CN108615786A - 碲锌镉辐射敏感场效应晶体管及其制备方法 - Google Patents

碲锌镉辐射敏感场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN108615786A
CN108615786A CN201810538191.5A CN201810538191A CN108615786A CN 108615786 A CN108615786 A CN 108615786A CN 201810538191 A CN201810538191 A CN 201810538191A CN 108615786 A CN108615786 A CN 108615786A
Authority
CN
China
Prior art keywords
cadmium
zinc
teiluride
substrate
tellurium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810538191.5A
Other languages
English (en)
Other versions
CN108615786B (zh
Inventor
王处泽
张继军
闵嘉华
薛瑶
王林军
梁小燕
师好智
黄健
唐可
凌立文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201810538191.5A priority Critical patent/CN108615786B/zh
Publication of CN108615786A publication Critical patent/CN108615786A/zh
Application granted granted Critical
Publication of CN108615786B publication Critical patent/CN108615786B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/119Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation characterised by field-effect operation, e.g. MIS type detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明公开了一种碲锌镉辐射敏感场效应晶体管及其制备方法,在碲锌镉衬底上形成辐射敏感场效应晶体管,该器件的栅极绝缘层为高阻碲锌镉薄膜,加强了探测器对于高能射线的捕获能力和灵敏度。低阻碲锌镉衬底作为沟道层,与绝缘层晶格常数匹配,增加了器件的稳定性。对于低阻碲锌镉衬底进行离子注入工艺,引入高浓度的杂质陷阱,可以有效调节器件的阈值电压,减小源漏接触电阻,增加器件灵敏度。该RadFET结构探测器工艺简单,对于碲锌镉晶体要求较低,适用于辐射剂量的探测,具有广泛的应用前景。

Description

碲锌镉辐射敏感场效应晶体管及其制备方法
技术领域
本发明涉及一种半导体核辐射探测器及其制备方法,特别是涉及一种碲锌镉核辐射探测器及其制备方法,应用于半导体器件制造、核物理学、X射线和伽玛射线天文学及核医学技术领域。
背景技术
近年来,半导体核辐射探测器的发展相当迅速。这类探测器已经广泛地应用于核物理学、X射线和伽玛射线天文学、及核医学等诸多领域。与气体探测器和闪烁体探测器相比,半导体探测器的成像性能更为优异,能谱分辨能力也更强,同时还可以使整个探测系统的结构更为紧凑。而在半导体探测器中,碲锌镉探测器是最具竞争力的探测器之一。碲锌镉晶体具有大的禁带宽度(>1.5eV)和高的电阻率(109~1011Ω·cm),较少的位错密度,位错密度<100cm-2,从而确保了在室温条件下探测器具有较低的暗电流、较低的噪声、较高的能量分辨率和热稳定性等诸多优异的性能。对硬X射线和伽玛射线,碲锌镉晶体的截止能力和探测量子效率都很高,适合探测能量范围10keV~1.5MeV的光子,特别是在10~100keV能量范围内,其能量探测效率甚至可以达到90%以上。不断成熟的晶体生长方法,不断优化的探测器结构以及不断完善的信号处理技术,都使得碲锌镉探测器的性能越来越优异,在核辐射探测领域起着越来越重要的作用,成为目前室温半导体辐射探测领域的热点,受到世界各国的高度重视。
核辐射探测器的工作原理基于粒子与物质之间的相互作用,主要用来对辐射和粒子的微观现象进行观察和研究。根据对器件的栅绝缘层电荷敏感的原理可以获得RadFET探测器。在该探测器中,施以正向偏置电压,辐射产生的电子空穴对将被栅氧化层中的电场迅速分开。由于电子的迁移率比空穴的迁移率高,电子在皮秒内被电场扫出氧化层到栅极,而空穴被缓慢扫向衬底与栅绝缘层界面并被空穴陷阱俘获,从而引起区域中所带的正电荷增加。绝缘层区域中正电荷的增加量跟所受到的照射量服从一定的函数关系,但并不是线形关系,而是一种次线形关系。这是因为随着受照量的增加,空穴陷阱的数量会减少,灵敏区域灵敏度会下降。绝缘层区域中正电荷的增加,RADFET场效应管的开端电压会增加,所以通过测量RADFET的开端电压之差△V,就可以计算出RADFET剂量计受到的辐射累积剂量D。二者近似符合如下函数关系:
△V=a*Db
其中,a、b均为系数,具体数值与探测器的灵敏度有关,不过b一定小于1。
由于碲锌镉晶体高阻和多为P型半导体的原因,对于碲锌镉核辐射探测器的研究大多致力于电极结构的设计,如弗里希栅探测器、共面栅探测器等,而针对器件结构的碲锌镉探测器极少有人研究,碲锌镉探测器的高能射线的捕获能力和灵敏度等性能还不够理想,这成为需要亟待解决的技术问题。
发明内容
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种碲锌镉辐射敏感场效应晶体管及其制备方法,在碲锌镉衬底上构造辐射敏感场效应晶体管(RadFET)器件,增强探测器对于高能射线的捕获能力、灵敏度和器件的稳定性,本发明RadFET结构探测器工艺简单,对于碲锌镉晶体要求较低,适用于辐射剂量的探测,具有广泛的应用前景。
为达到上述目的,本发明采用如下技术方案:
一种碲锌镉辐射敏感场效应晶体管,包括衬底、栅电极、栅绝缘层、沟道层和源漏电极;在衬底上形成栅绝缘层,在栅绝缘层上形成栅电极,沟道层嵌入于衬底表层中,在相邻的两个沟道层表面上分别形成源电极和漏电极,组成源漏电极功能层,源漏电极穿过栅绝缘层的图案化孔,栅电极形成于在相邻的两个沟道层之间的栅绝缘层表面上,衬底和栅绝缘层的材料均采用碲锌镉材料制成,其中,衬底采用低阻碲锌镉晶体材料制成,在衬底上形成高阻碲锌镉薄膜,作为栅绝缘层。
上述沟道层优选由将铟离子掺杂于衬底的低阻碲锌镉材料中形成。
上述衬底优选采用的低阻碲锌镉晶体材料的电阻率为105~107Ω·cm,优选导电类型为P型。
优选作为栅绝缘层的高阻碲锌镉薄膜电阻率为109~1011Ω·cm,优选导电类型为N型。
上述栅电极或源漏电极优选采用Au/Cr复合电极。
作为本发明优选的技术方案,衬底的厚度不大于2mm,作为栅绝缘层的高阻碲锌镉薄膜的厚度为100~400μm,沟道层厚度为20~80μm;锌镉辐射敏感场效应晶体管的整体器件的长宽比为10/2~30/6mm。
一种本发明碲锌镉辐射敏感场效应晶体管的制备方法,包括如下步骤:
a.选取低阻碲锌镉晶体材料作为衬底,生长一层高阻碲锌镉薄膜覆盖衬底,形成栅绝缘层;高阻碲锌镉薄膜的生长方法优选采用真空蒸发法或者近空间升华法;
b.对在步骤a中制备的碲锌镉薄膜进行光刻腐蚀,在衬底表层图案化形成沟道,在沟道中填满掺杂金属材料的顶层低阻碲锌镉衬底材料进行固化,获得沟道层;形成沟道层的掺杂方法优选采用离子掺杂注入法或者扩散法;
c.使用真空蒸发法,在对应的沟道层位置上形成源电极和漏电极,在相邻的两个沟道层之间的栅绝缘层上形成栅电极,从而得到碲锌镉辐射敏感场效应晶体管器件结构。栅电极或源漏电极采用优选采用真空蒸发法沉积方法制备,栅电极和源漏电极皆优选采用Au/Cr复合电极。
作为本发明优选的技术方案,在步骤a中,低阻碲锌镉衬底用VB或VGF法生长的P型碲锌镉晶体,进行切割后,用低阻碲锌镉晶片作为衬底,衬底电阻率为105~107Ω·cm;用真空蒸发法形成200~400μm的高阻碲锌镉薄膜,高阻碲锌镉薄膜电阻率为109~1011Ω·cm;
作为本发明优选的技术方案,在步骤b中,按照所需的图案进行光刻图案化,对低阻碲锌镉顶层离子注入铟形成N型参杂的衬底。
优选本发明辐射敏感场效应晶体管的设计参数为器件的长宽比在10/2~30/6mm;优选沟道层厚度在20~80μm。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
1.本发明采用垂直Bridgman法生长了高质量的碲锌镉晶体,让RadFET结构在碲锌镉衬底上实现成为了可能;
2.本发明采用低阻碲锌镉作为衬底,可以让衬底与栅敏感极的晶格常数更匹配,便于薄膜的生长;
3.本发明器件的碲锌镉原子序数足够大对于高能β射线和γ射线有很强的阻挡本领,而且可以在室温下工作;碲锌镉的电子收集效率很高,RadFET也是单极性器件,有利于信号的收集;
4.本发明采用高性能的碲锌镉材料能制备出性能更好,能探测高能射线的核辐射剂量仪。
附图说明
图1为本发明实施例一碲锌镉辐射敏感场效应晶体管(RadFET)的结构示意图。
图2为本发明实施例一碲锌镉辐射敏感场效应晶体管制备方法的工艺步骤图。其中,图2(a)为低阻碲锌镉衬底结构示意图;图2(b)为形成高阻碲锌镉栅氧化层的工艺步骤示意图;图2(c)为光刻出沟道层的工艺步骤示意图;图2(d)为离子注入制备沟道层的工艺步骤示意图;图2(e)为形成源漏电极的工艺步骤示意图。
具体实施方式
以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:
实施例一:
在本实施例中,参见图1和图2,一种碲锌镉辐射敏感场效应晶体管,包括衬底1、栅电极4、栅绝缘层2、沟道层3和源漏电极5;在衬底1上形成栅绝缘层2,在栅绝缘层2上形成栅电极4,沟道层3嵌入于衬底1表层中,在相邻的两个沟道层3表面上分别形成源电极和漏电极,组成源漏电极5功能层,源漏电极5穿过栅绝缘层2的图案化孔,栅电极4形成于在相邻的两个沟道层3之间的栅绝缘层2表面上,衬底1和栅绝缘层2的材料均采用碲锌镉材料制成,其中,衬底1采用低阻碲锌镉晶体材料制成,在衬底1上形成高阻碲锌镉薄膜,作为栅绝缘层2。
在本实施例中,参见图1和图2,沟道层3由将铟离子摻杂于衬底1的低阻碲锌镉材料中形成。衬底1采用的低阻碲锌镉晶体材料的电阻率为106Ω·cm,导电类型为P型。作为栅绝缘层2的高阻碲锌镉薄膜电阻率为1011Ω·cm,导电类型为N型。栅电极4和源漏电极5采用Au/Cr复合电极。衬底1的厚度为1mm,作为栅绝缘层2的高阻碲锌镉薄膜的厚度为100μm,沟道层厚度为20μm;锌镉辐射敏感场效应晶体管的整体器件的长宽比为10/2mm。
在本实施例中,参见由图2(a)至图2(e)所示,一种本实施例碲锌镉辐射敏感场效应晶体管的制备方法,包括如下步骤:
1)选取低阻碲锌镉晶体材料作为衬底1,该衬底1的电阻率为106Ω·cm,导电类型为P型,长为10mm,宽为2mm,厚度为2mm,如图2(a)所示;
2)使用近空间升华法,设置衬底1温度为400℃,源温度为600℃,生长1~3个小时,形成100μm厚的高阻碲锌镉绝缘层,高阻碲锌镉绝缘层电阻率为1011Ω·cm,导电类型为N型,生长一层高阻碲锌镉薄膜覆盖衬底1,得到栅绝缘层2,如图2(b)所示,增加了对于高能射线的探测能力;
3)使用光刻工艺,对在步骤a中制备的碲锌镉薄膜进行光刻腐蚀,得到沟道层3的图案,如图2(c)所示,在衬底1表层图案化形成沟道;
4)通过离子注入方法,对步骤3)中所得的顶层低阻碲锌镉进行铟离子摻杂,在沟道中填满掺杂金属材料的顶层低阻碲锌镉衬底材料进行固化,形成沟道层3,沟道层厚度为20μm,注入能量为120keV,注入浓度为1×1015/cm2,如图2(d)所示;
5)使用真空蒸发法,在对应的沟道层位置上形成源电极和漏电极,使栅电极4和源漏电极5上形成金铬(Au/Cr)复合电极,如图2(e)所示,从而得到碲锌镉辐射敏感场效应晶体管器件结构。
在本实施例中,参见图1和图2,采用低阻碲锌镉作为衬底,可以让衬底与栅敏感极的晶格常数更匹配,便于薄膜的生长;碲锌镉原子序数足够大对于高能β射线和γ射线有很强的阻挡本领,而且可以在室温下工作;碲锌镉的电子收集效率很高,RadFET也是单极性器件,有利于信号的收集。采用高性能的碲锌镉材料能制备出性能更好,能探测高能射线的核辐射剂量仪。本实施例器件的栅极绝缘层为高阻碲锌镉薄膜,加强了探测器对于高能射线的捕获能力和灵敏度。低阻碲锌镉衬底作为沟道层,与绝缘层晶格常数匹配,增加了器件的稳定性。对于低阻碲锌镉衬底进行离子注入工艺,引入高浓度的杂质陷阱,可以有效调节器件的阈值电压,减小源漏接触电阻,增加器件灵敏度。该RadFET结构探测器工艺简单,对于碲锌镉晶体要求较低,适用于辐射剂量的探测,具有广泛的应用前景。
实施例二:
本实施例与实施例一基本相同,特别之处在于:
在本实施例中,沟道层3由将铟离子摻杂于衬底1的低阻碲锌镉材料中形成。衬底1采用的低阻碲锌镉晶体材料的电阻率为107Ω·cm,导电类型为P型。作为栅绝缘层2的高阻碲锌镉薄膜电阻率为1011Ω·cm,导电类型为N型。栅电极4和源漏电极5采用Au/Cr复合电极。衬底1的厚度为2mm,作为栅绝缘层2的高阻碲锌镉薄膜的厚度为400μm,沟道层厚度为80μm;锌镉辐射敏感场效应晶体管的整体器件的长宽比为30/6mm。
在本实施例中,一种本实施例碲锌镉辐射敏感场效应晶体管的制备方法,包括如下步骤:
1)选取低阻碲锌镉晶体材料作为衬底1,该衬底1的电阻率为107Ω·cm,导电类型为P型,长为30mm,宽为6mm,厚度为2mm;
2)使用近空间升华法,设置衬底1温度为400℃,源温度为600℃,生长1~3个小时,形成400μm厚的高阻碲锌镉绝缘层,高阻碲锌镉绝缘层电阻率为1011Ω·cm,导电类型为N型,生长一层高阻碲锌镉薄膜覆盖衬底1,得到栅绝缘层2,增加了对于高能射线的探测能力;
3)使用光刻工艺,对在步骤a中制备的碲锌镉薄膜进行光刻腐蚀,得到沟道层3的图案,在衬底1表层图案化形成沟道;
4)通过离子注入方法,对步骤3)中所得的顶层低阻碲锌镉进行铟离子摻杂,在沟道中填满掺杂金属材料的顶层低阻碲锌镉衬底材料进行固化,形成沟道层3,沟道层厚度为80μm,注入能量为120keV,注入浓度为1×1015/cm2
5)使用真空蒸发法,在对应的沟道层位置上形成源电极和漏电极,使栅电极4和源漏电极5上形成金铬(Au/Cr)复合电极,从而得到碲锌镉辐射敏感场效应晶体管器件结构。
本实施例器件的栅极绝缘层为高阻碲锌镉薄膜,加强了探测器对于高能射线的捕获能力和灵敏度。低阻碲锌镉衬底作为沟道层,与绝缘层晶格常数匹配,增加了器件的稳定性。对于低阻碲锌镉衬底进行离子注入工艺,引入高浓度的杂质陷阱,可以有效调节器件的阈值电压,减小源漏接触电阻,增加器件灵敏度。该RadFET结构探测器工艺简单,对于碲锌镉晶体要求较低,适用于辐射剂量的探测,具有广泛的应用前景。
实施例三:
本实施例与前述实施例基本相同,特别之处在于:
在本实施例中,沟道层3由将铟离子摻杂于衬底1的低阻碲锌镉材料中形成。衬底1采用的低阻碲锌镉晶体材料的电阻率为105Ω·cm,导电类型为P型。作为栅绝缘层2的高阻碲锌镉薄膜电阻率为109Ω·cm,导电类型为N型。栅电极4和源漏电极5采用Au/Cr复合电极。衬底1的厚度为2mm,作为栅绝缘层2的高阻碲锌镉薄膜的厚度为400μm,沟道层厚度为80μm;锌镉辐射敏感场效应晶体管的整体器件的长宽比为30/6mm。
在本实施例中,一种本实施例碲锌镉辐射敏感场效应晶体管的制备方法,包括如下步骤:
1)选取低阻碲锌镉晶体材料作为衬底1,该衬底1的电阻率为105Ω·cm,导电类型为P型,长为30mm,宽为6mm,厚度为2mm;
2)使用真空蒸发法,设置衬底1温度为400℃,源温度为600℃,生长1~3个小时,形成400μm厚的高阻碲锌镉绝缘层,高阻碲锌镉绝缘层电阻率为109Ω·cm,导电类型为N型,生长一层高阻碲锌镉薄膜覆盖衬底1,得到栅绝缘层2,增加了对于高能射线的探测能力;
3)使用光刻工艺,对在步骤a中制备的碲锌镉薄膜进行光刻腐蚀,得到沟道层3的图案,在衬底1表层图案化形成沟道;
4)通过扩散法,对步骤3)中所得的顶层低阻碲锌镉进行铟离子摻杂,在沟道中填满掺杂金属材料的顶层低阻碲锌镉衬底材料进行固化,形成沟道层3,沟道层厚度为80μm,注入能量为120keV,注入浓度为1×1015/cm2
5)使用真空蒸发法,在对应的沟道层位置上形成源电极和漏电极,使栅电极4和源漏电极5上形成金铬(Au/Cr)复合电极,从而得到碲锌镉辐射敏感场效应晶体管器件结构。
本实施例器件的栅极绝缘层为高阻碲锌镉薄膜,加强了探测器对于高能射线的捕获能力和灵敏度。低阻碲锌镉衬底作为沟道层,与绝缘层晶格常数匹配,增加了器件的稳定性。对于低阻碲锌镉衬底进行离子注入工艺,引入高浓度的杂质陷阱,可以有效调节器件的阈值电压,减小源漏接触电阻,增加器件灵敏度。该RadFET结构探测器工艺简单,对于碲锌镉晶体要求较低,适用于辐射剂量的探测,具有广泛的应用前景。
上面对本发明实施例结合附图进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明碲锌镉辐射敏感场效应晶体管及其制备方法的技术原理和发明构思,都属于本发明的保护范围。

Claims (10)

1.一种碲锌镉辐射敏感场效应晶体管,其特征在于:包括衬底(1)、栅电极(4)、栅绝缘层(2)、沟道层(3)和源漏电极(5);在衬底(1)上形成栅绝缘层(2),在栅绝缘层(2)上形成栅电极(4),其特征在于:沟道层(3)嵌入于衬底(1)表层中,在相邻的两个沟道层(3)表面上分别形成源电极和漏电极,组成源漏电极(5)功能层,源漏电极(5)穿过栅绝缘层(2)的图案化孔,栅电极(4)形成于在相邻的两个沟道层(3)之间的栅绝缘层(2)表面上,所述衬底(1)和栅绝缘层(2)的材料均采用碲锌镉材料制成,其中,衬底(1)采用低阻碲锌镉晶体材料制成,在衬底(1)上形成高阻碲锌镉薄膜,作为栅绝缘层(2)。
2.根据权利要求1所述碲锌镉辐射敏感场效应晶体管,其特征在于:所述沟道层(3)由将铟离子摻杂于所述衬底(1)的低阻碲锌镉材料中形成。
3.根据权利要求1所述碲锌镉辐射敏感场效应晶体管,其特征在于:所述衬底(1)采用的低阻碲锌镉晶体材料的电阻率为105~107Ω·cm,导电类型为P型。
4.根据权利要求1所述碲锌镉辐射敏感场效应晶体管,其特征在于:作为所述栅绝缘层(2)的高阻碲锌镉薄膜电阻率为109~1011Ω·cm,导电类型为N型。
5.根据权利要求1所述碲锌镉辐射敏感场效应晶体管,其特征在于:所述栅电极(4)或源漏电极(5)采用Au/Cr复合电极。
6.根据权利要求1所述碲锌镉辐射敏感场效应晶体管,其特征在于:衬底(1)的厚度不大于2mm,作为所述栅绝缘层(2)的高阻碲锌镉薄膜的厚度为100~400μm,沟道层厚度为20~80μm;锌镉辐射敏感场效应晶体管的整体器件的长宽比为10/2~30/6mm。
7.一种权利要求1所述的碲锌镉辐射敏感场效应晶体管的制备方法,其特征在于,包括如下步骤:
a.选取低阻碲锌镉晶体材料作为衬底,生长一层高阻碲锌镉薄膜覆盖衬底,形成栅绝缘层;
b.对在所述步骤a中制备的碲锌镉薄膜进行光刻腐蚀,在衬底表层图案化形成沟道,在沟道中填满掺杂金属材料的顶层低阻碲锌镉衬底材料进行固化,获得沟道层;
c.使用真空蒸发法,在对应的沟道层位置上形成源电极和漏电极,在相邻的两个沟道层之间的栅绝缘层上形成栅电极,从而得到碲锌镉辐射敏感场效应晶体管器件结构。
8.根据权利要求1所述碲锌镉辐射敏感场效应晶体管的制备方法,其特征在于:在所述步骤a中,高阻碲锌镉薄膜的生长方法采用真空蒸发法或者近空间升华法。
9.根据权利要求1所述碲锌镉辐射敏感场效应晶体管的制备方法,其特征在于:在所述步骤b中,形成沟道层的掺杂方法为离子摻杂注入法或者扩散法。
10.根据权利要求1所述碲锌镉辐射敏感场效应晶体管的制备方法,其特征在于:在所述步骤c中,所述栅电极和源漏电极皆优选采用Au/Cr复合电极。
CN201810538191.5A 2018-05-30 2018-05-30 碲锌镉辐射敏感场效应晶体管及其制备方法 Expired - Fee Related CN108615786B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810538191.5A CN108615786B (zh) 2018-05-30 2018-05-30 碲锌镉辐射敏感场效应晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810538191.5A CN108615786B (zh) 2018-05-30 2018-05-30 碲锌镉辐射敏感场效应晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN108615786A true CN108615786A (zh) 2018-10-02
CN108615786B CN108615786B (zh) 2020-01-17

Family

ID=63664512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810538191.5A Expired - Fee Related CN108615786B (zh) 2018-05-30 2018-05-30 碲锌镉辐射敏感场效应晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN108615786B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094405A (zh) * 2011-11-04 2013-05-08 中国原子能科学研究院 一种电容弗里希栅CdZnTe探测器的制备工艺
CN103165757A (zh) * 2013-03-29 2013-06-19 中国科学院半导体研究所 制备msm结构czt探测器的方法
US20130168563A1 (en) * 2011-12-28 2013-07-04 Samsung Electronics Co., Ltd. Multi-energy radiation detectors and methods of manufacturing the same
CN103219422A (zh) * 2013-04-07 2013-07-24 上海大学 一种欧姆结构CdZnTe薄膜紫外光探测器的制备方法
CN105552113A (zh) * 2016-02-29 2016-05-04 北京大学 一种辐射敏感场效应晶体管及其制备方法
CN205452319U (zh) * 2016-03-29 2016-08-10 成都晶威科技有限公司 一种核辐射探测器
CN107735869A (zh) * 2015-02-17 2018-02-23 瑞德兰科技有限公司 高性能辐射检测器和其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094405A (zh) * 2011-11-04 2013-05-08 中国原子能科学研究院 一种电容弗里希栅CdZnTe探测器的制备工艺
US20130168563A1 (en) * 2011-12-28 2013-07-04 Samsung Electronics Co., Ltd. Multi-energy radiation detectors and methods of manufacturing the same
CN103165757A (zh) * 2013-03-29 2013-06-19 中国科学院半导体研究所 制备msm结构czt探测器的方法
CN103219422A (zh) * 2013-04-07 2013-07-24 上海大学 一种欧姆结构CdZnTe薄膜紫外光探测器的制备方法
CN107735869A (zh) * 2015-02-17 2018-02-23 瑞德兰科技有限公司 高性能辐射检测器和其制造方法
CN105552113A (zh) * 2016-02-29 2016-05-04 北京大学 一种辐射敏感场效应晶体管及其制备方法
CN205452319U (zh) * 2016-03-29 2016-08-10 成都晶威科技有限公司 一种核辐射探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李万万 等: "CdZnTe核辐射探测器材料与器件研究进展", 《上海有色金属 》 *

Also Published As

Publication number Publication date
CN108615786B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
Zhang et al. Ultrasensitive and robust 120 keV hard X‐ray imaging detector based on mixed‐halide perovskite CsPbBr3− nIn single crystals
Street et al. Comparison of PbI 2 and HgI 2 for direct detection active matrix x-ray image sensors
Pan et al. Comparison of Zr, Bi, Ti, and Ga as Metal Contacts in Inorganic Perovskite CsPbBr₃ Gamma-Ray Detector
Kaymaz et al. Evaluation of gamma-irradiation effects on the electrical properties of Al/(ZnO-PVA)/p-Si type Schottky diodes using current-voltage measurements
Hany et al. Fast X-ray detectors based on bulk β-Ga2O3 (Fe)
Prasad et al. Ga2O3-based X-ray detector and scintillators: A review
Girolami et al. Orthorhombic undoped κ-Ga 2 O 3 epitaxial thin films for sensitive, fast, and stable direct X-ray detectors
Maslyanchuk et al. Charge transport features of CdTe-based X-and γ-ray detectors with Ti and TiOx Schottky contacts
CN114063137A (zh) 基于钙钛矿p-i-n结的γ射线探测结构及校正方法
Zou et al. Pixellated perovskite photodiode on IGZO thin film transistor backplane for low dose indirect X-ray detection
CN113257847A (zh) 一种钙钛矿各向异性增强的高分辨率伽马射线成像方法
Sklyarchuk et al. Effect of CdTe crystal thickness on the efficiency of Cr/CdTe/Au Schottky-diode detectors
Kasap et al. Properties of a-Se for use in flat panel X-ray image detectors
Bruzzi et al. Characterisation of epitaxial SiC Schottky barriers as particle detectors
CN109273555B (zh) 一种光电子注入型x射线探测器件及其制备方法
Hao et al. Investigation of LiF Interlayer on Charge Collection Efficiency and Leakage Current in CsPbBr 3 Radiation Detector
Pillai et al. Effect of γ-ray irradiation on breakdown voltage, ideality factor, dark current and series resistance of GaAs p–i–n diode
Anh et al. Radiation resistance study of semi-insulating GaAs-based radiation detectors to extremely high gamma doses
Pan et al. Inorganic Perovskite CsPbBr 3 Gamma-Ray Detector
CN108615786A (zh) 碲锌镉辐射敏感场效应晶体管及其制备方法
Aoki et al. Reasons of low-charge collection efficiency in CdTe-based x/gamma detectors with ohmic contacts
Scheuermann et al. Charge transport model in solid-state avalanche amorphous selenium and defect suppression design
Shin et al. a-Si: H TFT-silicon hybrid low-energy X-ray detector
Yangbing et al. On-Substrate Grown MAPbBr 3 Single Crystal Diodes for Large-Area and Low-Dark-Current X-Ray Detection
Meng et al. Simulation of the Charge Collection in a Nonuniform Electric Field for MAPbI 3 Semiconductor Nuclear Detector With Schottky Contact

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200117

CF01 Termination of patent right due to non-payment of annual fee