CN108614421B - 一种基于中枢模式发生器的四足机器人运动控制方法 - Google Patents

一种基于中枢模式发生器的四足机器人运动控制方法 Download PDF

Info

Publication number
CN108614421B
CN108614421B CN201810474246.0A CN201810474246A CN108614421B CN 108614421 B CN108614421 B CN 108614421B CN 201810474246 A CN201810474246 A CN 201810474246A CN 108614421 B CN108614421 B CN 108614421B
Authority
CN
China
Prior art keywords
robot
foot end
gait
pattern generator
root joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810474246.0A
Other languages
English (en)
Other versions
CN108614421A (zh
Inventor
朱雅光
秦瑞
吴永胜
郭童
刘琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201810474246.0A priority Critical patent/CN108614421B/zh
Publication of CN108614421A publication Critical patent/CN108614421A/zh
Application granted granted Critical
Publication of CN108614421B publication Critical patent/CN108614421B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

本发明提供了一种基于中枢模式发生器的四足机器人运动控制方法,包括足端轨迹规划,所述足端轨迹规划包括摆动状态的足端轨迹、支撑状态的足端轨迹和足端相对于根关节轨迹;本发明可以单独控制步行机器人的占空比、运动周期和步态;并且,本发明通过改变机器人的相位对机器人步态进行控制,相位变化间隔可以无限小,这样可使机器人产生任何可能的步态,并且在任何时刻切换步态都能保证切换过程平稳的进行。本发明控制的机器人步态可以使机器人在自然环境下平稳运动。

Description

一种基于中枢模式发生器的四足机器人运动控制方法
技术领域
本发明属于仿生机器人技术领域,具体涉及一种基于中枢模式发生器的四足机器人运动控制方法。
背景技术
随着科学技术的发展,人类正在逐步地扩大对自然界的探索领域,有些人类不能进入或对人身会造成较大伤害的领域,可以依靠机器人对这些领域进行实地探索。足式机器人具有很强的环境适应能力,运动也比较灵活。然而决定多足式机器人对复杂环境适应性的两个关键的因素机器人的位姿和步态,可以通过改变机器人的占地系数和运动频率来调整机器人的位姿,因此机器人的占地系数,频率和步态关系到机器人性能是否能够充分发挥。最初的多足机器人控制方法还不能对机器人的占地系数、运动频率和步态进行单独控制,并且步态仅仅能够使机器人在平坦的硬质地面上行走的具有周期性的步态,后来为使足式机器人具有更广泛的适应性,对步态进一步的研究,步态研究工作逐渐发展到可以使步行机器人能够在非结构地形下行走的非周期步态。经过很多研究者对机器人步态进行了大量的研究工作,机器人的步态也有了很大的发展。
目前机器人运动控制研究工作还没有达到很成熟的地步,还有一些问题需要进一步的解决。现有技术中无法将机器人的占地系数、运动频率和步态进行单独控制,周期步态不适合步行机器人行走于自然环境中,特别是崎岖的地形下,而自由步态可以使机器人在自然环境中运动,但是自由步态计算量比较大、步态生成速度也相对较慢,这样就大大限制了自由步态在机器人上的应用。
发明内容
针对现有技术存在的不足,本发明的目的在于,提供一种基于中枢模式发生器的四足机器人运动控制方法,解决现有技术中无法将机器人的占地系数、运动频率和步态进行单独控制,以致限制了自由步态在机器人上应用的问题。
为了解决上述技术问题,本发明采用如下技术方案予以实现:
一种基于中枢模式发生器的四足机器人运动控制方法,包括足端轨迹规划,所述足端轨迹规划包括摆动状态的足端轨迹、支撑状态的足端轨迹和足端相对于根关节轨迹;
所述摆动状态的足端轨迹如式(1):
Figure BDA0001664048010000021
式(1)中,x为控制信号,x∈[-1,1];s为步长,h为步行机器人的最大抬腿高度,v0为步行机器人的平均运动速度。
所述支撑状态的足端轨迹如式(2):
Figure BDA0001664048010000022
所述足端相对于根关节轨迹如式(3):
Figure BDA0001664048010000023
式(3)中,H为机器人足端相对于根关节的最大高度;
Figure BDA0001664048010000031
为足端相对于根关节的x坐标;
Figure BDA0001664048010000032
为足端相对于根关节的y坐标;
Figure BDA0001664048010000033
为足端相对于根关节的z坐标;
其中,
Figure BDA0001664048010000034
进一步地,所述四足机器人运动控制方法还包括通过式(4)所述的中枢模式发生器数学模型产生控制信号,该控制信号用于控制四足机器人单条腿的运动状态;
Figure BDA0001664048010000035
式(4)中,x,y为中枢模式发生器的输出信号;
Figure BDA0001664048010000036
分别为x,y的微分;μ1,μ2为外部反馈项;T为振荡器的振荡周期;κ为升降比,0<κ<1;α为输出信号x在上升状态和下降状态之间的切换速度;σ1和σ均为中间参数。
进一步地,所述四足机器人运动控制方法还包括对所述控制信号进行相位变化;
Figure BDA0001664048010000041
式(5)中,xi为四足机器人第i条腿的控制信号;γ相位控制系数;n为采样密度;k为步态调节参数;τL和τ均为中间参数。
本发明与现有技术相比,具有如下技术效果:
本发明可以单独控制步行机器人的占空比、运动周期和步态;并且,本发明通过改变机器人的相位对机器人步态进行控制,相位变化间隔可以无限小,这样可使机器人产生任何可能的步态,并且在任何时刻切换步态都能保证切换过程平稳的进行。本发明控制的机器人步态可以使机器人在自然环境下平稳运动。
附图说明
图1是本发明方法的六足机器人单条腿的控制架构图;
图2是本发明方法的四足机器人的整体运动控制系统架构图;
图3是本发明方法的四足机器人四种典型的步态图;
图4是本发明方法的运动参数切换图。
以下结合附图对本发明的具体内容作进一步详细解释说明。
具体实施方式
本发明通过将控制输出信号x和y的升降比κ、振荡周期T、相位延时系数γ的参数输入中枢模式发生器中,使得中枢模式发生器输出可以控制机器人步态的信号x和y,机器人通过信号x和y进行步态的变化。
以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。
实施例1:
如图1所示,本实施例提供了一种基于中枢模式发生器的四足机器人运动控制方法,包括足端轨迹规划,足端轨迹规划包括摆动状态的足端轨迹、支撑状态的足端轨迹和足端相对于根关节轨迹;
本实施例已知机器人足端相对于根关节的初始位置、初始速度,以及机器人期望目标位置、速度及中间的位置点,采用四次样条曲线对机器人进行轨迹规划,即摆动状态的足端轨迹公式为:
Figure BDA0001664048010000051
约束条件:
Figure BDA0001664048010000052
得出摆动状态的足端轨迹如式(1):
Figure BDA0001664048010000053
式(1)中,x为控制信号,x∈[-1,1];s为步长,h为步行机器人的最大抬腿高度,v0为步行机器人的平均运动速度。
支撑状态的足端轨迹如式(3):
Figure BDA0001664048010000054
足端相对于根关节轨迹如式(4):
Figure BDA0001664048010000061
式(3)中,H为机器人足端相对于根关节的最大高度;
Figure BDA0001664048010000062
为足端相对于根关节的x坐标;
Figure BDA0001664048010000063
为足端相对于根关节的y坐标;
Figure BDA0001664048010000064
为足端相对于根关节的z坐标;
其中,
Figure BDA0001664048010000065
本实施例中的四足机器人运动控制方法还包括通过式(4)所述的中枢模式发生器数学模型产生控制信号,该控制信号用于控制四足机器人单条腿的运动状态;
Figure BDA0001664048010000066
式(4)中,x,y为中枢模式发生器的输出信号;
Figure BDA0001664048010000067
分别为x,y的微分;μ1,μ2为外部反馈项;T为振荡器的振荡周期;κ为升降比,0<κ<1;α为输出信号x在上升状态和下降状态之间的切换速度;σ1和σ均为中间参数。
本实施例可通过改变T改变输出信号的振荡频率,改变κ改变输出信号的升降比。
本实施例中四足机器人运动控制方法还包括对控制信号进行相位变化;
Figure BDA0001664048010000071
式(5)中,xi为四足机器人第i条腿的控制信号;γ相位控制系数;n为采样密度;k为步态调节参数;τL和τ均为中间参数。
通过调节相移参数τL和τ值来控制振荡器的协调关系,并进一步实现对四足步态机器人各种步态的运动控制。因为τ=(1-γ)·nT,τL=k·τ可以通过调节k和γ对机器人步态进行控制。以四种典型步态为例,当k=3,γ=0.75时为步行步态如图3(a)所示,当k=3.5,γ=0.5时为溜步步态如图3(b)所示,当k=4,γ=0.5时为对角步态如图3(c)所示,当γ=1时为跳跃步态如图3(d)所示。
图4所示,为机器人运动状态切换时的步态图。图4(a)为占地系数的切换,以对角步态为例,占地系数有0.75切换的0.5,可以看出占地系数切换过程快速平稳,且机器人的步态和频率没有发生变化。图4(b)为频率的切换,以步行步态为例,频率由2s切换到1s,可以看出频率切换过程快速平稳,且机器人的步态和占地系数没有发生变化。图4(c)和图4(d)为步态切换图,图4(c)为由步行步态向奔跑步态切换,图4(d)为对角步态向步行步态,切换过程一个周期,并且切换完成后机器人步态很快又恢复到稳定状态。可以看出该控制方法能够使机器人的占空比、运动周期和步态单独控制,且运动状态切换过程快速平稳。

Claims (3)

1.一种基于中枢模式发生器的四足机器人运动控制方法,其特征在于,包括足端轨迹规划,所述足端轨迹规划包括摆动状态的足端轨迹、支撑状态的足端轨迹和足端相对于根关节轨迹;
所述摆动状态的足端轨迹如式(1):
Figure FDA0002482461580000011
式(1)中,x为控制信号,x∈[-1,1];s为步长,h为步行机器人的最大抬腿高度,v0为步行机器人的平均运动速度;
所述支撑状态的足端轨迹如式(2):
Figure FDA0002482461580000012
所述足端相对于根关节轨迹如式(3):
Figure FDA0002482461580000013
式(3)中,H为机器人足端相对于根关节的最大高度;
Figure FDA0002482461580000014
为足端相对于根关节的x坐标;
Figure FDA0002482461580000015
为足端相对于根关节的y坐标;
Figure FDA0002482461580000016
为足端相对于根关节的z坐标;
其中,
Figure FDA0002482461580000017
2.根据权利要求1所述的基于中枢模式发生器的四足机器人运动控制方法,其特征在于,所述四足机器人运动控制方法还包括通过式(4)所述的中枢模式发生器数学模型产生控制信号,该控制信号用于控制四足机器人单条腿的运动状态;
Figure FDA0002482461580000021
式(4)中,x,y为中枢模式发生器的输出信号;
Figure FDA0002482461580000022
分别为x,y的微分;μ1,μ2为外部反馈项;T为振荡器的振荡周期;κ为升降比,0<κ<1;a为输出信号x在上升状态和下降状态之间的切换速度;σ1和σ均为中间参数。
3.根据权利要求2所述的基于中枢模式发生器的四足机器人运动控制方法,其特征在于,所述四足机器人运动控制方法还包括对所述控制信号进行相位变化;
Figure FDA0002482461580000023
式(5)中,xi为四足机器人第i条腿的控制信号;γ相位控制系数;n为采样密度;k为步态调节参数;τL和τ均为中间参数。
CN201810474246.0A 2018-05-17 2018-05-17 一种基于中枢模式发生器的四足机器人运动控制方法 Active CN108614421B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810474246.0A CN108614421B (zh) 2018-05-17 2018-05-17 一种基于中枢模式发生器的四足机器人运动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810474246.0A CN108614421B (zh) 2018-05-17 2018-05-17 一种基于中枢模式发生器的四足机器人运动控制方法

Publications (2)

Publication Number Publication Date
CN108614421A CN108614421A (zh) 2018-10-02
CN108614421B true CN108614421B (zh) 2020-06-30

Family

ID=63663308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810474246.0A Active CN108614421B (zh) 2018-05-17 2018-05-17 一种基于中枢模式发生器的四足机器人运动控制方法

Country Status (1)

Country Link
CN (1) CN108614421B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108724184A (zh) * 2018-06-01 2018-11-02 长安大学 一种关键参数解耦振荡器的中枢模式发生器
CN110597267B (zh) * 2019-09-27 2023-01-10 长安大学 一种足式机器人的局部最优落足点选取方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101179496B1 (ko) * 2008-12-22 2012-09-07 한국전자통신연구원 모션캡쳐 데이터베이스의 구축 방법과 이를 이용한 모션 합성 방법
CN102156484B (zh) * 2011-03-24 2013-06-05 西北工业大学 四足机器人对角步态的自适应控制方法
CN103092197A (zh) * 2011-10-28 2013-05-08 同济大学 基于cpg机理的四足机器人工作空间轨迹生成方法
CN104192221B (zh) * 2014-09-26 2016-06-29 哈尔滨工业大学 一种电驱动六足机器人运动控制系统及方法
JP6356033B2 (ja) * 2014-09-29 2018-07-11 本田技研工業株式会社 移動体の制御装置
US9821458B1 (en) * 2016-05-10 2017-11-21 X Development Llc Trajectory planning with droppable objects
US10248085B2 (en) * 2016-10-13 2019-04-02 Disney Enterprises, Inc. Computational design of robots from high-level task specifications
CN107065867B (zh) * 2017-03-28 2019-05-31 浙江大学 一种面向未知崎岖地形的四足机器人运动规划方法
CN107065907A (zh) * 2017-04-14 2017-08-18 中国北方车辆研究所 一种规划四足机器人足端摆动轨迹的方法
CN107065908A (zh) * 2017-04-14 2017-08-18 中国北方车辆研究所 一种规划四足机器人静步态机身运动轨迹的方法
CN107562055A (zh) * 2017-09-01 2018-01-09 北京理工大学 一种仿生四足机器人的转向策略
CN107807655B (zh) * 2017-10-27 2019-08-30 山东大学 基于三维空间中步态调整的四足机器人平衡稳定控制方法

Also Published As

Publication number Publication date
CN108614421A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
Chen et al. Smooth transition between different gaits of a hexapod robot via a central pattern generators algorithm
CN103092196B (zh) 基于cpg机理的两足机器人轨迹生成与调制方法
Shahbazi et al. Unified modeling and control of walking and running on the spring-loaded inverted pendulum
CN108931988B (zh) 一种基于中枢模式发生器的四足机器人的步态规划方法、中枢模式发生器及机器人
CN108772836B (zh) 基于cpg的脊柱型多足机器人及其仿生运动控制方法
CN108614421B (zh) 一种基于中枢模式发生器的四足机器人运动控制方法
CN112147889B (zh) 一种四足机器人复合式越障轨迹规划方法
Zhu et al. A backward control based on σ-Hopf oscillator with decoupled parameters for smooth locomotion of bio-inspired legged robot
Liu et al. Adaptive walking control of biped robots using online trajectory generation method based on neural oscillators
CN113985874A (zh) 一种基于CPG-Hopf网络耦合算法的水下六足机器人步态生成与转换方法
Xie et al. Compliant bipedal walking based on variable spring-loaded inverted pendulum model with finite-sized foot
Boroujeni et al. A unified framework for walking and running of bipedal robots
US8364308B2 (en) Walking pattern generation system for biped walking robot
Dadashzadeh et al. Slip-based control of bipedal walking based on two-level control strategy
Xu et al. Gait planning method of a hexapod robot based on the central pattern generators: Simulation and experiment
Dong et al. On-line gait adjustment for humanoid robot robust walking based on divergence component of motion
Xie et al. Adaptive walking on slope of quadruped robot based on CPG
CN108717267B (zh) 一种六足机器人中枢模式逆向控制方法
CN115202259A (zh) 一种四足机器人的cpg控制系统及其参数整定方法
Palankar et al. Toward innate leg stability on unmodeled and natural terrain: Hexapod walking
Lipeng et al. Research on Gait Switching Control of Quadruped Robot Based on Dynamic and Static Combination
Teng et al. Center of gravity balance approach based on CPG algorithm for locomotion control of a quadruped robot
JP7133533B2 (ja) 二足歩行ロボット、および二足歩行ロボットの制御方法
Shang et al. Smooth gait transition based on CPG network for a quadruped robot
Hu et al. Stable walking for a compass-like biped robot in complex environments

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant