CN108646695A - 一种用于蒸发工序的智能控制方法 - Google Patents

一种用于蒸发工序的智能控制方法 Download PDF

Info

Publication number
CN108646695A
CN108646695A CN201810763314.5A CN201810763314A CN108646695A CN 108646695 A CN108646695 A CN 108646695A CN 201810763314 A CN201810763314 A CN 201810763314A CN 108646695 A CN108646695 A CN 108646695A
Authority
CN
China
Prior art keywords
vector
control
evaporization process
state equation
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810763314.5A
Other languages
English (en)
Other versions
CN108646695B (zh
Inventor
李律
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Number Also Way Technology Co Ltd
Original Assignee
Hangzhou Number Also Way Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Number Also Way Technology Co Ltd filed Critical Hangzhou Number Also Way Technology Co Ltd
Priority to CN201810763314.5A priority Critical patent/CN108646695B/zh
Publication of CN108646695A publication Critical patent/CN108646695A/zh
Application granted granted Critical
Publication of CN108646695B publication Critical patent/CN108646695B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32252Scheduling production, machining, job shop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种用于蒸发工序的智能控制方法,本发明的智能控制方法将状态方程模型和人工经验模型相结合,充分利用两个模型的优点,消除两个模型各自的误差,使被控制对象达到更好的控制效果。本发明可以达到实现误差更小,控制效果更优的技术效果。

Description

一种用于蒸发工序的智能控制方法
技术领域
本发明涉及过程控制中的智能控制领域,尤其涉及一种用于蒸发工序的智能控制方法。
背景技术
在流程型制造业中,应用智能控制可以大大提升智能制造水平,提高生产效率,降低生产成本。现有的智能控制系统往往依赖被控制对象的状态方程模型,适用于被控制对象机理简单,模型误差小的场景。但是蒸发工序是一个复杂、高时延的系统,特别是实际生产环境中普遍使用的多效蒸发工序。在蒸发工序中使用状态方程模型进行控制,容易产生由于模型本身缺陷导致的不可控误差,严重影响智能控制的效果,有的情况下甚至不如现场有经验的操作人员的人工控制。因此,智能控制中如何将状态方程模型和操作人员的经验模型相结合是一个十分重要的问题。
发明内容
本发明为克服上述的不足之处,目的在于提供一种用于蒸发工序的智能控制方法,本发明的智能控制方法将状态方程模型和人工经验模型相结合,充分利用两个模型的优点,消除两个模型各自的误差,使被控制对象达到更好的控制效果。
本发明是通过以下技术方案达到上述目的:一种用于蒸发工序的智能控制方法,包括如下步骤:
(1)通过现场调研,分别确定蒸发工序中的输入向量U、输出向量Y、观察向量V所包含的物理量;所述的输入向量U包括新蒸汽流量、蒸发原液流量;输出向量Y为出料浓度;观察向量V包括出料浓度、新蒸汽温度、蒸发原液浓度、蒸发原液温度;其中,蒸发工序的状态方程采用数据驱动方法得到的状态方程;
(2)调研蒸发工序的人工控制经验规则集合C(U,V),C(U,V)中包含了观察向量V中每个物理量发生变化时,输入向量U将发生如何变化的规则;
(3)将出料浓度的控制目标S作为主控界面上的一个数据接口,由用户现场设置;
(4)通过数据采集程序实时采集观察向量V的物理量值,并代入C(U,V);读取用户设置的控制目标值S,代入T(U,S);
(5)通过梯度下降算法求解输入向量U,在限制条件构成的解空间C(U,V)中使得目标函数T(U,S)的值最小;
(6)将计算出的新蒸汽流量和蒸发原液流量通过PID调节流量阀门作用到蒸发工序。
作为优选,所述蒸发工序的状态方程的表达式如下:
X(t+1)=U(t)*W1_U+X(t)*W1_X
Y(t)=X(t)*W2
其中,t为状态方程迭代的单位时间,是状态方程在实际生产环境中相邻两次迭代的时间间隔;X为状态向量,用来表示整个系统的状态,既可能是物理量也可能是逻辑量;W1_U为输入向量的参数矩阵;W1_X为状态向量的参数矩阵;W2为输出向量的参数矩阵。
作为优选,所述在状态方程中,用X(0)表示状态向量的初始值,假定状态方程的时间窗口为N,通过状态方程计算出Y(1)、Y(2)、……、Y(N-1)、Y(N),Y是关于U的表达式,其中X(0)、N、W1_U、W1_X、W2为常数;用S(1)、S(2)、……、S(N-1)、S(N)表示时间窗口N之内的输出向量的控制目标值,构建目标函数T(U,S)=(Y(1)-S(1))2+(Y(2)-S(2))2+……+(Y(N-1)-S(N-1))2+(Y(N)-S(N))2;T(U,S)是Y序列和S序列差值的平方和,反映了状态方程的预测输出值与目标输出值之间的偏差。
作为优选,所述的人工控制经验规则集合C(U,V)具体如下:人工收集得到蒸发工序中的人工经验规则,并将其转换为关于U的不等式方程组,用C(U)表示;C(U)是随着被控制对象的变化而变化的,引入观察向量V表示被控制对象中会对C(U)产生影响的物理量,从而C(U)更加准确的表示为C(U,V)其中,为了在智能控制系统中实现反馈控制,观察向量V至少需要包含输出向量。
本发明的有益效果在于:本发明将状态方程模型和人工经验模型相结合,模型误差更小,控制效果更优。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例:在本实施例中,将本发明应用于某大型有色金属制造厂的蒸发工序,该工序采用六效逆流蒸发工艺;该工序的状态方程采用由数据驱动方法得到的状态方程,因此状态向量是逻辑量;智能控制系统通过调节新蒸汽流量和蒸发原液流量稳定出料浓度;
一种用于蒸发工序的智能控制方法,包括如下步骤:
(1)通过现场调研,确定输入向量U、输出向量Y、观察向量V包含的物理量:其中,输入向量包括新蒸汽流量、蒸发原液流量;输出向量为出料浓度;观察向量包括出料浓度、新蒸汽温度、蒸发原液浓度、蒸发原液温度。
(2)调研蒸发工序的人工控制经验规则集合,具体来说包含了观察向量V中每个物理量发生变化时,输入向量U应该如何变化的规则集合,用C(U,V)表示。
(3)将出料浓度的控制目标S作为主控界面上的一个数据接口,由用户现场设置。
(4)通过数据采集程序实时采集观察向量V的物理量值,代入C(U,V);读取用户设置的控制目标值S,代入T(U,S)。
(5)通过梯度下降算法求解输入向量U,在限制条件构成的解空间C(U,V)中使得目标函数T(U,S)的值最小。
(6)将计算出的新蒸汽流量和蒸发原液流量通过PID调节流量阀门作用到蒸发工序。
其中,蒸发工序的状态方程表达式如下:
X(t+1)=U(t)*W1_U+X(t)*W1_X
Y(t)=X(t)*W2
其中,状态方程中各个符号的含义如下:
t:状态方程迭代的单位时间,是状态方程在实际生产环境中相邻两次迭代的时间间隔。
U:输入向量,被控制对象的输入物理量,可以被智能控制系统在一定范围内改变。
X:状态向量,用来表示整个系统的状态,既可能是物理量也可能是逻辑量。
Y:输出向量,被控制对象的输出物理量,是智能控制系统的控制目标。
W1_U:输入向量的参数矩阵。
W1_X:状态向量的参数矩阵。
W2:输出向量的参数矩阵。
在状态方程中,用X(0)表示状态向量的初始值(根据经验设置),假定状态方程的时间窗口为N(迭代次数),通过状态方程可以计算出Y(1)、Y(2)、……、Y(N-1)、Y(N),Y是关于U的表达式,其中X(0)、N、W1_U、W1_X、W2为常数。用S(1)、S(2)、……、S(N-1)、S(N)表示时间窗口N之内的输出向量的控制目标值,构建目标函数T(U,S)=(Y(1)-S(1))2+(Y(2)-S(2))2+……+(Y(N-1)-S(N-1))2+(Y(N)-S(N))2。T(U,S)是Y序列和S序列差值的平方和,反映了状态方程的预测输出值与目标输出值之间的偏差。另外,收集蒸发工序的人工控制经验规则,转换为关于U的不等式方程组(这里把等式看做不等式的一个特例),这些不等式方程组界定了关于U的多维解空间的范围,用C(U)表示,解空间的维度由输入向量U中元素的个数决定。作为一个智能控制系统,C(U)是随着被控制对象的变化而变化的,引入观察向量V表示被控制对象中会对C(U)产生影响的物理量,于是C(U)可以更加准确的表示为C(U,V)。为了在智能控制系统中实现反馈控制,观察向量V至少需要包含输出向量。这样,整个蒸发工序的智能控制问题就转换成了在多维解空间C(U,V)中求解输入向量U使得目标函数T(U,S)的值最小的问题。在数学上,这是一个限制条件动态变化的优化问题,优化目标由被控制对象的状态方程决定,限制条件由被控制对象的人工控制经验规则决定,状态方程模型和人工经验模型在这样一个优化问题中实现结合。上述优化问题很难得到闭式解,因此使用梯度下降算法来获取这个优化问题的试探解,状态方程模型和人工经验模型的结合保证了这个试探解的准确性。
综上所述,本发明将状态方程模型和人工经验模型相结合,模型误差更小,控制效果更优。
以上的所述乃是本发明的具体实施例及所运用的技术原理,若依本发明的构想所作的改变,其所产生的功能作用仍未超出说明书所涵盖的精神时,仍应属本发明的保护范围。

Claims (4)

1.一种用于蒸发工序的智能控制方法,其特征在于,包括如下步骤:
(1)通过现场调研,分别确定蒸发工序中的输入向量U、输出向量Y、观察向量V所包含的物理量;所述的输入向量U包括新蒸汽流量、蒸发原液流量;输出向量Y为出料浓度;观察向量V包括出料浓度、新蒸汽温度、蒸发原液浓度、蒸发原液温度;其中,蒸发工序的状态方程采用数据驱动方法得到的状态方程;
(2)调研蒸发工序的人工控制经验规则集合C(U,V),C(U,V)中包含了观察向量V中每个物理量发生变化时,输入向量U将发生如何变化的规则;
(3)将出料浓度的控制目标S作为主控界面上的一个数据接口,由用户现场设置;
(4)通过数据采集程序实时采集观察向量V的物理量值,并代入C(U,V);读取用户设置的控制目标值S,代入T(U,S);
(5)通过梯度下降算法求解输入向量U,在限制条件构成的解空间C(U,V)中使得目标函数T(U,S)的值最小;
(6)将计算出的新蒸汽流量和蒸发原液流量通过PID调节流量阀门作用到蒸发工序。
2.根据权利要求1所述的一种用于蒸发工序的智能控制方法,其特征在于:所述蒸发工序的状态方程的表达式如下:
X(t+1)=U(t)*W1_U+X(t)*W1_X
Y(t)=X(t)*W2
其中,t为状态方程迭代的单位时间,是状态方程在实际生产环境中相邻两次迭代的时间间隔;X为状态向量,用来表示整个系统的状态,既可能是物理量也可能是逻辑量;W1_U为输入向量的参数矩阵;W1_X为状态向量的参数矩阵;W2为输出向量的参数矩阵。
3.根据权利要求2所述的一种用于蒸发工序的智能控制方法,其特征在于:所述在状态方程中,用X(0)表示状态向量的初始值,假定状态方程的时间窗口为N,通过状态方程计算出Y(1)、Y(2)、……、Y(N-1)、Y(N),Y是关于U的表达式,其中X(0)、N、W1_U、W1_X、W2为常数;用S(1)、S(2)、……、S(N-1)、S(N)表示时间窗口N之内的输出向量的控制目标值,构建目标函数T(U,S)=(Y(1)-S(1))2+(Y(2)-S(2))2+……+(Y(N-1)-S(N-1))2+(Y(N)-S(N))2;T(U,S)是Y序列和S序列差值的平方和,反映了状态方程的预测输出值与目标输出值之间的偏差。
4.根据权利要求1所述的一种用于蒸发工序的智能控制方法,其特征在于:所述的人工控制经验规则集合C(U,V)具体如下:人工收集得到蒸发工序中的人工经验规则,并将其转换为关于U的不等式方程组,用C(U)表示;C(U)是随着被控制对象的变化而变化的,引入观察向量V表示被控制对象中会对C(U)产生影响的物理量,从而C(U)更加准确的表示为C(U,V)其中,为了在智能控制系统中实现反馈控制,观察向量V至少需要包含输出向量。
CN201810763314.5A 2018-07-12 2018-07-12 一种用于蒸发工序的智能控制方法 Active CN108646695B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810763314.5A CN108646695B (zh) 2018-07-12 2018-07-12 一种用于蒸发工序的智能控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810763314.5A CN108646695B (zh) 2018-07-12 2018-07-12 一种用于蒸发工序的智能控制方法

Publications (2)

Publication Number Publication Date
CN108646695A true CN108646695A (zh) 2018-10-12
CN108646695B CN108646695B (zh) 2020-05-22

Family

ID=63750990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810763314.5A Active CN108646695B (zh) 2018-07-12 2018-07-12 一种用于蒸发工序的智能控制方法

Country Status (1)

Country Link
CN (1) CN108646695B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50306888D1 (de) * 2002-05-28 2007-05-10 Linde Kaeltetechnik Gmbh Verfahren zum Steuern des Abtauprozesses eines Verdampfers
CN101551829A (zh) * 2009-05-15 2009-10-07 中南大学 一种氧化铝蒸发装备出口碱液浓度的在线预测方法
CN107544286A (zh) * 2017-08-30 2018-01-05 浙江力太科技有限公司 一种蒸发工序中的系统辨识方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50306888D1 (de) * 2002-05-28 2007-05-10 Linde Kaeltetechnik Gmbh Verfahren zum Steuern des Abtauprozesses eines Verdampfers
CN101551829A (zh) * 2009-05-15 2009-10-07 中南大学 一种氧化铝蒸发装备出口碱液浓度的在线预测方法
CN107544286A (zh) * 2017-08-30 2018-01-05 浙江力太科技有限公司 一种蒸发工序中的系统辨识方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HASSAN MAHACH 等: "Modeling 0/ a Single Effect Evaporation", 《2016 INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC)》 *
李伟 等: "氧化铝生产蒸发工序实时自动控制", 《电工技术》 *
王永刚: "氧化铝蒸发过程的建模与控制方法的研究", 《中国优秀硕士学位论文数据库》 *

Also Published As

Publication number Publication date
CN108646695B (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
EP3828651B1 (en) Apparatus, method and program
CN103676651B (zh) 基于状态观测模型的锅炉汽温预测控制方法
CN112818595B (zh) 一种火电厂蒸发区的数字孪生模型数据的修正方法及系统
CN107045329B (zh) 车间性能评价装置、车间性能评价系统及车间性能评价方法
Liu et al. Unevenly sampled dynamic data modeling and monitoring with an industrial application
CN104657586B (zh) 基于异常工况检测的高含硫天然气净化工艺建模优化方法
CN102693451A (zh) 基于多参数的氨法烟气脱硫效率预测方法
CN105680827A (zh) 一种腔体滤波器智能调谐算法及使用该算法的调谐方法
CN102540879A (zh) 基于群决策检索策略的多目标评价优化方法
CN108469805A (zh) 一种基于动态性最优选择的分散式动态过程监测方法
CN102147613A (zh) 一种对烟叶复烤机水分、温度的模型预测控制方法及系统
CN109507972A (zh) 基于分层式非高斯监测算法的工业生产过程故障监测方法
Abdul-Wahab et al. Optimization of multistage flash desalination process by using a two-level factorial design
Wang et al. Modeling of soft sensor based on DBN-ELM and its application in measurement of nutrient solution composition for soilless culture
CN113964884A (zh) 基于深度强化学习的电网有功频率的调控方法
CN101673096A (zh) 一种丹参注射液生产浓缩过程密度的软测量方法
CN111142494A (zh) 一种胺液再生装置的智能控制方法及系统
CN108646695A (zh) 一种用于蒸发工序的智能控制方法
CN112632802B (zh) 基于自适应容积卡尔曼滤波的除氧器数字孪生模型数据校正方法及系统
CN107544286A (zh) 一种蒸发工序中的系统辨识方法
CN107870611A (zh) 车间模拟装置及车间模拟方法
CN108804789A (zh) 一种陶瓷喷雾干燥过程能耗建模方法
CN108427398A (zh) 一种基于分散式ar-pls模型的动态过程监测方法
CN108345574A (zh) 相关双数据流异常检测与修正的方法
CN111680823A (zh) 一种风向信息预测方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant