CN108644143A - 一种微型真空泵抽速测量装置及方法 - Google Patents

一种微型真空泵抽速测量装置及方法 Download PDF

Info

Publication number
CN108644143A
CN108644143A CN201810258763.4A CN201810258763A CN108644143A CN 108644143 A CN108644143 A CN 108644143A CN 201810258763 A CN201810258763 A CN 201810258763A CN 108644143 A CN108644143 A CN 108644143A
Authority
CN
China
Prior art keywords
valve
vacuum
minipump
vacuum meter
pumping speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810258763.4A
Other languages
English (en)
Inventor
郭美如
李得天
成永军
孙雯君
赵澜
习振华
袁征难
裴晓强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Physics of Chinese Academy of Space Technology
Original Assignee
Lanzhou Institute of Physics of Chinese Academy of Space Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Physics of Chinese Academy of Space Technology filed Critical Lanzhou Institute of Physics of Chinese Academy of Space Technology
Priority to CN201810258763.4A priority Critical patent/CN108644143A/zh
Publication of CN108644143A publication Critical patent/CN108644143A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps

Abstract

本发明涉及一种微型真空泵抽速测量装置及方法,属于真空技术领域。所述装置包括气体微流量源、上游室、第一真空计、限流小孔、下游室、第一阀门、第二阀门、第二真空计、第三阀门、第四阀门和抽气系统;所述装置使用没有抽速的磁悬浮转子真空计,避免了由于测量真空计本身抽速对待测微型真空泵抽速测量产生的影响;采用桥式结构用同一真空计测量上、下游室压力,避免了使用不同真空计测量上、下游室压力的不一致性;在抽速计算公式中利用上、下游室压力比值,使用线性良好的同一磁悬浮转子真空计避免了真空计本身测量偏差引入的不确定度;解决了微型真空泵抽速无法测量难题,减小了微型真空泵抽速测量不确定度,实现了微型真空泵抽速精确测量。

Description

一种微型真空泵抽速测量装置及方法
技术领域
本发明涉及一种微型真空泵抽速测量装置及方法,属于真空技术领域。
背景技术
真空泵抽速测量历史悠久,近几年世界上相关组织和国家都制定了相应的测量规范。
国际标准化组织已公布了几种真空泵性能测试规范,如ISO5302涡轮分子泵性能测试规范,ISO1608-1蒸汽流真空泵性能测试规范等。德国也公布了相关的真空泵测试规范,DIN28428分子泵性能测试规范,DIN28429真空溅射离子泵测试规范。我国近几十年也公布了诸如GB7774涡轮分子泵性能测试规范,JB/T2965溅射离子泵性能测试方法等真空泵性能测试规范。各个国家的标准既有相似之处,也有各自的特点。
与此同时,每个国家和地区根据各自情况建立了相应的真空泵测试系统,韩国国家标准科学研究所(KRISS)真空技术中心从1999年至2003年建立了多种真空性能参数的评价系统。其中真空泵性能评价方面已建立了满足国际标准要求的低真空泵和高真空泵性能评价系统,建立了真空泵抽气能力和可靠性的评价方法。美国真空协会(AVS)、印度国家物理实验室、日本东京大学工程学院、葡萄牙大学等许多国家及部门也建立了真空泵性能测试系统。
我国国防工业及高科技领域使用最多的真空泵是分子泵和溅射离子泵,数量占高真空泵的百分之八十。我国生产高真空泵的厂家主要有中科院北京仪器研制中心、中科院沈阳科学仪器研制中心、上海真空泵厂、成都国光电器股份有限公司等,大型真空泵生产厂家一般都有自己的测试方法,建立了真空泵测试装置。各厂家真空泵测试方法及测试装置有相同的地方,也有不同之处。
由于受到电离真空计本身抽速的影响及微小流量对泵抽速测量结果的影响,迄今为止,国内外抽速测量方法及测量装置抽速的测量范围都大于1×10-2m3/s,这些方法及装置不适合微型真空泵抽速的测量。随着航空航天、电子工业的快速发展,微型真空泵使用越来越广泛,急需提出微型真空泵的测量方法,建立微型真空泵抽速测量装置。
发明内容
针对现有测量真空泵抽速装置和方法的缺陷,本发明的目的之一在于提供一种微型真空泵抽速测量装置,本发明的目的之二在于提供一种微型真空泵抽速测量方法;采用所述测量装置及方法可以实现微型真空泵抽速的精确测量。
为实现本发明的目的,提供以下技术方案。
一种微型真空泵抽速测量装置,所述装置主要由气体微流量源、上游室、第一真空计、限流小孔、下游室、第一阀门、第二阀门、第二真空计、第三阀门、第四阀门和抽气系统组成。
其中,气体微流量源通过管路与上游室连接,将气体引入上游室中;第一真空计与上游室通过管路连接,第一真空计测量上游室的本底压力;上游室和下游室之间通过限流小孔连通,气体通过限流小孔进入下游室;下游室通过第一阀门与待测微型真空泵连接,下游室通过第四阀门所在的另一条管路与抽气系统连接,下游室中的气体可分别被待测微型真空泵和抽气系统抽出;上游室通过第二阀门所在的管路与第二真空计相连,下游室通过第三阀门所在管路与第二真空计相连,第二阀门和第三阀门所在的管路汇合成一条管路后与第二真空计相连,第二阀门、第二真空计和第三阀门以及连接管路组成桥式结构,实现同一第二真空计既用于测量上游室的压力,又可以测量下游室的压力。
气体微流量源提供恒定微流量气体,可提供1×10-5Pa·m3/s~1×10-9Pa·m3/s范围内气体流量,气体流量大小可以未知,气体种类已知,如氮气、氦气、氩气等气体。
待测微型真空泵抽速在1×10-3m3/s~1×10-5m3/s范围。
第一阀门、第二阀门、第三阀门和第四阀门均为真空阀门。
第一真空计为电离真空计,测量下限能达到10-7Pa量级。
第二真空计为本身没有吸气作用(即没有抽速)的磁悬浮转子真空计。
抽气系统为本领域现有技术中所述用于抽气达到真空的装置,可为分子泵与机械泵的组合等,极限真空度能达到10-7Pa量级。
一种微型真空泵抽速测量方法,所述测量方法采用本发明所述的一种微型真空泵抽速测量装置实现,其中,气体微流量源、第一真空计、第一阀门、待测微型真空泵、第二阀门、第二真空计、第三阀门、第四阀门和抽气系统在所述测量方法开始前均处于关闭状态,所述测量方法步骤如下:
(1)打开第四阀门、第一阀门和第二阀门,启动抽气系统抽真空,开启第一真空计;
(2)用第一真空计测量上游室中的本底压力,当本底压力测量值小于1×10-6Pa,且10分钟压力值基本保持不变时,关闭第一真空计,打开气体微流量源,启动待测微型真空泵,关闭第四阀门,关闭抽气系统;
(3)开启第二真空计,当气体流量达到动态平衡时,用第二真空计测量上游室中的压力(pa);关闭第二阀门,打开第三阀门,用第二真空计测量下游室中的压力(pb);
动态平衡就是气体微流量源提供的恒定流量在上游室与下游室中产生压力长时间基本保持不变,一般大于10分钟;
(4)在动态平衡条件下,根据流量守恒定律,气体微流量源提供的气体流量(Q)、通过限流小孔的气体流量(Q1)及待测微型真空泵抽走的气体流量(Q2)相等,用公式(1)表示:
Q=Q1=Q2 (1)
公式(1)中:
Q—气体微流量源提供的气体流量,单位为:Pa·m3/s,
Q1—通过限流小孔的气体流量,单位为:Pa·m3/s,
Q2—待测微型真空泵抽走的气体流量,单位为:Pa·m3/s;
通过限流小孔的气体流量(Q1)用公式(2)表示:
Q1=C(pa-pb) (2)
公式(2)中:
pa—上游室中的压力,单位为:Pa,
pb—下游室中的压力,单位为:Pa,
C—限流小孔的流导,单位为:m3/s,可按照文献(大道安.真空设计手册.北京:国防工业出版社,2004,第三版;p104页(2-19)式)测量计算得到;
限流小孔的流导(C)计算用公式(3)表示:
公式(3)中:
T—气体温度,单位为:K,
M—气体摩尔质量,单位为:kg/mol,
d—圆孔直经,单位为:m;
待测微型真空泵抽走的气体流量(Q2),用公式(4)表示:
Q2=Spb (4)
公式(4)中:
S—待测微型真空泵的抽速,单位为:m3/s;
将公式(1)、公式(2)及公式(4)联立求解得到待测微型真空泵抽速(S)的计算公式用公式(5)表示:
有益效果
本发明提供了一种微型真空泵抽速测量装置及方法,压力测量使用没有抽速的磁悬浮转子真空计,避免了由于测量真空计本身抽速对待测微型真空泵抽速测量产生的影响;采用桥式结构用同一真空计测量上游室和下游室的压力,避免了使用不同真空计测量上游室和下游室压力的不一致性;在抽速计算公式中利用上游室和下游室压力比值,使用线性良好的同一磁悬浮转子真空计避免了真空计本身测量偏差引入的不确定度;解决了微型真空泵抽速无法测量难题,减小了微型真空泵抽速测量不确定度,实现了微型真空泵抽速精确测量。
附图说明
图1为实施例中一种微型真空泵抽速测量装置的结构示意图。
图中:1—气体微流量源,2—上游室,3—第一真空计,4—限流小孔,5—下游室,6—第一阀门,7—待测微型真空泵,8—第二阀门,9—第二真空计,10—第三阀门,11—第四阀门,12—抽气系统。
具体实施方式
如图1所示,一种微型真空泵抽速测量装置,所述装置主要由气体微流量源1、上游室2、第一真空计3、限流小孔4、下游室5、第一阀门6、第二阀门8、第二真空计9、第三阀门10、第四阀门11和抽气系统12组成。
其中,气体微流量源1通过管路与上游室2连接,将气体引入上游室2中;第一真空计3与上游室2通过管路连接,第一真空计3测量上游室2的本底压力;上游室2和下游室5之间通过限流小孔4连通,气体通过限流小孔4进入下游室5;下游室5通过第一阀门6与待测微型真空泵7连接,下游室5通过第四阀门11所在的另一条管路与抽气系统12连接,下游室5中的气体可分别被待测微型真空泵7和抽气系统12抽出;上游室2通过第二阀门8所在的管路与第二真空计9相连,下游室5通过第三阀门10所在管路与第二真空计9相连,第二阀门8和第三阀门10所在的管路汇合成一条管路后与第二真空计9相连,第二阀门8、第二真空计9和第三阀门10以及连接管路组成桥式结构,实现同一第二真空计9既用于测量上游室2的压力,又可以测量下游室5的压力。
气体微流量源1提供恒定微流量氮气N2,气体微流量源1是兰州空间技术物理研究所研制的固定流导法气体微流量计,可提供1×10-5Pa·m3/s~1×10-9Pa·m3/s范围内气体微流量;
上游室2和下游室5采用真空熔炼的316L不锈钢制作;
第一真空计3为德国LEYBOLD公司生产的IE514分离型电离真空计;
限流小孔4采用真空熔炼的316L不锈钢制作;
第一阀门6、第二阀门8、第三阀门10和第四阀门11均为瑞士VAT公司生产的真空阀门。
待测微型真空泵7为成都国光电器股份有限公司的微型溅射离子泵;
第二真空计9为美国MKS公司生产的SRG-3磁悬浮转子真空计;
抽气系统12为机械泵与分子泵的组合,机械泵为德国LEYBOLD公司生产的SC5D型机械泵,分子泵为德国LEYBOLD公司生产的WT250型分子泵。
一种微型真空泵抽速测量方法,所述测量方法采用本发明所述的一种微型真空泵抽速测量装置实现,其中,气体微流量源1、第一真空计3、第一阀门6、待测微型真空泵7、第二阀门8、第二真空计9、第三阀门10、第四阀门11和抽气系统12在所述测量方法开始前均处于关闭状态,所述测量方法步骤如下:
(1)打开第四阀门11、第一阀门6和第二阀门8,启动抽气系统12抽真空,开启第一真空计3;
(2)用第一真空计3测量上游室2中的本底压力,当压力测量值为3.2×10-7Pa,在10分钟内压力变化量为1×10-8Pa,关闭第一真空计3,打开气体微流量源1,提供1.12×10- 6Pa·m3/s恒定气体流量,启动待测微型真空泵7,关闭第四阀门11,关闭抽气系统12;
(3)开启第二真空计9,当气体流量达到动态平衡时,用第二真空计9测量上游室2中的压力(pa)为2.78×10-3Pa;关闭第二阀门8,打开第三阀门10,用第二真空计9测量下游室5中的压力(pb)为2.30×10-3Pa。
动态平衡就是气体微流量源1提供的恒定流量在上游室2与下游室5中产生压力长时间基本保持不变,在10分钟内上游室2压力变化量为1.0×10-4Pa,下游室5压力变化量为6×10-5Pa;
(4)在动态平衡条件下,根据流量守恒定律,气体微流量源1提供的气体流量(Q),通过限流小孔4的气体流量(Q1)及待测微型真空泵7抽走的气体流量(Q2)相等,用公式(1)表示:
Q=Q1=Q2 (1)
公式(1)中:
Q—气体微流量源1提供的气体流量,单位为:Pa·m3/s,
Q1—通过限流小孔4的气体流量,单位为:Pa·m3/s,
Q2—待测微型真空泵7抽走的气体流量,单位为:Pa·m3/s;
通过限流小孔4的气体流量(Q1)用公式(2)表示:
Q1=C(pa-pb) (2)
公式(2)中:
pa—上游室2中的压力,单位为:Pa,
pb—下游室5中的压力,单位为:Pa,
C—限流小孔4的流导,单位为:m3/s,可按照文献(大道安.真空设计手册.北京:国防工业出版社,2004,第三版;p104页(2-19)式)测量计算得到。
限流小孔4流导(C)的计算用公式(3)表示:
公式(3)中:
T—气体温度,单位为:K;气体温度为296K,
M—气体摩尔质量,单位为:kg/mol;氮气(N2)摩尔质量为2.8×10-2kg/mol,
d—圆孔直经,单位为:m;圆孔直经为5.0×10-3m,
计算得到限流小孔4的流导为2.31×10-3m3/s;
待测微型真空泵7抽走的气体流量(Q2),用公式(4)表示:
Q2=Spb (4)
公式(4)中:
S—待测微型真空泵7的抽速,单位为m3/s;
将公式(1)、公式(2)及公式(4)联立求解得到待测微型真空泵7抽速(S)的计算公式用(5)式表示:
通过计算得到微型真空泵抽速为4.85×10-4m3/s。

Claims (4)

1.一种微型真空泵抽速测量装置,其特征在于:所述装置主要由气体微流量源(1)、上游室(2)、第一真空计(3)、限流小孔(4)、下游室(5)、第一阀门(6)、第二阀门(8)、第二真空计(9)、第三阀门(10)、第四阀门(11)和抽气系统(12)组成;
气体微流量源(1)通过管路与上游室(2)连接,第一真空计(3)与上游室(2)通过管路连接,上游室(2)和下游室(5)之间通过限流小孔(4)连通,下游室(5)通过第一阀门(6)与待测微型真空泵(7)连接,下游室(5)通过第四阀门(11)所在的另一条管路与抽气系统(12)连接,上游室(2)通过第二阀门(8)所在的管路与第二真空计(9)相连,下游室(5)通过第三阀门(10)所在管路与第二真空计(9)相连,第二阀门(8)和第三阀门(10)所在的管路汇合成一条管路后与第二真空计(9)相连,第二阀门(8)、第二真空计(9)和第三阀门(10)以及连接管路组成桥式结构;
气体微流量源(1)提供1×10-5Pa·m3/s~1×10-9Pa·m3/s范围内种类已知的恒定微流量气体;
待测微型真空泵(7)抽速为1×10-3m3/s~1×10-5m3/s;
第一阀门(6)、第二阀门(8)、第三阀门(10)和第四阀门(11)均为真空阀门;
第一真空计(3)为电离真空计,测量下限为10-7Pa量级;
第二真空计(9)为磁悬浮转子真空计。
2.根据权利要求1所述的一种微型真空泵抽速测量装置,其特征在于:抽气系统(12)的极限真空度为10-7Pa量级。
3.根据权利要求2所述的一种微型真空泵抽速测量装置,其特征在于:抽气系统(12)为分子泵与机械泵的组合。
4.一种微型真空泵抽速测量方法,其特征在于:所述测量方法采用如权利要求1~3中任一项所述的一种微型真空泵抽速测量装置实现,气体微流量源(1)、第一真空计(3)、第一阀门(6)、待测微型真空泵(7)、第二阀门(8)、第二真空计(9)、第三阀门(10)、第四阀门(11)和抽气系统(12)在所述测量方法开始前均处于关闭状态,所述测量方法步骤如下:
(1)打开第四阀门(11)、第一阀门(6)和第二阀门(8),启动抽气系统(12)抽真空,开启第一真空计(3);
(2)用第一真空计(3)测量上游室(2)中的本底压力,当本底压力测量值小于1×10-6Pa,且10分钟压力值基本保持不变时,关闭第一真空计(3),打开气体微流量源(1),启动待测微型真空泵(7),关闭第四阀门(11),关闭抽气系统(12);
(3)开启第二真空计(9),当气体流量达到动态平衡时,用第二真空计(9)测量上游室(2)中的压力;关闭第二阀门(8),打开第三阀门(10),用第二真空计(9)测量下游室(5)中的压力;
动态平衡就是气体微流量源(1)提供的恒定流量在上游室(2)与下游室(5)中产生压力长时间基本保持不变,大于10分钟;
(4)在动态平衡条件下,根据流量守恒定律,气体微流量源(1)提供的气体流量、通过限流小孔(4)的气体流量及待测微型真空泵(7)抽走的气体流量相等,用公式(1)表示:
Q=Q1=Q2 (1)
公式(1)中:
Q—气体微流量源(1)提供的气体流量,单位为:Pa·m3/s,
Q1—通过限流小孔(4)的气体流量,单位为:Pa·m3/s,
Q2—待测微型真空泵(7)抽走的气体流量,单位为:Pa·m3/s;
通过限流小孔(4)的气体流量用公式(2)表示:
Q1=C(pa-pb) (2)
公式(2)中:
pa—上游室(2)中的压力,单位为:Pa,
pb—下游室(5)中的压力,单位为:Pa,
C—限流小孔(4)的流导,单位为:m3/s;
限流小孔(4)的流导计算用公式(3)表示:
公式(3)中:
T—气体温度,单位为:K,
M—气体摩尔质量,单位为:kg/mol,
d—圆孔直经,单位为:m;
待测微型真空泵(7)抽走的气体流量,用公式(4)表示:
Q2=Spb (4)
公式(4)中:
S—待测微型真空泵(7)的抽速,单位为:m3/s;
将公式(1)、公式(2)及公式(4)联立求解得到待测微型真空泵(7)抽速的计算公式用公式(5)表示:
CN201810258763.4A 2018-03-27 2018-03-27 一种微型真空泵抽速测量装置及方法 Pending CN108644143A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810258763.4A CN108644143A (zh) 2018-03-27 2018-03-27 一种微型真空泵抽速测量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810258763.4A CN108644143A (zh) 2018-03-27 2018-03-27 一种微型真空泵抽速测量装置及方法

Publications (1)

Publication Number Publication Date
CN108644143A true CN108644143A (zh) 2018-10-12

Family

ID=63744920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810258763.4A Pending CN108644143A (zh) 2018-03-27 2018-03-27 一种微型真空泵抽速测量装置及方法

Country Status (1)

Country Link
CN (1) CN108644143A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109404322A (zh) * 2018-12-06 2019-03-01 北京东方计量测试研究所 一种宽量程高精度分子泵抽速测试系统及方法
CN109751233A (zh) * 2018-12-06 2019-05-14 兰州空间技术物理研究所 一种基于微型真空泵测量惰性气体抽速的装置及方法
CN110005603A (zh) * 2019-04-23 2019-07-12 东北大学 一种微型真空泵抽气性能测试装置及方法
CN113153723A (zh) * 2021-04-02 2021-07-23 胡尊波 一种真空泵抽速测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052940A (zh) * 2010-10-26 2011-05-11 中国航天科技集团公司第五研究院第五一○研究所 一种基于静态膨胀法真空标准的极小气体流量测量装置
CN103808458A (zh) * 2013-12-24 2014-05-21 兰州空间技术物理研究所 基于动态流量法测试真空规吸放气量的装置及方法
CN104179706A (zh) * 2013-05-27 2014-12-03 山东亿家能太阳能有限公司 分子泵抽速测试仪
CN105485040A (zh) * 2015-12-24 2016-04-13 合肥敬业电子有限公司 一种真空检测装置及检测方法
CN105910952A (zh) * 2016-04-13 2016-08-31 兰州空间技术物理研究所 一种桥式对称结构的双真空规材料放气率测试方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102052940A (zh) * 2010-10-26 2011-05-11 中国航天科技集团公司第五研究院第五一○研究所 一种基于静态膨胀法真空标准的极小气体流量测量装置
CN104179706A (zh) * 2013-05-27 2014-12-03 山东亿家能太阳能有限公司 分子泵抽速测试仪
CN103808458A (zh) * 2013-12-24 2014-05-21 兰州空间技术物理研究所 基于动态流量法测试真空规吸放气量的装置及方法
CN105485040A (zh) * 2015-12-24 2016-04-13 合肥敬业电子有限公司 一种真空检测装置及检测方法
CN105910952A (zh) * 2016-04-13 2016-08-31 兰州空间技术物理研究所 一种桥式对称结构的双真空规材料放气率测试方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
梅国强等: "微型溅射离子泵性能测试", 《真空科学与技术学报》 *
黄涛等: "CSNS离子泵性能测试", 《真空》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109404322A (zh) * 2018-12-06 2019-03-01 北京东方计量测试研究所 一种宽量程高精度分子泵抽速测试系统及方法
CN109751233A (zh) * 2018-12-06 2019-05-14 兰州空间技术物理研究所 一种基于微型真空泵测量惰性气体抽速的装置及方法
CN110005603A (zh) * 2019-04-23 2019-07-12 东北大学 一种微型真空泵抽气性能测试装置及方法
CN113153723A (zh) * 2021-04-02 2021-07-23 胡尊波 一种真空泵抽速测量方法

Similar Documents

Publication Publication Date Title
CN108644143A (zh) 一种微型真空泵抽速测量装置及方法
CN102494741B (zh) 一种静态进样正压漏孔校准装置及方法
US20200402783A1 (en) Novel partial-pressure mass spectrometer calibration device and method
CN105004479B (zh) 基于标准压力测量的电离真空计和质谱计校准装置及方法
CN109341946B (zh) 一种复合型比较法真空校准系统及方法
CN109854494A (zh) 一种固定流导法流量计测量微型真空泵抽速的装置及方法
CN105136389B (zh) 10‑9Pa量级的真空分压力校准装置及校准系数获取方法
CN106525683B (zh) 一种薄膜渗透率测量装置和测量方法
CN103759906B (zh) 基于静态膨胀法真空标准校准真空漏孔的装置及方法
CN101718666B (zh) 一种用于低温材料出气性能测试的金属系统
CN102967527A (zh) 具有自校准功能的复合型材料放气率测试系统及方法
CN103592206B (zh) 一种金属中氢扩散或渗透性能测试方法及其专用装置
CN102052940B (zh) 一种基于静态膨胀法真空标准的极小气体流量测量装置
CN116398421B (zh) 高真空泵抽速测试装置及其使用方法
CN109443983A (zh) 一种基于对称结构的材料放气率测试系统及方法
CN103808458A (zh) 基于动态流量法测试真空规吸放气量的装置及方法
CN106289666B (zh) 一种用于环境温度下真空漏孔的校准装置及方法
CN106679897A (zh) 一种漏孔漏率测量装置
CN202853862U (zh) 一种将气体微流量校准下限延伸至10-14Pam3/s的系统
CN109751233A (zh) 一种基于微型真空泵测量惰性气体抽速的装置及方法
CN109026804A (zh) 一种基于接口为cf400的分子泵抽速测试系统及方法
CN202885918U (zh) 便携式气体微流量校准装置
CN109344423A (zh) 一种合缸汽轮机实际中压缸效率的计算方法
CN216871896U (zh) 质谱仪分压校准系统
Elkatmis et al. TÜBİTAK UME vacuum laboratory capabilities and activities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181012

RJ01 Rejection of invention patent application after publication