CN108603102B - 陶粒支撑剂及其制造方法 - Google Patents

陶粒支撑剂及其制造方法 Download PDF

Info

Publication number
CN108603102B
CN108603102B CN201780009588.9A CN201780009588A CN108603102B CN 108603102 B CN108603102 B CN 108603102B CN 201780009588 A CN201780009588 A CN 201780009588A CN 108603102 B CN108603102 B CN 108603102B
Authority
CN
China
Prior art keywords
proppant
magnesium
firing
ceramsite
containing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780009588.9A
Other languages
English (en)
Other versions
CN108603102A (zh
Inventor
鲁西诺夫·帕维尔·巴索夫
巴拉索夫·阿列克谢·弗拉基米罗维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
"nika Petrotech" LLC
Original Assignee
"nika Petrotech" LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58506582&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN108603102(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by "nika Petrotech" LLC filed Critical "nika Petrotech" LLC
Publication of CN108603102A publication Critical patent/CN108603102A/zh
Application granted granted Critical
Publication of CN108603102B publication Critical patent/CN108603102B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2625Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing magnesium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种陶粒支撑剂的生产方法,包括制备原始装载材料的步骤(该步骤包括研磨原料,具体而言是含镁材料和辅助材料),从而生产出装载材料,将装载材料造粒,生产支撑剂前体颗粒,并烧制支撑剂前体颗粒,从而生产支撑剂颗粒,其中所述方法包括在还原空气中预烧制含镁材料的步骤。本发明还涉及通过所述方法生产的陶粒支撑剂。

Description

陶粒支撑剂及其制造方法
技术领域
本发明涉及石油和天然气生产工业领域,即陶粒支撑剂的制造技术,用于通过地层水力压裂(HF)方法生产石油或天然气。
背景技术
水力压裂是一种提高石油或天然气开采井的生产率的方法,是指以足够高的速率和压力,将注入流体注入到含油或含气地下地层,以便在地层中形成裂缝,增加流体从油或气藏到井中的流动。
为了使裂缝保持开放状态,可将不与井眼流体反应的强机械性支撑剂注入裂缝中。此类支撑剂为球形颗粒(支撑剂),通过流体渗透裂缝,至少部分地填充裂缝,形成可渗透的强支撑框架,以便油和气从地层中释放。
通常,支撑剂为固体材料,可用于在水力压裂过程中或之后将引起的水力压裂保持在开放状态。将进行水力压裂时,可将支撑剂添加到井处理流体中,再将支撑剂插入地下地层中。井处理流体的组分可根据地层类型而变化。传统的支撑剂包括砂(最常见的类型)、坚果壳、铝和铝合金、碎焦煤、颗粒状矿渣、煤粉、碎石、金属颗粒(例如,钢、烧结铝土矿、烧结氧化铝、耐火材料(例如,莫来石和玻璃颗粒),以及人造陶瓷材料和聚合物等材料。
选择适合特定井的材料非常重要,原因是支撑剂不仅需抵抗高储层压力从而使支撑剂颗粒易于变形(可能导致裂缝闭合),还需承受侵蚀性井眼介质(水分、酸性气体、盐溶液)在高温下产生的影响。
人们已发现,通常,陶粒支撑剂相比许多其他类型的材料具有有利的特性,例如,具有耐久性,粒径和形状非常均匀。
然而,虽然陶粒支撑剂足够耐用且有效,且可以经济有效的方式生产,但人们应创造出具有改进型机械特性(例如,耐久性、渗透性、比重(堆积密度)、水热稳定性和耐酸性)的新支撑剂,及其有效的生产方法。
支撑剂的生产技术方案,即支撑剂(专利号为US5188175的美国专利),以球形陶瓷颗粒为代表,所述陶瓷颗粒由含有铝、硅、铁和钛的氧化物的烧结高岭土制成,其中氧化物在所述颗粒中的存在比例(重量百分比(wt%))如下:氧化铝:25-40、氧化硅:50-65、氧化铁:1.6、氧化钛:2.6。然而,所述支撑剂的耐久性很低,仅适用于压力小于8000psi的中深井。
另外,专利号为RU2235703C1的俄罗斯联邦专利公开了一种镁硅酸盐材料陶粒支撑剂的生产方法,其中镁橄榄石含量为55-80%(wt/wt)。根据所述方法,可将镁橄榄石基原始陶瓷材料在1150至1350℃的温度下研磨、造粒和烧制。
该公开方法的缺点在于,水热条件下,镁橄榄石会部分水合,因此大大降低了支撑剂颗粒的机械耐久性。
专利号为RU2235702C2的俄罗斯联邦专利公开了一种类似的方法,其中硅酸镁前体由具有约40%(wt/wt)的MgO和约60%(wt/wt)的SiO2的偏硅酸镁组成。由于烧结范围(ΔТmax为10至20℃)很小,因此生产此类支撑剂非常困难且昂贵。另外,由于烧结温度范围很小,标准工业条件下,在回转窑中进行烧制会导致多孔支撑剂颗粒未燃烧,而熔融支撑剂颗粒过度燃烧。
因此,工业条件下实际获得的支撑剂的耐久性、耐酸性和水热稳定性明显低于实验室条件下获得的批次产品。此外,烧结范围很小,则需要支撑剂材料在烧结温度下具有较长的固化时间,以便实现均匀的温度分布。这会导致硅酸镁晶体在冷却过程中生长并相变,也降低了所得支撑剂的质量。
因此,所公开方法和由此获得的产品的缺点在于,所得支撑剂具有较低机械特性(具体而言,耐久性值较低),也会导致支撑剂层在高压下的渗透性较低。
本发明旨在提供一种具有高操作性能特征、生产成本低的陶粒支撑剂(支撑剂颗粒)。
具体而言,本发明旨在提供一种具有改进性能的新支撑剂,以及一种经济、节能的陶粒支撑剂生产方法,可获得具有较高耐久性、较低堆积密度,以及良好的渗透性、水热稳定性和耐酸性的支撑剂。
发明内容
本发明的目的是根据一种陶粒支撑剂的新生产方法,获得陶粒支撑剂来实现的,可改变试剂的内部结构,使其具有有利的性能。
一方面,本发明涉及一种陶粒支撑剂的生产方法,包括:
a)制备,包括研磨含有含镁材料的原料和辅助材料,生产装载材料;
b)将装载材料造粒,生产支撑剂前体颗粒;
c)烧制支撑剂前体颗粒,生产支撑剂颗粒;
其中,上述方法的重要特征是在还原空气中预烧制含镁材料的步骤。
另一方面,本发明涉及通过上述生产方法所生产的陶粒支撑剂。
另一方面,本发明涉及陶粒支撑剂,其特征在于,顽辉石含量为50至80wt%,镁铁氧体含量为4至8wt%。
此外,本发明涉及一种地下地层的处理方法,包括:
a)提供陶粒支撑剂;
b)将所述陶粒支撑剂与HF流体(用于地层水力压裂的流体)混合;
c)将步骤b)中的混合物注入地下地层。
同时,一方面,本发明涉及将陶粒支撑剂用于地下地层的水力压裂。
具体实施方式
本发明涉及一种支撑剂和所述支撑剂的生产方法,所述方法具有改进型性能特征,可通过使用廉价、可购买到的陶瓷材料来获得。
本说明书中,支撑剂是粒状材料,具体而言是基本呈球形的陶瓷颗粒。可将含镁材料(具体而言是基于硅酸镁(也可是铁)的矿物(也可称为镁硅酸盐材料或含氧化镁的材料))用作原料,通过研磨、造粒和烧制来生产支撑剂。此类材料的非限制性示例可以各种橄榄岩矿物(包括橄榄石、纯橄榄岩、蛇纹石)为代表,用作生产陶粒支撑剂以及矿物镁橄榄石、顽辉石、铁橄榄石等的原料,所述矿物镁橄榄石、顽辉石、铁橄榄石等存在于各种橄榄岩矿物中或可通过烧制形成。例如,用作辅助材料的材料和添加剂可为硅质组分(例如,石英砂、水合和蒙脱石粘土或耐火粘土)。
所得支撑剂的粒径通常为0.4-1.7mm,该粒径为非限制性;根据具体的应用领域或对特定井的要求,可生产任何粒径的颗粒。通常,支撑剂颗粒应满足以下特征:堆积密度范围为1.3至1.9g/cm3,在5000至15000psi压力下保持完整性和渗透性,球形度和圆度、耐酸性应符合俄罗斯国家标准关于ГОСТР54571-2011《氧化镁石英支撑剂》的规定。
根据所述支撑剂的生产方法,第一步骤a)中,制备(例如,研磨或碾磨)含有含镁材料和辅助材料(例如,石英砂等含二氧化硅的组分)的原料,实现原料的装载。因此,根据所述方法,步骤a)制备原料,可包括研磨(例如,研磨原料)。根据所述方法,装载中的原始含镁材料量为45至70wt%,辅助材料量高达55wt%,具体而言,装载材料所含的石英砂量为装载材料重量的30至55wt%的装置材料量、所含的水性和/或蒙脱石粘土量为装载材料重量的0至10wt%、所含的耐火粘土量为装载材料重量的0至10wt%。
研磨过程可使用本领域技术人员已知的任何方法进行。优选地,研磨在球管磨机中进行。同时,优选地,可将含镁材料和辅助材料共同研磨。研磨之前,可预干燥辅助材料,具体而言,石英砂通常在干燥滚筒或类似器具中干燥,水分含量小于1%。优选地,将材料研磨至最大粒径小于40μm,至少50%的粒径应小于10μm。
步骤a)制备原料,还可包括将研磨原料与水混合,形成浆料。将水分含量为33-40%的浆料进一步研磨,例如,在湿磨球中,使最大粒径小于30μm。之后,将所得浆料干燥(例如,在干燥喷雾塔(DST)中干燥),以获得水分含量为13-20%的装载材料(模塑粉末)。关于制备原料和组分以获得陶瓷产品的技术的详细说明,也可参见斯特罗夫,K.K.和马蜜金,P.S.的文献《耐火技术》,第4版,修订和补充,莫斯科冶金出版社,共528页(1988年)(СтреловК.К.、МамыкинП.С.、Технологияогнеупоров、4-еиздание、перераб.идоп.–Москва、Металлургия,1988年-528с.);Balkevich,V.L.,《技术陶瓷》,建设文学出版社,莫斯科(1968年)(БалкевичВ.Л。,《Техническаякерамика》,Издательстволиретерыпостроительству,Москва-1968年);Nokhratyan,K.A.,《建筑陶瓷工业中的干燥和燃烧》,国家建筑文学出版社,《建筑和建筑材料》,莫斯科(1962年)(НохратянК.А.,《Сушкаиобжигвпромышленностистроительнойкерамики》,Государственноеиздательстволитературыпостроительству、архитектуреистроительнымматериалам、Москва-1962年)。
制备步骤之后为步骤b)将装载材料造粒,生产具有特定粒径(例如,0.5至2mm)的支撑剂前体颗粒,造粒可通过任何方法以及本领域技术人员已知的任何设备进行。合适设备的一个示例是板式造粒机。
可选地,所述方法可包括支撑剂前体颗粒的干燥和定型(分段),该步骤包括将性能不匹配的颗粒分离并返回到步骤a)制备。烧制之前,通常将混合物分成几个段位:0.5-0.8mm、0.7-1.0mm、0.9-1.2mm、1.1-1.7mm或1.6-2.0mm,分别烧制每个段位。用于造粒的方法和设备的描述也可参见科切特科夫,V.N.的文献《矿物肥料造粒》,莫斯科,基米亚出版社,共224页(1975年)(КочетковВ.Н.、Гранулированиеминеральныхудобрений,М.、《Химия》,-1975,224с.)。
获得支撑剂的最后步骤是:步骤c)烧制支撑剂前体颗粒。烧制通常在约1200℃至约1350℃的温度下进行一段时间,该段时间足以确保生产出球形陶瓷颗粒;具体的时间和温度应根据所使用的原料和具体情况而变化;用于烧制原料中特定组分的最佳时间和温度可根据烧制过程之后所获得颗粒的物理试验结果凭经验确定。烧制过程在氧化空气中进行。例如,烧制可在传统的回转窑中进行;关于烧制设备的说明也可参见马蜜金,P.S.、列夫琴科,P.V.、斯特罗夫,K.K.的文献《耐火材料炉和干燥器》,国家黑色和有色冶金文献科技出版社,斯维尔德洛夫斯克分部(斯维尔德洛夫斯克州)(1963年)(МамыкинП.С.、ЛевченкоП.В.、СтреловК.К.《Печиисушилаогнеупорныхзаводов》,Государственноенаучно-техническоеиздательстволитературыпочернойицветнойметаллургии、Свердловскоеотделение、Свердловск,1963年)。完成后,可分离出所需粒径的支撑剂颗粒,并将可供销售的产品包装在储存容器中。
发明人意外发现,通过进行额外的预烧制步骤(即通过在还原空气中对含镁材料进行热处理),可获得具有较好性能特性(特别是具有较高耐久性、渗透性和较低堆积密度)的陶粒支撑剂。通常,可进行预烧制过程,从原始矿物中去除化学结合水分(脱水),以促进造粒和最终烧制过程。但人们发现在还原空气中进行预烧制过程,与具有改进性能的最终产品相关。
因此,根据本发明的方法包括在还原空气中预烧制含镁材料。
根据优选的实施例,在步骤a)制备原料的之前,应进行预烧制步骤。发明人已发现,优选地,在步骤a)之前,可进行预烧制过程,原因是预烧制过程中,由于含镁材料松散,可降低研磨含镁材料的能量消耗。
接着,根据本发明的方法中,预烧制步骤可在约900℃至约1100℃温度下的还原空气中进行。本方法中,还原(弱还原)空气是指氧含量小于5wt%(优选地,小于2-3wt%)的反应介质(空气)。可通过引入包括天然气、煤、焦煤或其混合物等的含碳添加剂,来提供预烧制区域中的还原空气。但应该注意,所述方法不限于此类添加剂,本领域技术人员可使用任何装置和技术,在烧制区域中提供还原空气。
预烧制步骤可在本领域技术人员已知的任何烧制窑中进行;但优选地,使用轴式炉,原因是普通的回转窑中不可能产生还原空气。
在轴式炉中进行预烧制的过程中,应供应扩散的空气,以维持炉区中的燃烧。一部分气流可通过炉底部的排气格栅供给;另一部分空气可通过烧制区域上方的其他开口供给。将可在反应区域中提供还原空气的天然气或另一种试剂或添加剂,供应到本文所定义的燃烧区域。与在回转窑中烧制含镁材料相比,在轴式炉中的初步烧制还具有低比能耗以及较少粉尘损失的特征。
不考虑任何特定理论的限制,发明人认为支撑剂特性的改善是由于以下因素。
发明人已发现,低于900℃的预烧制过程中,含镁材料(纯橄榄石、橄榄石、蛇纹石等)不会完全脱水;高于1100℃的温度下,可能发生不期望的反应,例如,在白云石(橄榄石)中,铁橄榄石(Fe2Si04)(包括铁橄榄石中含有的FeO)可与MgO反应,形成镁铁氧体。这种情况下,由于镁铁氧体增加了材料的耐久性,因此在获得装载材料的步骤中很难研磨原料,因此不期望在预烧制步骤中形成镁。另外,镁铁氧体是钝化元素,在支撑剂前体颗粒的最终烧制过程中,不会形成给定结构。因此,在还原空气中进行预烧制,有助于防止FeO发生不期望的氧化,因而应在最终烧制步骤之前形成镁铁氧体。
在还原空气中进行初步脱水烧制,会导致存在于矿物材料中的氧化铁(FeO)不变成Fe2O3或Fe3O4,与氧化镁(MgO)一起保持在固溶体中。
支撑剂的特性(特别是耐久性)得到改进,原因是在氧化空气中,进行支撑剂前体颗粒的最终烧制过程中,可形成其他嵌有镁铁氧体的结晶相(顽辉石)以及石英。
预烧制纯橄榄岩时,蛇纹石和橄榄石会进行热分解,同时可形成镁橄榄石和顽辉石,并去除化学结合水分,即
(Mgn1,Fem1)2SiO4→(Mgn2,Fem2)2SiO4+(Mgn3,Fem3)2SiO3
其中,n1=n2+m2=n3+m3=1且n1<n2,m1>m2
3MgO*2SiO2*2H2O→2MgO*SiO2+MgO*SiO2+2H2O
3MgO*4SiO2*2H2O→3(MgO*SiO2)+SiO2+2H2O
同时,氧化铁FeO保持为氧化镁和氧化铁(MgO*FeO)的固溶体形式。
温度达到700℃以上时,蛇纹岩开始热分解,随着温度升高,所述过程会加剧,从而材料会松散,如前所述,可提高研磨时的生产率。
此外,顽辉石和镁橄榄石开始结晶,可增加材料的耐久性。
产品的最终烧制过程中,镁橄榄石、氧化铁和石英氧化物一起反应,形成顽辉石的晶格,其中嵌入了镁铁氧体:
Mg2SiO4+SiO2→2MgO·SiO2
2Mg2SiO4+4FeO+O2→2MgO*SiO2+2MgO*Fe2O3
换言之,发明人认为,将比Fe2O3活性更高的FeO结合到晶格中,可获得较强的结构。此外,本发明人还发现,共晶Mg2SiO4-MgFe2O4的熔化温度较低,因此,烧制最终产品时,可降低能源的成本。
因此,根据本发明,由于进行了最终烧制,所得支撑剂的特征在于含镁材料的含量,具体而言,50至80wt%的斜顽辉石和4-8wt%的镁铁氧体。成品支撑剂的组分还可包括0.5-2wt%的磁铁矿。其余部分可能包括透辉石、辉石、石英和其他矿物,取决于砂和含镁材料中是否存在杂质。
本发明人进行的研究表明,以顽辉石含量为50-80%、镁铁质含量为4-8%为特征的支撑剂具有有利的性能,即具有明显较高的耐久性、较低的堆积密度、良好的渗透性以及水热稳定性。
因此,本发明还涉及通过上述方法生产的陶粒支撑剂。
本发明还涉及使用所得陶粒支撑剂处理地下地层的方法,包括:a)提供陶粒支撑剂;b)将所述陶粒支撑剂与HF流体(用于地层水力压裂的流体)混合;c)将混合物注入地下地层。
用于水力压裂的高粘度水基流体通常可通过高分子天然树脂(例如,半乳甘露聚糖或葡甘聚糖树脂(瓜尔胶)、刺梧桐树胶、黄蓍胶等)、天然多糖(例如,淀粉、纤维素及其衍生物)进行额外增稠;工作流体须具有化学稳定性和粘性,足以使支撑剂处于悬浮状态,同时需在研磨设备、井眼系统、穿孔通道以及裂缝中经受剪切变形和加热,以避免支撑剂过早沉积,而导致裂缝闭合;HF流体组分可含有线性凝胶的“交联剂”;焚毁炉可控制高粘度聚合物降解到液体流体,以简化从井中吸取HF流体以及热稳定剂、pH调节添加剂、表面活性剂、杀菌剂、乳化剂和破乳剂、减少渗透的添加剂、粘土稳定剂等的过程。
因此,本发明还涉及将陶粒支撑剂用于压裂地下地层的用途。
此外,下文将参考以下非限制性示例来说明本发明。人们获得并研究了用作含镁材料源、可以各种方式进行热处理的具有纯橄榄岩和蛇纹石的支撑剂试验样品。
对比性实施例1:
将纯橄榄岩在1000℃实验室炉中的氧化空气中进行初步烧制,再与石英砂和可熔粘土一起,以48:48:4重量百分比的比例,研磨至40μm或更小的粒径。接着,用实验室造粒机将所得材料造粒至1.1-1.7mm段位;将所述材料在120℃下干燥,在各种温度下进行烧制并分散。根据ISO13503-2:2006的要求对定性指标进行试验,测定10000psi特定压力下的抗压碎性(破碎颗粒的质量分数),并测定堆积密度。指标参见表1。
对比性实施例2:
使用纯橄榄石作为含镁组分,在1250-1300℃的温度下,在回转窑的氧化空气中进行预先烧制。根据示例1制备样品。
对比性实施例3:
使用蛇纹石作为含镁组分,在1250-1300℃的温度下,在旋转窑的氧化空气中进行预先烧制。根据示例1制备样品。
实施例4:
使用纯橄榄石作为含镁组分,在950-1050℃的温度下,在轴式炉中的还原空气中进行预先烧制。根据示例1制备样品。
实施例5:
使用纯橄榄石作为含镁组分,在950-1050℃的温度下,在轴式炉的还原空气中进行预先烧制。根据示例1制备样品,其中,纯橄榄岩、砂和粘土的重量百分比为65:30:5。
表1
Figure BDA0001752004840000081
表格中的结果显示,改变预烧制模式会影响最终产品的定性指标;在轴式炉中进行初步热处理,可获得较高耐久性的支撑剂。
实施例6:
另外检查成品样品,通过集成有衍射系统的ART9900工作站X射线荧光光谱仪来确定定量相组分。
实施例1-3的样品中,顽辉石的含量为63.8-67.9%,镁铁氧体的含量为2.4-3.6%。同时,相组分中存在3.1-4.5%量的磁铁矿。
实施例4和5的样品中,顽辉石的含量分别为66.3%和74.6%,镁铁氧体的含量为5.2-5.6%,磁铁矿的含量为0.8-1.5%。镁铁氧体的含量高而磁铁矿的含量低表明:铁侵入顽辉石晶格时可进行较完全反应。

Claims (17)

1.一种陶粒支撑剂的生产方法,包括以下步骤:
a)制备,包括研磨含镁材料和辅助材料,生产装载材料;含镁材料是橄榄石中的硅酸镁基材料,包括橄榄石、纯橄榄石、蛇纹岩;
b)将装载材料造粒,生产支撑剂前体颗粒;
c)烧制支撑剂前体颗粒,生产支撑剂颗粒;
其特征在于,所述方法包括在还原空气中预烧制含镁材料的步骤:
在步骤a)之前,进行预烧制步骤;预烧制步骤可在900℃至1100℃温度下进行。
2.根据权利要求1 所述的方法,其特征在于,步骤a)制备原料进一步包括将研磨原料与水混合,形成浆料;干燥并研磨所述浆料,获得装载材料。
3.根据权利要求1 所述的方法,进一步包括支撑剂颗粒的分段。
4.根据权利要求1 所述的方法,进一步包括支撑剂前体颗粒的干燥和分段。
5.根据权利要求1 所述的方法,其特征在于,还原空气是指氧含量小于5wt%的空气。
6.根据权利要求5所述的方法,其特征在于,可通过引入包括天然气、煤、焦煤或其混合物的含碳添加剂,来提供预烧制区域中的还原空气。
7.根据权利要求1 所述的方法,其特征在于,在轴式炉中进行预烧制步骤。
8.根据权利要求1 所述的方法,其特征在于,步骤c)中烧制含镁材料,应在1200℃至1350℃的温度下进行。
9.根据权利要求1 所述的方法,其特征在于,辅助材料以含二氧化硅的组分为代表,包括石英砂、水合和/或蒙脱石粘土和耐火粘土。
10.根据权利要求1 所述的方法,其特征在于,装载材料含有45 至70wt%的含镁材料。
11.根据权利要求10所述的方法,其特征在于,辅助材料包括石英砂,石英砂量为装载材料重量的30-55wt%,粘土量为装载材料重量的0-10wt%。
12.通过根据权利要求1-11中所述任一项方法生产的陶粒支撑剂。
13.根据权利要求12所述的陶粒支撑剂,其特征在于,顽辉石含量为50至80wt%,镁铁氧体含量为4至8wt%。
14.根据权利要求13所述的陶粒支撑剂,其特征在于,所述顽辉石是斜顽辉石。
15.根据权利要求13所述的陶粒支撑剂,进一步包括含量为0.5-2wt%的磁铁矿。
16.一种地下地层的处理方法,包括:
a)提供根据权利要求12所述的陶粒支撑剂;
b)将所述陶粒支撑剂与用于地层水力压裂的工作流体混合;
c)将步骤b)中的混合物注入地下地层。
17.根据权利要求12 所述的陶粒支撑剂用于水力压裂地下地层的用途。
CN201780009588.9A 2016-02-19 2017-02-08 陶粒支撑剂及其制造方法 Active CN108603102B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2016105796A RU2694363C1 (ru) 2016-02-19 2016-02-19 Керамический расклинивающий агент и его способ получения
RU2016105796 2016-02-19
PCT/RU2017/000062 WO2017142439A1 (ru) 2016-02-19 2017-02-08 Керамический расклинивающий агент и его способ получения

Publications (2)

Publication Number Publication Date
CN108603102A CN108603102A (zh) 2018-09-28
CN108603102B true CN108603102B (zh) 2021-01-05

Family

ID=58506582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780009588.9A Active CN108603102B (zh) 2016-02-19 2017-02-08 陶粒支撑剂及其制造方法

Country Status (4)

Country Link
US (1) US10442738B2 (zh)
CN (1) CN108603102B (zh)
RU (1) RU2694363C1 (zh)
WO (1) WO2017142439A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534793B (zh) * 2018-12-29 2021-07-13 陕西科技大学 含假蓝宝石晶体的低密度石油压裂支撑剂及其制备方法
RU2728300C1 (ru) * 2019-02-08 2020-07-29 Общество с ограниченной ответственностью "Платинус" Способ получения проппанта - сырца из природного магнийсиликатного сырья
RU2744130C2 (ru) * 2019-06-24 2021-03-02 Общество С Ограниченной Ответственностью "Форэс" Керамический расклинивающий агент
RU2737683C1 (ru) * 2020-04-30 2020-12-02 Игорь Александрович Фарбер Магнийсиликатный пропант и способ его получения
EA039135B1 (ru) * 2020-11-23 2021-12-09 Общество С Ограниченной Ответственностью "Форэс" Керамический расклинивающий агент
RU2761424C1 (ru) * 2020-12-29 2021-12-08 Общество С Ограниченной Ответственностью "Ника-Петротэк" Сырьевая смесь для изготовления магнезиально-силикатного проппанта
CN113563867B (zh) * 2021-08-31 2022-11-22 西南科技大学 一种高强度硅酸镁铝支撑剂及其制备方法
CN113666730A (zh) * 2021-08-31 2021-11-19 西南科技大学 一种高强度石油压裂硅酸镁铝支撑剂及其制备方法
CN113582676A (zh) * 2021-08-31 2021-11-02 西南科技大学 一种硅酸镁铝支撑剂及其生产工艺和应用
CN113651632A (zh) * 2021-09-26 2021-11-16 西南科技大学 一种硅酸镁陶质材料及其制备方法
CN114735936B (zh) * 2022-05-17 2023-10-17 山东理工大学 一种钢渣基陶瓷釉乳浊剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674866A (zh) * 2012-06-06 2012-09-19 郑州真金耐火材料有限责任公司 镁铁尖晶石隔热复合砖
RU2463329C1 (ru) * 2011-05-06 2012-10-10 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления магнийсиликатного проппанта и проппант
CN103436248A (zh) * 2013-08-05 2013-12-11 杨松 利用镁矿尾矿、铁矿尾矿、硼泥制备的支撑剂及其制备方法
CN105263883A (zh) * 2013-06-28 2016-01-20 耐火材料控股有限公司 耐火配合料及其用途

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576579B2 (en) * 2000-10-03 2003-06-10 Corning Incorporated Phosphate-based ceramic
RU2235702C9 (ru) * 2002-10-10 2019-02-14 Сергей Федорович Шмотьев Способ изготовления керамических расклинивателей нефтяных скважин
RU2235703C9 (ru) * 2003-05-12 2019-01-15 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления керамических расклинивателей нефтяных скважин
FR2870686B1 (fr) * 2004-05-27 2006-07-21 Techni Sangles Soc Par Actions Boucle ou anneau pour attacher ou porter une charge
EP1884549A1 (en) * 2006-08-04 2008-02-06 ILEM Research and Development Establishment Ceramic proppant with low specific weight
WO2009012455A1 (en) * 2007-07-18 2009-01-22 Oxane Materials, Inc. Proppants with carbide and/or nitride phases
CA2721916A1 (en) * 2008-04-28 2009-11-05 Schlumberger Canada Limited Strong low density ceramics
RU2437913C1 (ru) * 2010-06-03 2011-12-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления легковесного магнийсиликатного проппанта и проппант
CN102180684A (zh) * 2011-03-09 2011-09-14 淄博工陶耐火材料有限公司 工业化合成的镁铁铝复合尖晶石及合成方法
RU2476477C1 (ru) * 2011-09-12 2013-02-27 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления композиционного магнийсиликатного проппанта и проппант
RU2518618C1 (ru) * 2012-12-25 2014-06-10 Открытое акционерное общество "Боровичский комбинат огнеупоров" Способ получения проппанта и проппант
CN104250102A (zh) * 2013-06-29 2014-12-31 西峡宏泰镁橄榄石有限公司 一种利用废弃的镁橄榄石矿粉制备轻质镁砖的方法
RU2563853C9 (ru) * 2014-08-05 2021-03-18 Общество С Ограниченной Ответственностью "Форэс" Шихта для изготовления магнийсиликатного проппанта и проппант

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2463329C1 (ru) * 2011-05-06 2012-10-10 Общество С Ограниченной Ответственностью "Форэс" Способ изготовления магнийсиликатного проппанта и проппант
CN102674866A (zh) * 2012-06-06 2012-09-19 郑州真金耐火材料有限责任公司 镁铁尖晶石隔热复合砖
CN105263883A (zh) * 2013-06-28 2016-01-20 耐火材料控股有限公司 耐火配合料及其用途
CN103436248A (zh) * 2013-08-05 2013-12-11 杨松 利用镁矿尾矿、铁矿尾矿、硼泥制备的支撑剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Effect of the serpentine on the formation of mineralogical phase and its relation with mechanical strength iron ore sinters;Bedolla,E等;《REVISTA DE METALURGIA》;19951231;第31卷(第6期);第368-378页 *
轻烧橄榄石生成矿物相的研究;孙彦霞等;《2011年全国不定形耐火材料学术会议》;20110924;第508-510页 *

Also Published As

Publication number Publication date
CN108603102A (zh) 2018-09-28
US10442738B2 (en) 2019-10-15
RU2694363C1 (ru) 2019-07-12
RU2615563C9 (ru) 2018-10-16
WO2017142439A1 (ru) 2017-08-24
US20190031568A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
CN108603102B (zh) 陶粒支撑剂及其制造方法
CA2593594C (en) Ceramic proppant with low specific weight
US7648934B2 (en) Precursor compositions for ceramic products
CN101617018B (zh) 支撑剂、支撑剂制备方法以及支撑剂的用途
RU2383578C2 (ru) Проппант, способ его получения и способ гидравлического разрыва пласта с использованием полученного проппанта
CN110564400B (zh) 利用油基钻屑热解析残渣烧结的压裂支撑剂及其制备方法
RU2742891C2 (ru) Способ изготовления магнийсиликатного проппанта средней плотности и проппант
US9234127B2 (en) Angular abrasive proppant, process for the preparation thereof and process for hydraulic fracturing of oil and gas wells
US10017687B2 (en) Ultra-light ultra-strong proppants
AU2018200659A1 (en) Proppant Material Incorporating Fly Ash and Method of Manufacture
WO2015084195A1 (en) A method of manufacturing of light ceramic proppants and light ceramic proppants
US20170226410A1 (en) Proppant Material Incorporating Fly Ash and Method of Manufacture
RU2394063C1 (ru) Способ изготовления проппанта из глиноземсодержащего сырья
WO2016044688A1 (en) Addition of mineral-containing slurry for proppant formation
RU2739180C1 (ru) Способ получения магнийсиликатного проппанта и проппант
RU2728300C1 (ru) Способ получения проппанта - сырца из природного магнийсиликатного сырья
US3844808A (en) Synthetic aggregates made from impure bauxite
RU2650149C1 (ru) Шихта для изготовления легковесного кремнезёмистого проппанта и проппант
EA024901B1 (ru) Состав и способ получения керамического расклинивающего агента
RU2761424C1 (ru) Сырьевая смесь для изготовления магнезиально-силикатного проппанта
US20180258343A1 (en) Proppants having fine, narrow particle size distribution and related methods
EA036221B1 (ru) Способ получения керамического расклинивающего агента на основе магнезиального материала
CN117264623A (zh) 一种基于废fcc催化剂的陶粒支撑剂及其制备方法和应用
BR102019017920A2 (pt) Processo de produção de propantes a partir de rejeitos de flotação de níquel
EA041289B1 (ru) Шихта для изготовления магнезиально-кварцевого проппанта

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant