CN108629773A - 建立训练识别心脏血管类型的卷积神经网络数据集的方法 - Google Patents
建立训练识别心脏血管类型的卷积神经网络数据集的方法 Download PDFInfo
- Publication number
- CN108629773A CN108629773A CN201810441538.4A CN201810441538A CN108629773A CN 108629773 A CN108629773 A CN 108629773A CN 201810441538 A CN201810441538 A CN 201810441538A CN 108629773 A CN108629773 A CN 108629773A
- Authority
- CN
- China
- Prior art keywords
- map
- data
- coronary artery
- mark
- slightly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000012549 training Methods 0.000 title claims abstract description 26
- 238000013527 convolutional neural network Methods 0.000 title claims abstract description 21
- 230000002526 effect on cardiovascular system Effects 0.000 title claims abstract description 16
- 210000004351 coronary vessel Anatomy 0.000 claims abstract description 43
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 34
- 230000003068 static effect Effects 0.000 claims abstract description 34
- 230000008569 process Effects 0.000 claims abstract description 18
- 238000000586 desensitisation Methods 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 208000009782 Plagiocephaly Diseases 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 5
- 230000003902 lesion Effects 0.000 claims description 5
- 230000036541 health Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 239000008280 blood Substances 0.000 claims description 2
- 210000004369 blood Anatomy 0.000 claims description 2
- 238000013528 artificial neural network Methods 0.000 abstract description 6
- 238000012545 processing Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 9
- 238000002583 angiography Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 210000001367 artery Anatomy 0.000 description 4
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 3
- 229960003351 prussian blue Drugs 0.000 description 3
- 239000013225 prussian blue Substances 0.000 description 3
- 235000013799 ultramarine blue Nutrition 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 210000004218 nerve net Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
- G06T2207/10121—Fluoroscopy
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
- G06T2207/30104—Vascular flow; Blood flow; Perfusion
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Processing (AREA)
Abstract
Description
血管 | 颜色(RGB值) |
左主干 | 中绿(0,159,48) |
前降支(近) | 土黄(177,135,60) |
第一对角支 | 深桃红(177,63,96) |
第一对角支(Ad) | 浅桃红(255,39,108) |
前降支(中) | 橙红(255,111,72) |
第二对角支 | 藏蓝(0,15,120) |
第二对角支(Ad) | 若草(177,246,132) |
前降支(远) | 墨绿(0,87,84) |
中间支 | 粉绿(0,198,156) |
回旋支(近) | 米黄(255,222,144) |
回旋支(远) | 普鲁士蓝(0,126,192) |
第二钝缘支 | 粉(255,150,180) |
第一钝缘支 | 灰(177,174,168) |
左室后侧支 | 紫(177,102,204) |
后降支(回) | 品红(255,78,216) |
右主干(近) | 红(255,0,0) |
右主干(中) | 浅绿(0,231,12) |
右主干(远) | 黄绿(177,207,24) |
后降支(右) | 橙黄(255,183,36) |
后侧支 | 群青蓝(0,54,228) |
血管 | 医生粗标颜色(RGB值) | 人工精标颜色(RGB值) |
左主干 | 中绿(0,159,48) | (255,0,0) |
前降支(近) | 土黄(177,135,60) | (0,255,0) |
第一对角支 | 深桃红(177,63,96) | (0,0,255) |
第一对角支(Ad) | 浅桃红(255,39,108) | (0,128,255) |
前降支(中) | 橙红(255,111,72) | (255,0,255) |
第二对角支 | 藏蓝(0,15,120) | (0,255,255) |
第二对角支(Ad) | 若草(177,246,132) | (128,0,255) |
前降支(远) | 墨绿(0,87,84) | (255,255,0) |
中间支 | 粉绿(0,198,156) | (128,0,0) |
回旋支(近) | 米黄(255,222,144) | (0,0,128) |
回旋支(远) | 普鲁士蓝(0,126,192) | (0,128,0) |
第二钝缘支 | 粉(255,150,180) | (128,128,0) |
第一钝缘支 | 灰(177,174,168) | (128,0,128) |
左室后侧支 | 紫(177,102,204) | (0,128,128) |
后降支(回) | 品红(255,78,216) | (128,255,0) |
右主干(近) | 红(255,0,0) | (255,128,0) |
右主干(中) | 浅绿(0,231,12) | (255,0,128) |
右主干(远) | 黄绿(177,207,24) | (0,255,128) |
后降支(右) | 橙黄(255,183,36) | (128,128,255) |
后侧支 | 群青蓝(0,54,228) | (128,255,128) |
不关注血管 | (150,150,150) | |
背景 | (0,0,0) | |
导管 | (255,255,255) |
血管 | 医生粗标颜色(RGB值) | 人工精标颜色(RGB值) | 单通道标号 |
左主干 | 中绿(0,159,48) | (255,0,0) | 1 |
前降支(近) | 土黄(177,135,60) | (0,255,0) | 2 |
第一对角支 | 深桃红(177,63,96) | (0,0,255) | 3 |
第一对角支(Ad) | 浅桃红(255,39,108) | (0,128,255) | 4 |
前降支(中) | 橙红(255,111,72) | (255,0,255) | 5 |
第二对角支 | 藏蓝(0,15,120) | (0,255,255) | 6 |
第二对角支(Ad) | 若草(177,246,132) | (128,0,255) | 7 |
前降支(远) | 墨绿(0,87,84) | (255,255,0) | 8 |
中间支 | 粉绿(0,198,156) | (128,0,0) | 9 |
回旋支(近) | 米黄(255,222,144) | (0,0,128) | 10 |
回旋支(远) | 普鲁士蓝(0,126,192) | (0,128,0) | 11 |
第二钝缘支 | 粉(255,150,180) | (128,128,0) | 12 |
第一钝缘支 | 灰(177,174,168) | (128,0,128) | 13 |
左室后侧支 | 紫(177,102,204) | (0,128,128) | 14 |
后降支(回) | 品红(255,78,216) | (128,255,0) | 15 |
右主干(近) | 红(255,0,0) | (255,128,0) | 16 |
右主干(中) | 浅绿(0,231,12) | (255,0,128) | 17 |
右主干(远) | 黄绿(177,207,24) | (0,255,128) | 18 |
后降支(右) | 橙黄(255,183,36) | (128,128,255) | 19 |
后侧支 | 群青蓝(0,54,228) | (128,255,128) | 20 |
不关注血管 | (150,150,150) | 21 | |
背景 | (0,0,0) | 0 | |
导管 | (255,255,255) | 255 |
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810441538.4A CN108629773B (zh) | 2018-05-10 | 2018-05-10 | 建立训练识别心脏血管类型的卷积神经网络数据集的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810441538.4A CN108629773B (zh) | 2018-05-10 | 2018-05-10 | 建立训练识别心脏血管类型的卷积神经网络数据集的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108629773A true CN108629773A (zh) | 2018-10-09 |
CN108629773B CN108629773B (zh) | 2021-06-18 |
Family
ID=63692508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810441538.4A Active CN108629773B (zh) | 2018-05-10 | 2018-05-10 | 建立训练识别心脏血管类型的卷积神经网络数据集的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108629773B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110970117A (zh) * | 2019-11-29 | 2020-04-07 | 北京邮电大学 | 一种基于二值骨架图的冠状动脉造影数据集存储方法 |
CN112308813A (zh) * | 2019-07-26 | 2021-02-02 | 宏碁股份有限公司 | 血管状态评估方法与血管状态评估装置 |
CN113822839A (zh) * | 2020-06-18 | 2021-12-21 | 飞依诺科技(苏州)有限公司 | 医学图像的处理方法、装置、计算机设备和存储介质 |
CN115953495A (zh) * | 2023-03-14 | 2023-04-11 | 北京唯迈医疗设备有限公司 | 基于二维造影图像的智能路径规划装置、系统和存储介质 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102113016A (zh) * | 2008-03-06 | 2011-06-29 | 皇家飞利浦电子股份有限公司 | 对数据集进行选择性交互式处理的方法 |
US8622910B2 (en) * | 2002-08-26 | 2014-01-07 | The Cleveland Clinic Foundation | System and method of aquiring blood-vessel data |
DE102014213408A1 (de) * | 2014-07-10 | 2016-01-14 | Siemens Aktiengesellschaft | Verfahren zur Ermittlung eines dreidimensionalen Modelldatensatzes eines wenigstens ein Gefäßsegment umfassenden Blutgefäßsystems |
CN106548213A (zh) * | 2016-11-30 | 2017-03-29 | 上海联影医疗科技有限公司 | 血管识别方法和装置 |
CN107154036A (zh) * | 2017-03-24 | 2017-09-12 | 中南大学 | 基于亚像素的血管分割方法及其分割系统 |
CN107545269A (zh) * | 2016-06-23 | 2018-01-05 | 西门子保健有限责任公司 | 使用递归神经网络进行血管疾病检测的方法和系统 |
CN107862300A (zh) * | 2017-11-29 | 2018-03-30 | 东华大学 | 一种基于卷积神经网络的监控场景下行人属性识别方法 |
CN107993229A (zh) * | 2017-12-15 | 2018-05-04 | 西安中科微光影像技术有限公司 | 一种基于心血管ivoct图像的组织分类方法和装置 |
-
2018
- 2018-05-10 CN CN201810441538.4A patent/CN108629773B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8622910B2 (en) * | 2002-08-26 | 2014-01-07 | The Cleveland Clinic Foundation | System and method of aquiring blood-vessel data |
CN102113016A (zh) * | 2008-03-06 | 2011-06-29 | 皇家飞利浦电子股份有限公司 | 对数据集进行选择性交互式处理的方法 |
DE102014213408A1 (de) * | 2014-07-10 | 2016-01-14 | Siemens Aktiengesellschaft | Verfahren zur Ermittlung eines dreidimensionalen Modelldatensatzes eines wenigstens ein Gefäßsegment umfassenden Blutgefäßsystems |
CN107545269A (zh) * | 2016-06-23 | 2018-01-05 | 西门子保健有限责任公司 | 使用递归神经网络进行血管疾病检测的方法和系统 |
CN106548213A (zh) * | 2016-11-30 | 2017-03-29 | 上海联影医疗科技有限公司 | 血管识别方法和装置 |
CN107154036A (zh) * | 2017-03-24 | 2017-09-12 | 中南大学 | 基于亚像素的血管分割方法及其分割系统 |
CN107862300A (zh) * | 2017-11-29 | 2018-03-30 | 东华大学 | 一种基于卷积神经网络的监控场景下行人属性识别方法 |
CN107993229A (zh) * | 2017-12-15 | 2018-05-04 | 西安中科微光影像技术有限公司 | 一种基于心血管ivoct图像的组织分类方法和装置 |
Non-Patent Citations (3)
Title |
---|
WU, C., ET.AL: "Regulated morphology approach to fuzzy shape analysis with application to blood vessel extraction in thoracic CT scans", 《IN MEDICAL IMAGING 2004: IMAGE PROCESSING》 * |
杨毅: "视网膜血管分割与动静脉分类方法研究", 《中国优秀硕士学位论文全文数据库》 * |
王钏: "基于卷积神经网络的血管图像分割", 《中国优秀硕士学位论文全文数据集》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112308813A (zh) * | 2019-07-26 | 2021-02-02 | 宏碁股份有限公司 | 血管状态评估方法与血管状态评估装置 |
CN110970117A (zh) * | 2019-11-29 | 2020-04-07 | 北京邮电大学 | 一种基于二值骨架图的冠状动脉造影数据集存储方法 |
CN110970117B (zh) * | 2019-11-29 | 2023-06-20 | 北京邮电大学 | 一种基于二值骨架图的冠状动脉造影数据集存储方法 |
CN113822839A (zh) * | 2020-06-18 | 2021-12-21 | 飞依诺科技(苏州)有限公司 | 医学图像的处理方法、装置、计算机设备和存储介质 |
CN113822839B (zh) * | 2020-06-18 | 2024-01-23 | 飞依诺科技股份有限公司 | 医学图像的处理方法、装置、计算机设备和存储介质 |
CN115953495A (zh) * | 2023-03-14 | 2023-04-11 | 北京唯迈医疗设备有限公司 | 基于二维造影图像的智能路径规划装置、系统和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN108629773B (zh) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108629773A (zh) | 建立训练识别心脏血管类型的卷积神经网络数据集的方法 | |
Niu et al. | VIPL-HR: A multi-modal database for pulse estimation from less-constrained face video | |
CN109146872B (zh) | 基于深度学习和光流法的心脏冠状动脉影像分割识别方法 | |
CN109685811B (zh) | 基于双路径U-net卷积神经网络的PET/CT高代谢淋巴结分割方法 | |
CN110490881A (zh) | 医学影像分割方法、装置、计算机设备及可读存储介质 | |
CN110491480A (zh) | 一种医疗图像处理方法、装置、电子医疗设备和存储介质 | |
CN109069100A (zh) | 超声成像系统及其方法 | |
CN106339591A (zh) | 一种基于深度卷积神经网络的预防乳腺癌自助健康云服务系统 | |
CN110298383A (zh) | 基于多模态深度学习的病理分类方法及系统 | |
CN107910061A (zh) | 一种医疗数据处理方法及系统 | |
CN109410194A (zh) | 一种基于深度学习的食管癌病理图像处理方法 | |
CN109377441B (zh) | 具有隐私保护功能的舌像采集方法和系统 | |
Avuçlu et al. | Novel approaches to determine age and gender from dental x-ray images by using multiplayer perceptron neural networks and image processing techniques | |
Cao et al. | Gastric cancer diagnosis with mask R-CNN | |
CN109063557A (zh) | 快速构建心脏冠脉血管识别数据集的方法 | |
CN109935294A (zh) | 一种文本报告输出方法、装置、存储介质及终端 | |
CN109583331A (zh) | 基于深度学习的人手腕脉口位置精准定位方法 | |
CN108596256A (zh) | 一种基于rgb-d物体识别分类器构造方法 | |
Colihueque et al. | Skin color characterization in rainbow trout by use of computer-based image analysis | |
Chen et al. | CTA-UNet: CNN-transformer architecture UNet for dental CBCT images segmentation | |
Bwasiri et al. | The rock art of Kondoa district, Tanzania | |
CN114340496A (zh) | 基于vrds ai医学影像的心脏冠脉的分析方法和相关装置 | |
Diaz-Pinto et al. | Retinal image synthesis for glaucoma assessment using DCGAN and VAE models | |
CN109816665A (zh) | 一种光学相干断层扫描图像的快速分割方法及装置 | |
CN116958537A (zh) | 一种基于U-Net模型的肺结节分割方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210125 Address after: 100086 1704-1705, 17th floor, Qingyun contemporary building, building 9, Manting Fangyuan community, Qingyun Li, Haidian District, Beijing Applicant after: BEIJING HONGYUN ZHISHENG TECHNOLOGY Co.,Ltd. Applicant after: FUWAI HOSPITAL, CHINESE ACADEMY OF MEDICAL SCIENCES Address before: 100086 1704-1705, 17th floor, Qingyun contemporary building, building 9, Manting Fangyuan community, Qingyun Li, Haidian District, Beijing Applicant before: BEIJING HONGYUN ZHISHENG TECHNOLOGY Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |