[p 11 p 12 ... 2p 1n p 22 2p 23 ... 2p n-1 p nn ] T
vec(M)表示矩阵M的向量化,即vec(Mg×h)=[m11m21...m1h m2h...mgh]T;vec(M) represents the vectorization of matrix M, that is, vec(M g×h )=[m 11 m 21 ... m 1h m 2h ... m gh ] T ;
步骤三:令k←k+1,如果||Pk-Pk-1||>α,α>0,返回步骤二,否则进入步骤四;Step 3: Let k←k+1, if ||P k -P k-1 ||>α, α>0, go back to
步骤四:令K*=Kk,得到最优控制律:Step 4: Let K * =K k , get the optimal control law:
u=-K*x (11)u=-K * x (11)
如上式(2)所示,慢子系统代表柔性机械臂系统的刚体运动,从上式(6)可以看出,柔性机械臂的位置状态可直接用于慢控制器设计。As shown in Equation (2) above, the slow subsystem represents the rigid body motion of the flexible manipulator system. From the above formula (6), it can be seen that the position state of the flexible manipulator can be directly used in the design of the slow controller.
具体地,可定义位置误差:Specifically, the position error can be defined as:
ec=θ-θd (12)e c = θ-θ d (12)
其中,θd为给定位置信息,θ为反馈位置信息。Among them, θ d is the given position information, and θ is the feedback position information.
定义新的变量将描述柔性机械臂的慢子系统模型即上式(2)重写为:define new variable The slow subsystem model describing the flexible manipulator, the above equation (2), is rewritten as:
其中, in,
选择评价函数:Choose an evaluation function:
其中,Qs=(Qs)T≥0,Rs=(Rs)T>0,(As,(Qs)1/2)可观。Among them, Q s =(Q s ) T ≥0, R s =(R s ) T >0, and (A s , (Q s ) 1/2 ) are considerable.
利用上述自适应动态规划算法,其中,x=xs,u=us,为初始反馈增益矩阵,得到慢控制器:Using the above adaptive dynamic programming algorithm, where x=x s , u=u s , For the initial feedback gain matrix, the slow controller is obtained:
进一步地,对于柔性机械臂反馈的位置信息θ及其一阶导令us=-Ks 0xs+κs,计算再通过求解Ps k和Ks k+1。然后判断当k>1时,是否有||Ps k-Ps k-1||≤α,如果否,则令k←k+1,再求解Ps k和Ks k+1;如果是,则 Further, for the position information θ fed back by the flexible manipulator and its first-order derivative Let us = -K s 0 x s +κ s , calculate pass again Solve for P sk and K s k +1 . Then judge whether there is ||P s k -P s k-1 ||≤α when k>1, if not, let k←k+1, and then solve P s k and K s k+1 ; if Yes, then
如图2所示,本发明实施例所设计的慢控制器即为基于ADP的慢控制器,输入给定位置信息θd和反馈位置信息θ,输出慢参数us。As shown in FIG. 2 , the slow controller designed in the embodiment of the present invention is an ADP-based slow controller, which inputs given position information θ d and feedback position information θ , and outputs the slow parameter u s .
S2,在慢时间尺度下进行振动估计以得到慢时间尺度下的振动量估计值。S2, perform vibration estimation on a slow time scale to obtain an estimated vibration value on a slow time scale.
根据上式(7),振动信息q包括慢时间尺度下的振动量zs和快时间尺度下的振动量zf。为设计快控制器,首先需估计zs,从上式(6)可以看出,zs与us之间的近似结构如下:According to the above formula (7), the vibration information q includes the vibration quantity z s on the slow time scale and the vibration quantity z f on the fast time scale. In order to design a fast controller, z s needs to be estimated first. It can be seen from the above formula (6) that the approximate structure between z s and u s is as follows:
zs=a+bus (16)z s =a+bu s (16)
其中,a和b为要估计的参数。考虑到随机误差的存在,将慢时间尺度下的振动量估计值zs与us之间的关系式(16)写成:where a and b are the parameters to be estimated. Considering the existence of random errors, the relational expression (16) between the estimated vibration value z s and u s in the slow time scale is written as:
其中,vi代表随机误差,为测量数据。where v i represents random error, for measurement data.
利用最小二乘法,将评价函数J定义为:Using the least squares method, the evaluation function J is defined as:
求极值:Find the extreme value:
得到a和b的近似值:Get approximations for a and b:
从而得到慢时间尺度下的振动量估计值zs:Thus, the vibration estimate z s at the slow time scale is obtained:
S3,在快时间尺度下根据慢时间尺度下的振动量估计值和反馈振动信息重构快变量,并根据快变量,运用自适应动态规划算法设计快控制器。S3, reconstruct the fast variable according to the estimated vibration value and feedback vibration information in the slow time scale in the fast time scale, and design the fast controller according to the fast variable using the adaptive dynamic programming algorithm.
重构的快变量zf=k·q-zs。其中,k为刚度矩阵K中的最小值,q为图2所示的反馈振动信息。The reconstructed fast variable z f = k·qz s . Among them, k is the minimum value in the stiffness matrix K, and q is the feedback vibration information shown in Figure 2.
如上式(4)所示,快子系统代表柔性机械臂系统的柔性振动。As shown in Equation (4) above, the fast subsystem represents the flexible vibration of the flexible manipulator system.
具体地,可定义新的变量将描述柔性机械臂的快子系统模型即上式(4)重写为:Specifically, new variables can be defined The fast subsystem model describing the flexible manipulator, that is, the above equation (4) is rewritten as:
其中, in,
选择评价函数:Choose an evaluation function:
其中,Qf=(Qf)T≥0,Rf=(Rf)T>0,(Af,(Qf)1/2)可观。Wherein, Q f =(Q f ) T ≥0, R f =(R f ) T >0, (A f , (Q f ) 1/2 ) is considerable.
利用上述自适应动态规划算法,其中,x=xf,u=uf,为初始反馈增益矩阵,得到快控制器:Using the above adaptive dynamic programming algorithm, where x=x f , u=u f , is the initial feedback gain matrix to get the fast controller:
进一步地,对于柔性机械臂反馈的振动信息q及其一阶导令z=kq,估计z和再求得zf=z-zs,然后令uf=-Kf 0xf+κf,计算再通过求解Pf k和Kf k+1。然后判断当k>1时,是否有||Pf k-Pf k-1||≤α,如果否,则令k←k+1,再求解Pf k和Kf k+1;如果是,则 Further, for the vibration information q fed back by the flexible manipulator and its first-order derivative Let z=kq, estimate z and Then find z f = zz s , Then let u f = -K f 0 x f +κ f , calculate pass again Solve for P f k and K f k+1 . Then judge whether there is ||P f k -P f k -1||≤α when k>1, if not, set k←k+1, and then solve P f k and K f k+1 ; if Yes, then
如图2所示,本发明实施例所设计的快控制器即为基于ADP的快控制器,输入快变量zf,输出快参数uf。As shown in FIG. 2 , the fast controller designed in the embodiment of the present invention is an ADP-based fast controller, which inputs a fast variable zf and outputs a fast parameter uf.
S4,将慢控制器和快控制器组合实现对柔性机械臂的位置和振动的控制。S4, the slow controller and the fast controller are combined to realize the control of the position and vibration of the flexible manipulator.
如图2所示,在得到慢参数和快参数后,可将u总=us+uf作为柔性机械臂的动力学模型的输入,并输出位置信息θ和振动信息q,实现对柔性机械臂的位置和振动的控制。As shown in Figure 2, after the slow parameters and fast parameters are obtained, u total = u s + u f can be used as the dynamic model of the flexible manipulator , and output the position information θ and vibration information q to realize the control of the position and vibration of the flexible manipulator.
本发明可在Matlab环境下验证位置和振动控制的有效性,柔性机械臂的参数如表1:The present invention can verify the effectiveness of the position and vibration control in the Matlab environment, and the parameters of the flexible manipulator are shown in Table 1:
表1Table 1
根据奇异摄动理论,柔性机械臂可分解为快、慢两个子系统,θ和近似相等,运用上述自适应动态规划算法,设计慢控制器。首先给定初始反馈增益矩阵评价矩阵Qs=diag(1,0.1),Rs=I,经过有限次迭代后得到最优反馈增益矩阵通过直接求解Raccati方程,其中A=As,B=Bs,Q=Qs,R=Rs,得到最优反馈增益矩阵Ksd=[1 2.1406]。可以看出和Ksd近似相等,图3示出收敛到最优值Ksd过程,可以看出,该慢控制器能够实现慢子系统的最优控制。According to the singular perturbation theory, the flexible manipulator can be decomposed into two subsystems, fast and slow, θ and are approximately equal, using the adaptive dynamic programming algorithm described above to design a slow controller. First, the initial feedback gain matrix is given Evaluation matrix Q s =diag(1,0.1), R s =I, the optimal feedback gain matrix is obtained after finite iterations By directly solving the Raccati equation, where A=As , B=B s , Q=Q s , R=R s , the optimal feedback gain matrix K sd =[1 2.1406 ] is obtained. As can be seen and K sd are approximately equal, Figure 3 shows Converging to the optimal value K sd process, it can be seen that the slow controller can realize the optimal control of the slow subsystem.
利用最小二乘法求得慢时间尺度下柔性机械臂振动量:The least squares method is used to obtain the vibration of the flexible manipulator at the slow time scale:
根据式(7)和式(21)求得快变量zf,运用上述自适应动态规划算法,设计快控制器。首先给定初始反馈增益矩阵评价矩阵Qf=diag(1,0.1,1,0.1),Rf=I,经过有限次迭代后得到最优反馈增益矩阵通过直接求解Raccati方程,其中A=Af,B=Bf,Q=Qf,R=Rf,得到最优反馈增益矩阵Kfd=[-0.0556-0.6739-0.0674-0.3017]。可以看出和Kfd近似相等,图4示出收敛到最优值Kfd过程,可以看出,该快控制器能够实现快子系统的最优控制。According to formula (7) and formula (21), the fast variable z f is obtained, and the above-mentioned adaptive dynamic programming algorithm is used to design a fast controller. First, the initial feedback gain matrix is given Evaluation matrix Q f =diag(1,0.1,1,0.1), R f =I, the optimal feedback gain matrix is obtained after finite iterations By directly solving the Raccati equation, where A=A f , B=B f , Q=Q f , R=R f , the optimal feedback gain matrix K fd =[-0.0556-0.6739-0.0674-0.3017] is obtained. As can be seen and K fd are approximately equal, Figure 4 shows The process of converging to the optimal value K fd shows that the fast controller can realize the optimal control of the fast subsystem.
为进一步验证本发明对于位置和振动控制的有效性,将本发明的柔性机械臂的控制方法,即基于ADP的组合控制器的控制效果与经典的基于FLC((Fuzzy Logic Control,模糊逻辑控制)组合控制器的控制效果做对比。图5可以看出,在本发明提出的控制方法作用下,柔性机械臂能够更快更精确地到达指定位置。图6和图7可以看出本发明对柔性机械臂的振动具有更好的抑制效果。In order to further verify the effectiveness of the present invention for position and vibration control, the control method of the flexible manipulator of the present invention, that is, the control effect of the combined controller based on ADP and the classical FLC (Fuzzy Logic Control, fuzzy logic control) The control effect of the combined controller is compared. As can be seen from Figure 5, under the action of the control method proposed by the present invention, the flexible robotic arm can reach the designated position faster and more accurately. Figure 6 and Figure 7 can be seen that the present invention has a The vibration of the mechanical arm has a better suppression effect.
综上所述,根据本发明实施例的柔性机械臂的控制方法,通过在慢时间尺度下根据给定位置信息和反馈位置信息,运用自适应动态规划算法设计慢控制器,并在慢时间尺度下进行振动估计以得到慢时间尺度下的振动量估计值,以及在快时间尺度下根据慢时间尺度下的振动量估计值和反馈振动信息重构快变量,并根据快变量,运用自适应动态规划算法设计快控制器,然后将慢控制器和快控制器组合实现对柔性机械臂的位置和振动的控制,由此,能够在不使用系统模型的情况下,实现对柔性机械臂位置和振动的最优控制。To sum up, according to the control method of the flexible manipulator according to the embodiment of the present invention, by using the adaptive dynamic programming algorithm to design the slow controller according to the given position information and feedback position information in the slow time scale, and at the slow time scale Vibration estimation is carried out to obtain the estimated value of vibration in the slow time scale, and the fast variable is reconstructed according to the estimated value of vibration in the slow time scale and the feedback vibration information in the fast time scale, and according to the fast variable, the adaptive dynamic The planning algorithm designs the fast controller, and then combines the slow controller and the fast controller to control the position and vibration of the flexible manipulator, thereby realizing the control of the position and vibration of the flexible manipulator without using a system model. optimal control.
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度、”“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the terms "center", "longitudinal", "lateral", "length," "width", "thickness", "upper", "lower", "front", " Back, Left, Right, Vertical, Horizontal, Top, Bottom, Inner, Outer, Clockwise, Counterclockwise, Axial , "radial", "circumferential" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying the indicated device or Elements must have a particular orientation, be constructed and operate in a particular orientation and are therefore not to be construed as limitations of the invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first" or "second" may expressly or implicitly include one or more of that feature. In the description of the present invention, "plurality" means two or more, unless otherwise expressly and specifically defined.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise expressly specified and limited, the terms "installed", "connected", "connected", "fixed" and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of the two elements or the interaction relationship between the two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise expressly specified and limited, a first feature "on" or "under" a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch. Also, the first feature being "above", "over" and "above" the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature. The first feature being "below", "below" and "below" the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it should be understood that the above-mentioned embodiments are exemplary and should not be construed as limiting the present invention. Embodiments are subject to variations, modifications, substitutions and variations.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810469011.2A CN108656114B (en) | 2018-05-16 | 2018-05-16 | Control method of flexible mechanical arm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810469011.2A CN108656114B (en) | 2018-05-16 | 2018-05-16 | Control method of flexible mechanical arm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108656114A CN108656114A (en) | 2018-10-16 |
CN108656114B true CN108656114B (en) | 2021-04-13 |
Family
ID=63779842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810469011.2A Active CN108656114B (en) | 2018-05-16 | 2018-05-16 | Control method of flexible mechanical arm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108656114B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109445274B (en) * | 2018-10-25 | 2021-08-27 | 清华大学深圳研究生院 | Flexible space manipulator vibration control method and system |
CN110315527A (en) * | 2019-02-26 | 2019-10-11 | 浙江树人学院(浙江树人大学) | A kind of flexible mechanical arm control method of adaptive Dynamic Programming |
CN110170992B (en) * | 2019-04-02 | 2022-11-04 | 长春工业大学 | A multi-fault fault-tolerant control method for a modular manipulator based on dynamic programming |
CN110298854B (en) * | 2019-05-17 | 2021-05-11 | 同济大学 | Co-localization method of flying snake-like arm based on online adaptation and monocular vision |
CN110441063B (en) * | 2019-06-12 | 2021-04-27 | 祝思宁 | Method for monitoring and diagnosing cracks of large high-speed rotor shaft |
CN110744552B (en) * | 2019-11-27 | 2023-04-28 | 中国船舶集团有限公司第七一六研究所 | Flexible mechanical arm motion control method based on singular perturbation theory |
CN119070688A (en) * | 2024-08-05 | 2024-12-03 | 中国矿业大学 | Data-driven permanent magnet synchronous motor optimal speed adjusting method based on singular perturbation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102540881A (en) * | 2012-02-17 | 2012-07-04 | 国电科学技术研究院 | Design method for boundary control law of Flexible mechanical arm-based partial differential equation model |
CN106094528A (en) * | 2016-07-13 | 2016-11-09 | 上海航天控制技术研究所 | A kind of spatial flexible robot arm vibration suppression algorithm |
WO2016180759A1 (en) * | 2015-05-08 | 2016-11-17 | Putzmeister Engineering Gmbh | Method for actuating an articulated boom in a large manipulator |
CN107263858A (en) * | 2017-07-03 | 2017-10-20 | 华中科技大学 | A kind of heterogeneous many material increasing material manufacturing systems |
CN107942670A (en) * | 2017-11-30 | 2018-04-20 | 福州大学 | A kind of double-flexibility space manipulator Fuzzy Robust Controller sliding formwork, which is cut, trembles motion control method |
-
2018
- 2018-05-16 CN CN201810469011.2A patent/CN108656114B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102540881A (en) * | 2012-02-17 | 2012-07-04 | 国电科学技术研究院 | Design method for boundary control law of Flexible mechanical arm-based partial differential equation model |
WO2016180759A1 (en) * | 2015-05-08 | 2016-11-17 | Putzmeister Engineering Gmbh | Method for actuating an articulated boom in a large manipulator |
CN106094528A (en) * | 2016-07-13 | 2016-11-09 | 上海航天控制技术研究所 | A kind of spatial flexible robot arm vibration suppression algorithm |
CN107263858A (en) * | 2017-07-03 | 2017-10-20 | 华中科技大学 | A kind of heterogeneous many material increasing material manufacturing systems |
CN107942670A (en) * | 2017-11-30 | 2018-04-20 | 福州大学 | A kind of double-flexibility space manipulator Fuzzy Robust Controller sliding formwork, which is cut, trembles motion control method |
Also Published As
Publication number | Publication date |
---|---|
CN108656114A (en) | 2018-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108656114B (en) | Control method of flexible mechanical arm | |
CN108789418B (en) | Control method of flexible manipulator | |
CN105093934B (en) | Consider interference and the distributed finite time tracking controller design method of multi-robot system of model uncertainty | |
CN113434921B (en) | Structure and other geometric topology optimization method considering mesoscale effect | |
Pan et al. | Probabilistic differential dynamic programming | |
Jalalpour et al. | An efficient approach to reliability-based topology optimization for continua under material uncertainty | |
CN103645725B (en) | A kind of robot teaching method for planning track and system | |
CN110809505B (en) | Method and apparatus for performing movement control of a robotic arm | |
Fu et al. | Tool path correction algorithm for single-point incremental forming of sheet metal | |
Lou et al. | Optimization algorithms for kinematically optimal design of parallel manipulators | |
CN104950678A (en) | Neural network inversion control method for flexible manipulator system | |
Xu et al. | A HOIM-based iterative learning control scheme for multi-agent formation | |
CN112497216B (en) | Industrial robot pose precision compensation method based on deep learning | |
CN110744552B (en) | Flexible mechanical arm motion control method based on singular perturbation theory | |
CN111880412A (en) | Reconfigurable robot zero and neural optimal control method based on single evaluation network | |
CN109839894A (en) | A kind of control method of bilateral teleoperation system | |
CN113946990B (en) | STO-BTCN thermal error prediction model modeling method and transfer learning method thereof | |
Chu et al. | Backstepping control for flexible joint with friction using wavelet neural networks and L2‐gain approach | |
Gao et al. | Time-optimal trajectory planning of industrial robots based on particle swarm optimization | |
Ansola et al. | 3D compliant mechanisms synthesis by a finite element addition procedure | |
CN109190282B (en) | A method for assembling and adjusting a closed chain mechanism, its control device, and a mechanical device | |
CN114802817B (en) | A method and device for satellite attitude control based on multi-flywheel array | |
Lee et al. | Finite element analysis of large deformation by automatic renoding as a weak remeshing technique | |
Qiu et al. | Reinforcement learning vibration control and trajectory planning optimization of translational flexible hinged plate system | |
Fu et al. | Decoupled adaptive terminal sliding mode control strategy for a 6-DOF electro-hydraulic suspension test rig with RBF coupling force compensator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |