CN108597189A - 基于临界雨量的分布式中小流域地质灾害及洪水预警方法 - Google Patents

基于临界雨量的分布式中小流域地质灾害及洪水预警方法 Download PDF

Info

Publication number
CN108597189A
CN108597189A CN201810370332.7A CN201810370332A CN108597189A CN 108597189 A CN108597189 A CN 108597189A CN 201810370332 A CN201810370332 A CN 201810370332A CN 108597189 A CN108597189 A CN 108597189A
Authority
CN
China
Prior art keywords
rainfall
basin
grid
early warning
grid cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810370332.7A
Other languages
English (en)
Other versions
CN108597189B (zh
Inventor
童冰星
姚成
李致家
黄迎春
晁丽君
温娅惠
何蒙
马亚楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201810370332.7A priority Critical patent/CN108597189B/zh
Publication of CN108597189A publication Critical patent/CN108597189A/zh
Application granted granted Critical
Publication of CN108597189B publication Critical patent/CN108597189B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B31/00Predictive alarm systems characterised by extrapolation or other computation using updated historic data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Abstract

本发明公开了基于临界雨量的分布式中小流域地质灾害及洪水预警方法,主要包括:提取流域DEM数据,将流域划分为若干个栅格;利用流域DEM数据提取流域水系;结合流域DEM数据和流域水系划分流域内的子流域;依据各个站点的小时雨量数据,得到流域内的各个栅格上逐小时面雨量数据;构建基于上层张力水含量和累计降雨量的临界雨量预警模型;实时洪水预报预警中,结合流域内的各个栅格上逐小时面雨量数据和临界雨量预警模型,计算得到各个栅格单元内的临界雨量,并实现流域内分区分级预警;结合流域内的水系,依据流域内分区分级预警结果实现河流分段分级预警。本发明具有数据来源稳定可靠、计算效率高、结果客观合理等优点,值得推广。

Description

基于临界雨量的分布式中小流域地质灾害及洪水预警方法
技术领域
本发明属于水文技术领域,具体涉及一种基于临界雨量的分布式中小流域地质灾害及洪水预警方法。
背景技术
随着自动雨量监测技术的发展,无人值守的自动雨量监测站以其测量快速、布设便利的特点站网密度正在不断加大,应用实时监测的降雨对山洪陡涨陡落和滑坡、泥石流等地质灾害频发的山区性小流域进行快速预警现已成为中小流域灾害控制管理的重要内容之一。在应用实时监测的降雨进行中小流域洪水和地质灾害预警时,其主要难点之一在于如何结合流域内土壤水含量情况,确定出易致灾害的临界降雨量,从而结合实时的降雨情况对流域内发生的洪水和地质灾害可能性进行快速评估预警。为了进一步促进流域洪水和地质灾害预警预报的发展,需要更深入研究临界雨量的计算方法。
在以临界雨量为标准,采用实时雨量与临界雨量相对比的方法进行流域洪水和地质灾害预警时,临界雨量的合理性对发布预警的合理性有着重要影响。然而,目前方法计算出来的临界雨量一般是依据历史降雨洪水资料,然而在实时降雨过程中,随着降雨情况不断发生变化,流域内土壤水含量也在实时发生变化,使得与土壤水含量有着紧密联系的临界雨量也在实时发生着变化。因此目前方法计算出来的临界雨量并不完全符合客观实际,从而限制了采用实时降雨数据在流域洪水和地质灾害预警中的应用,不利于国内中小流域实时洪水和地质灾害预警的发展。
针对以上不足,如何考虑流域土壤水含量的实时变化,结合实时变化的降雨量和土壤水含量计算出合理的临界雨量,并将其与实时的降雨量比较作为中小流域洪水和地质灾害快速预警的依据,正是发明人需要解决的问题。
发明内容
为了解决现有技术中存在的不足,本发明提供了基于临界雨量的分布式中小流域地质灾害及洪水预警方法,具有数据来源稳定可靠、计算效率高、结果客观合理等优点,有利于中小流域洪水和地质灾害快速预警。
为解决上述问题,本发明具体采用以下技术方案:
基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,包括以下步骤:
步骤1,提取流域DEM数据,将流域划分为若干个栅格;
步骤2,利用流域DEM数据提取流域水系;
步骤3,依据各个站点的小时雨量数据,得到流域内的各个栅格上逐小时雨量数据;
步骤4,构建基于上层张力水含量和累计降雨量的临界雨量预警模型;
步骤5,实时洪水预报预警中,结合流域内的各个栅格上逐小时雨量数据和临界雨量预警模型,计算得到各个栅格单元内的临界雨量,并实现流域内分区分级预警;
步骤6,结合流域内的水系,依据流域内分区分级预警结果实现河流分段分级预警。
前述的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,所述步骤1中提取流域DEM数据,将流域划分为若干个栅格,具体包括以下步骤:
步骤1.1,填洼;
步骤1.2,计算流向;
步骤1.3,计算汇流流量,得到汇流栅格;
步骤1.4,确定流域出口站点;
步骤1.5,提取目标流域。
前述的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,所述步骤2中利用流域DEM数据提取流域水系,具体包括以下步骤:
步骤2.1,设置汇流阈值T;
步骤2.2,基于步骤1.3中的汇流栅格,依据汇流阈值T,汇流累计值低于阈值的栅格单元判断为坡地栅格,汇流累计值高于阈值的栅格单元判断为河道栅格,得到流域中的水系River;
步骤2.3,将2.2中得到的水系River与流域实际水系影像比较,若相差较大则修改阈值T再次提取水系,直到水系River与流域实际水系符合。
前述的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,所述步骤3中依据各个站点的小时雨量数据,得到流域内的各个栅格上逐小时面雨量数据,具体包括以下步骤:
步骤3.1,对各个雨量站的日雨量资料和小时雨量资料进行整理,得到逐日的日雨量资料和逐小时的小时雨量资料;
步骤3.2,利用各个雨量站的日雨量资料对小时雨量资料进行校核;
式中:Pd为日雨量数据;Pht为1日中逐小时降雨量数据,t为逐小时的编码,从1到24;ΔP为日雨量和该日中逐小时降雨累计之和的差值,为校核之后的逐小时降雨量数据,
步骤3.3,基于校核后各个雨量站小时雨量资料进行空间插值,得到流域上各个栅格单元内的逐小时雨量数据。
前述的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,所述步骤4中构建基于上层张力水含量和累计降雨量的临界雨量预警模型,具体包括以下步骤:
步骤4.1,选择流域内洪峰较高、危害较大的典型洪水;
步骤4.2,设置不同的初始土壤水含量,并提前一段预热期,采用分布式的水文模型进行产流计算,得到每一个栅格单元内的逐小时上层张力水含量;
步骤4.3,在每一个栅格单元内,统计在不同初始土壤水含量的情况下,上层张力水含量达到饱和时所对应的累积降雨量AccPs,即该土壤水含量下的临界雨量;
步骤4.4,在每一个栅格单元内,统计能够使上层张力水含量达到饱和的最小累积降雨量出现时不同初始土壤水含量情况下所对应的各自上层张力水含量Ws
步骤4.5,在每一个栅格单元内,基于s个Ws和AccPs点对,以Ws为横坐标,AccPs点为纵坐标拟合曲线,得到曲线方程;
AccPs=α×Ws β+μ (3)
式中:α为一个栅格单元内曲线方程的比例系数;β为一个栅格单元内曲线方程的次方系数;μ为一个栅格单元内的最大每小时可能降雨量;s为4.2中不同初始土壤水含量的种类数目,一般情况下s取6,分别对应的初始土壤水含量为饱和土壤水含量的0%,20%,40%,60%,80%,100%;
逐栅格确定各个栅格单元中的系数α、β和μ,从而确定每一个栅格单元内的临界雨量预警模型方程表达式,进而构建全流域的临界雨量预警模型。确定每一个栅格单元中的系数α、β和μ就能够确定每一个栅格单元中的临界雨量预警模型方程表达式,在每一个栅格单元的临界雨量预警模型方程表达式确定好之后就确定整个流域的临界雨量预警模型。
前述的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,所述步骤5中在实时洪水预报预警中,结合流域内的各个栅格上逐小时面雨量数据和临界雨量预警模型,计算得到各个栅格单元内的临界雨量,并实现流域内分区分级预警,具体包括以下步骤:
步骤5.1,将各个站点的实时雨量插值为面雨量,并进行累加计算,得到实时累计降雨量空间分布栅格RasterSumP;
步骤5.2,以每一个栅格单元内的实时雨量为分布式水文模型的输入,计算得到每一个栅格单元内逐时刻上层张力水含量;
步骤5.3,将逐时刻上层张力水含量作为临界雨量预警模型的输入,结合步骤4.5中得到的流域中系数α的矩阵、系数β的矩阵和系数μ的矩阵计算出逐时刻的各个栅格单元的临界雨量,得到临界雨量空间分布栅格RasterCriP;
步骤5.4,将5.1中得到的实时累计降雨量空间分布栅格减去5.3中得到的临界雨量空间分布栅格得到预警雨量判断栅格RasterExcP,若栅格单元中实时累计雨量高于临界雨量,则该栅格为需要进行预警的栅格单元,并结合流域实际情况对超过临界雨量的栅格单元进行分级;
在每一个栅格单元中:
RasterExcPe=RasterSumPe-RasterCriPe
式中:RasterExcPe为超过临界雨量的那部分雨量,RasterSumPe为栅格单元内的累积雨量,RasterCriPe为栅格单元内的临界雨量,e为流域内栅格的编码,从1到SumRaster,SumRaster为流域内栅格单元的总数;
当0≤RasterExcPe<Amt1时对编号为e的栅格发布蓝色预警;当Amt1≤RasterExcPe<Amt2时对编号为e的栅格发布黄色预警;当Amt2≤RasterExcPe<Amt3时对编号为e的栅格发布橙色预警;当Amt3≤RasterExcPe时对编号为e的栅格发布红色预警,所述Amt1、Amt2以及Amt3为流域地质灾害预警分级标准。一般来讲,将Amt1设置为20,Amt2设置为40,Amt3设置为60。同时Amt1、Amt2以及Amt3可依据各个流域多年实际情况进行相应调整。
前述的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,所述步骤6中结合流域内的水系,依据流域内分区分级预警结果实现河流分段分级预警,具体包括以下步骤:
步骤6.1,访问预警雨量判断栅格中的每个栅格单元,并且计算每一个栅格单元n*n邻域范围内数值的均值ae均,滑块平均后的预警雨量判断栅格:
式中:ae均为e栅格单元n*n邻域范围内像元数据的均值,e为流域内栅格的编码,从1到SumRaster,SumRaster为流域内栅格单元的总数;i为e栅格单元n*n邻域范围内像元的编号,从1到n,n为邻域范围的边长;aei为每一栅格单元内的值;
步骤6.2,依据水系和滑块平均后的预警雨量判断栅格之间的相对位置关系,选择出水系中每一个河段经过的滑块平均后的预警雨量判断栅格的栅格单元;
步骤6.3,计算6.2中每一个河段经过的所有滑块平均后预警雨量判断栅格的栅格单元均值,并将该值赋予该河段;
式中:bj均为每一个河段经过的所有滑块平均后预警雨量判断栅格的栅格单元均值;j为河段编码,从1到r,r为水系中的河段总数;k为每一河段经过的栅格单元的编码,从1到m,m为每一河段经过的栅格单元总数;bjk为编码为j的河段经过的预警雨量判断栅格的栅格单元中的值,bjk就是预警雨量判断栅格的栅格单元中的值,类似于aei,亦即是每一条河段经过的栅格的aei,为以示河道预警与流域中面上的预警的区别,故单独命名为bjk以示区分;
步骤6.4,结合流域中的实际情况,依据6.3中河段被赋予的预警雨量的值对水系中所有河段进行分区分级预警,对各个河段发生山洪的可能性进行分级;
时对编号为j的河段发布蓝色预警;当时对编号为j的河段发布黄色预警;当时对编号为j的河段发布橙色预警;当时对编号为j的河段发布红色预警。所述Num1、Num2以及Num3为流域河段中山洪预警分级标准。
Num1、Num2以及Num3为流域河段中山洪预警分级标准。一般来讲,将Num1设置为10,Num2设置为20,Num3设置为30。同时Num1、Num2以及Num3可依据各个流域多年实际情况进行相应调整。
本发明的有益效果:本发明提供的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,根据土壤水蓄水容量的物理意义,结合流域实测降雨数据,建立了土壤含水量和实测雨量情况下与临界雨量之间的函数关系,推求了实时土壤含水量和实时雨量下的临界雨量,进而通过实测雨量与临界雨量的对比提取了超临界雨量警戒栅格的空间分布,结合流域内的水系,依据流域内分区分级预警结果实现河流分段分级预警。此方法从实时雨量资料和土壤水含量的出发,以实时计算得到的临界雨量作为发布预警的依据,既保证了预警发布的可靠性和实时性,又解决了无资料山区小流域的洪水和地质灾害预警问题,且方法中变量之间的函数关系明确,有利于临界雨量的快速自动生成,提高了山洪和地质灾害预警的自动化程度和实时性,同时通过分布式的计算方法充分利用了输入雨量数据的空间分布信息,考虑了临界雨量的空间变异性,保证了结果的客观合理性,可以进一步促进山区中小流域洪水和地质灾害预警的深入发展。
附图说明
图1是本发明的系统框图;
图2为本发明中提取出的流域河道示意图;
图3为本发明中通过空间插值得到的流域上各个栅格单元内的雨量值示意图;
图4为本发明中选择的典型洪水示意图;
图5为本发明中计算得到栅格单元内逐小时上层张力水含量变化过程的示意图;
图6为本发明中拟合得到的上层张力水含量和临界雨量预警模型示意图;
图7为本发明中计算得到的某时刻上层张力水含量空间分布示意图;
图8为本发明中计算得到的某时刻临界雨量空间分布示意图;
图9为本发明中计算得到的某时刻预警雨量判断栅格空间分布示意图;
图10为本发明中某时刻滑块平均后的预警雨量判断栅格空间分布示意图;
图11为本发明中判定的某时刻发布预警的河流空间分布示意图。
具体施方式
下面结合附图和具体实施例对本发明作进一步描述。
如图1所示,本发明提供的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,包括以下步骤:
S1、提取流域数字高程模型(DEM)数据,将流域划分为若干个栅格,具体包括以下步骤:
步骤1.1,填洼;
步骤1.2,计算流向;
步骤1.3,计算汇流流量,得到汇流栅格;
步骤1.4,确定流域出口站点;
步骤1.5,提取目标流域。
S2、利用流域DEM数据提取流域水系,具体包括以下步骤:
步骤2.1,设置汇流阈值T;
步骤2.2,基于步骤1.3中的汇流栅格,依据汇流阈值T,汇流累计值低于阈值的栅格单元判断为坡地栅格,汇流累计值高于阈值的栅格单元判断为河道栅格,得到流域中的水系River,如图2所示;
步骤2.3,将步骤2.2中得到的水系River与流域实际水系影像比较,若相差较大则修改阈值T再次提取水系,直到水系River与流域实际水系基本符合。
S3、依据各个站点的小时雨量数据,得到流域内的各个栅格上逐小时雨量数据,具体包括以下步骤:
步骤3.1,对各个雨量站的日雨量资料和小时雨量资料进行整理,得到逐日的日雨量资料和逐小时的小时雨量资料;
步骤3.2,利用各个雨量站的日雨量资料对小时雨量资料进行校核;
式中:Pd为日雨量数据;Pht为1日中逐小时降雨量数据,t为逐小时的编码,从1到24;ΔP为日雨量和该日中逐小时降雨累计之和的差值,为校核之后的逐小时降雨量数据
步骤3.3,基于校核后各个雨量站小时雨量资料进行空间插值,得到流域上各个栅格单元内的雨量值,如图3所示。
S4、构建基于上层张力水含量和累计降雨量的临界雨量预警模型,具体包括以下步骤:
步骤4.1,选择流域内洪峰较高,危害较大的典型洪水,如图4所示;
步骤4.2,设置不同的初始土壤水含量,并提前一段预热期,采用分布式的水文模型进行产流计算,得到每一个栅格单元内的逐小时上层张力水含量,如图5所示;
步骤4.3,在每一个栅格单元内,统计在不同初始土壤含水量的情况下,上层张力水含量达到饱和时所对应的累积降雨量AccPs,即该土壤水含量下的临界雨量;
步骤4.4,在每一个栅格单元内,统计能够使上层张力水含量达到饱和的最小累积降雨量出现时不同初始土壤含水量情况下所对应的各自上层张力水含量Ws
步骤4.5,在每一个栅格单元内,基于s个Ws和AccPs点对,以Ws为横坐标,AccPs点为纵坐标拟合曲线,得到曲线方程,如图6所示;
AccPs=α×Ws β+μ (3)
式中:α为一个栅格单元内曲线方程的比例系数;β为一个栅格单元内曲线方程的次方系数;μ为一个栅格单元内的最大每小时可能降雨量;s为4.2中不同初始土壤水含量的种类数目,一般情况下s取6,分别对应的初始土壤水含量为饱和土壤水含量的0%,20%,40%,60%,80%,100%。
逐栅格确定各个栅格单元中的系数α、β和μ,从而确定每一个栅格单元内的临界雨量预警模型方程表达式,进而构建全流域的临界雨量预警模型。确定每一个栅格单元中的系数α、β和μ就能够确定每一个栅格单元中的临界雨量预警模型方程表达式,在每一个栅格单元的临界雨量预警模型方程表达式确定好之后就确定整个流域的临界雨量预警模型。
S5、在实时洪水预报预警中,结合流域内的各个栅格上逐小时面雨量数据和临界雨量预警模型,计算得到各个栅格单元内的临界雨量,并实现流域内分区分级预警,具体包括以下步骤:
步骤5.1,将各个站点的实时雨量插值为面雨量,并进行累加计算,得到实时累计降雨量空间分布栅格;
步骤5.2,以每一个栅格单元内的实时雨量为分布式水文模型的输入,计算得到每一个栅格单元内逐时刻上层张力水含量,如图7所示;
步骤5.3,将逐时刻上层张力水含量作为临界雨量预警模型的输入,结合步骤4.5中得到的流域中系数α的矩阵、系数β的矩阵和系数μ的矩阵计算出逐时刻的各个栅格单元的临界雨量,得到临界雨量空间分布栅格,如图8所示;
步骤5.4,将5.1中得到的实时累计降雨量空间分布栅格减去5.3中得到的临界雨量空间分布栅格得到预警雨量判断栅格,若栅格单元中实时累计雨量高于临界雨量,则该栅格为需要进行预警的栅格单元,并结合流域实际情况对超过临界雨量的栅格单元进行分级,如图9所示。
在每一个栅格单元中:
RasterExcPe=RasterSumPe-RasterCriPe
式中:RasterExcPe为超过临界雨量的那部分雨量,RasterSumPe为栅格单元内的累积雨量,RasterCriPe为栅格单元内的临界雨量,e为流域内栅格的编码,从1到SumRaster,SumRaster为流域内栅格单元的总数。
当0≤RasterExcPe<Amt1时对编号为e的栅格发布蓝色预警;当Amt1≤RasterExcPe<Amt2时对编号为e的栅格发布黄色预警;当Amt2≤RasterExcPe<Amt3时对编号为e的栅格发布橙色预警;当Amt3≤RasterExcPe时对编号为e的栅格发布红色预警。
Amt1、Amt2以及Amt3为流域地质灾害预警分级标准。一般来讲,将Amt1设置为20,Amt2设置为40,Amt3设置为60。同时Amt1、Amt2以及Amt3可依据各个流域多年实际情况进行相应调整。
S6、结合流域内的水系,依据流域内分区分级预警结果实现河流分段分级预警的步骤包括:
步骤6.1,访问预警雨量判断栅格中的每个栅格单元,并且计算每一个栅格单元n*n邻域范围内数值的均值ae均,滑块平均后的预警雨量判断栅格,如图10所示:
式中:ae均为e栅格单元n*n邻域范围内像元数据的均值,e为流域内栅格的编码,从1到SumRaster,SumRaster为流域内栅格单元的总数;i为e栅格单元n*n邻域范围内像元的编号,从1到n,n为邻域范围的边长;aei为每一栅格单元内的值。
栅格中将要被访问的每个栅格单元称为待处理像元。待处理像元的值以及所识别出的邻域中的所有像元值都将包含在邻域统计数据计算中。同时各邻域可以重叠,因此一个邻域中的像元也可以包含在其他待处理像元的邻域中。
步骤6.2,依据水系和滑块平均后的预警雨量判断栅格之间的相对位置关系,选择出水系中每一个河段经过的滑块平均后的预警雨量判断栅格的栅格单元;
步骤6.3,计算6.2中每一个河段经过的所有滑块平均后预警雨量判断栅格的栅格单元均值,并将该值赋予该河段;
式中:bj均为每一个河段经过的所有滑块平均后预警雨量判断栅格的栅格单元均值;j为河段编码,从1到r,r为水系中的河段总数;k为每一河段经过的栅格单元的编码,从1到m,m为每一河段经过的栅格单元总数,bjk为编码为j的河段经过的预警雨量判断栅格的栅格单元中的值,bjk就是预警雨量判断栅格的栅格单元中的值,类似于aei,亦即是每一条河段经过的栅格的aei,为以示河道预警与流域中面上的预警的区别,故单独命名为bjk以示区分;
步骤6.4,结合流域中的实际情况,依据6.3中河段被赋予的预警雨量的值对水系中所有河段进行分区分级预警,对各个河段发生山洪的可能性进行分级,如图11所示。
时对编号为j的河段发布蓝色预警;当时对编号为j的河段发布黄色预警;当时对编号为j的河段发布橙色预警;当时对编号为j的河段发布红色预警。所述Num1、Num2以及Num3为流域河段中山洪预警分级标准。
Num1、Num2以及Num3为流域河段中山洪预警分级标准。一般来讲,将Num1设置为10,Num2设置为20,Num3设置为30。同时Num1、Num2以及Num3可依据各个流域多年实际情况进行相应调整。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
以上显示和描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,包括以下步骤:
步骤1,提取流域DEM数据,将流域划分为若干个栅格;
步骤2,利用流域DEM数据提取流域水系;
步骤3,依据各个站点的小时雨量数据,得到流域内的各个栅格上逐小时雨量数据;
步骤4,构建基于上层张力水含量和累计降雨量的临界雨量预警模型;
步骤5,实时洪水预报预警中,结合流域内的各个栅格上逐小时雨量数据和临界雨量预警模型,计算得到各个栅格单元内的临界雨量,并实现流域内分区分级预警;
步骤6,结合流域内的水系,依据流域内分区分级预警结果实现河流分段分级预警。
2.根据权利要求1所述的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,所述步骤1中提取流域DEM数据,将流域划分为若干个栅格,具体包括以下步骤:
步骤1.1,填洼;
步骤1.2,计算流向;
步骤1.3,计算汇流流量,得到汇流栅格;
步骤1.4,确定流域出口站点;
步骤1.5,提取目标流域。
3.根据权利要求2所述的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,所述步骤2中利用流域DEM数据提取流域水系,具体包括以下步骤:
步骤2.1,设置汇流阈值T;
步骤2.2,基于步骤1.3中的汇流栅格,依据汇流阈值T,汇流累计值低于阈值的栅格单元判断为坡地栅格,汇流累计值高于阈值的栅格单元判断为河道栅格,得到流域中的水系River;
步骤2.3,将2.2中得到的水系River与流域实际水系影像比较,若相差较大则修改阈值T再次提取水系,直到水系River与流域实际水系符合。
4.根据权利要求3中所述的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,所述步骤3中依据各个站点的小时雨量数据,得到流域内的各个栅格上逐小时面雨量数据,具体包括以下步骤:
步骤3.1,对各个雨量站的日雨量资料和小时雨量资料进行整理,得到逐日的日雨量资料和逐小时的小时雨量资料;
步骤3.2,利用各个雨量站的日雨量资料对小时雨量资料进行校核;
式中:Pd为日雨量数据;Pht为1日中逐小时降雨量数据,t为逐小时的编码,从1到24;ΔP为日雨量和该日中逐小时降雨累计之和的差值,为校核之后的逐小时降雨量数据;
步骤3.3,基于校核后各个雨量站小时雨量资料进行空间插值,得到流域上各个栅格单元内的逐小时雨量数据。
5.根据权利要求4中所述的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,所述步骤4中构建基于上层张力水含量和累计降雨量的临界雨量预警模型,具体包括以下步骤:
步骤4.1,选择流域内洪峰较高、危害较大的典型洪水;
步骤4.2,设置不同的初始土壤水含量,并提前一段预热期,采用分布式的水文模型进行产流计算,得到每一个栅格单元内的逐小时上层张力水含量;
步骤4.3,在每一个栅格单元内,统计在不同初始土壤水含量的情况下,上层张力水含量达到饱和时所对应的累积降雨量AccPs,即该土壤水含量下的临界雨量;
步骤4.4,在每一个栅格单元内,统计能够使上层张力水含量达到饱和的最小累积降雨量出现时不同初始土壤水含量情况下所对应的各自上层张力水含量Ws
步骤4.5,在每一个栅格单元内,基于s个Ws和AccPs点对,以Ws为横坐标,AccPs点为纵坐标拟合曲线,得到每一个栅格单元内的临界雨量预警模型方程表达式;
AccPs=α×Ws β+μ (3)
式中:α为一个栅格单元内曲线方程的比例系数;β为一个栅格单元内曲线方程的次方系数;μ为一个栅格单元内的最大每小时可能降雨量;s为4.2中不同初始土壤水含量的种类数目;
逐栅格确定各个栅格单元中的系数α、β和μ,从而确定每一个栅格单元内的临界雨量预警模型方程表达式,进而构建全流域的临界雨量预警模型。
6.根据权利要求5所述的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,所述步骤5中在实时洪水预报预警中,结合流域内的各个栅格上逐小时面雨量数据和临界雨量预警模型,计算得到各个栅格单元内的临界雨量,并实现流域内分区分级预警,具体包括以下步骤:
步骤5.1,将各个站点的实时雨量插值为面雨量,并进行累加计算,得到实时累计降雨量空间分布栅格RasterSumP;
步骤5.2,以每一个栅格单元内的实时雨量为分布式水文模型的输入,计算得到每一个栅格单元内逐时刻上层张力水含量;
步骤5.3,将逐时刻上层张力水含量作为临界雨量预警模型的输入,结合步骤4.5中得到的流域中系数α的矩阵、系数β的矩阵和系数μ的矩阵计算出逐时刻的各个栅格单元的临界雨量,得到临界雨量空间分布栅格RasterCriP;
步骤5.4,将5.1中得到的实时累计降雨量空间分布栅格减去5.3中得到的临界雨量空间分布栅格得到预警雨量判断栅格RasterExcP,若栅格单元中实时累计雨量高于临界雨量,则该栅格为需要进行预警的栅格单元,并结合流域实际情况对超过临界雨量的栅格单元进行分级;
在每一个栅格单元中:
RasterExcPe=RasterSumPe-RasterCriPe
式中:RasterExcPe为超过临界雨量的那部分雨量,RasterSumPe为栅格单元内的累积雨量,RasterCriPe为栅格单元内的临界雨量,e为流域内栅格的编码,从1到SumRaster,SumRaster为流域内栅格单元的总数;
当0≤RasterExcPe<Amt1时对编号为e的栅格发布蓝色预警;当Amt1≤RasterExcPe<Amt2时对编号为e的栅格发布黄色预警;当Amt2≤RasterExcPe<Amt3时对编号为e的栅格发布橙色预警;当Amt3≤RasterExcPe时对编号为e的栅格发布红色预警,所述Amt1、Amt2以及Amt3为流域地质灾害预警分级标准。
7.根据权利要求6所述的基于临界雨量的分布式中小流域地质灾害及洪水预警方法,其特征在于,所述步骤6中结合流域内的水系,依据流域内分区分级预警结果实现河流分段分级预警,具体包括以下步骤:
步骤6.1,访问预警雨量判断栅格中的每个栅格单元,计算每一个栅格单元n*n邻域范围内数值的均值ae均,得到滑块平均后的预警雨量判断栅格:
式中:ae均为e栅格单元n*n邻域范围内像元数据的均值,e为流域内栅格的编码,从1到SumRaster,SumRaster为流域内栅格单元的总数;i为e栅格单元n*n邻域范围内像元的编号,从1到n,n为邻域范围的边长;aei为每一栅格单元内的值;
步骤6.2,依据水系和滑块平均后的预警雨量判断栅格之间的相对位置关系,选择出水系中每一个河段经过的滑块平均后的预警雨量判断栅格的栅格单元;
步骤6.3,计算6.2中每一个河段经过的所有滑块平均后预警雨量判断栅格的栅格单元均值,并将该值赋予该河段;
式中:bj均为每一个河段经过的所有滑块平均后预警雨量判断栅格的栅格单元均值;j为河段编码,从1到r,r为水系中的河段总数;k为每一河段经过的栅格单元的编码,从1到m,m为每一河段经过的栅格单元总数;bjk为编码为j的河段经过的预警雨量判断栅格的栅格单元中的值。
步骤6.4,结合流域中的实际情况,依据6.3中河段被赋予的预警雨量的值对水系中所有河段进行分区分级预警,对各个河段发生山洪的可能性进行分级;
时对编号为j的河段发布蓝色预警;当时对编号为j的河段发布黄色预警;当时对编号为j的河段发布橙色预警;当时对编号为j的河段发布红色预警,所述Num1、Num2以及Num3为流域河段中山洪预警分级标准。
CN201810370332.7A 2018-04-24 2018-04-24 基于临界雨量的分布式中小流域地质灾害及洪水预警方法 Expired - Fee Related CN108597189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810370332.7A CN108597189B (zh) 2018-04-24 2018-04-24 基于临界雨量的分布式中小流域地质灾害及洪水预警方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810370332.7A CN108597189B (zh) 2018-04-24 2018-04-24 基于临界雨量的分布式中小流域地质灾害及洪水预警方法

Publications (2)

Publication Number Publication Date
CN108597189A true CN108597189A (zh) 2018-09-28
CN108597189B CN108597189B (zh) 2019-12-13

Family

ID=63614280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810370332.7A Expired - Fee Related CN108597189B (zh) 2018-04-24 2018-04-24 基于临界雨量的分布式中小流域地质灾害及洪水预警方法

Country Status (1)

Country Link
CN (1) CN108597189B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109118721A (zh) * 2018-10-31 2019-01-01 河海大学 基于临界雨量推求复合预警指标的方法、装置及预警方法
CN109410526A (zh) * 2018-11-09 2019-03-01 新开普电子股份有限公司 一种山洪灾害监测预警平台
CN109583642A (zh) * 2018-11-27 2019-04-05 贵州东方世纪科技股份有限公司 一种区域洪水预警方法
CN109671248A (zh) * 2018-12-12 2019-04-23 河北省水利水电勘测设计研究院 基于防灾对象的山洪灾害预警方法
CN109920213A (zh) * 2019-03-13 2019-06-21 河海大学 基于降雨时程分布的临界雨量进行实时山洪预警的方法
CN109993350A (zh) * 2019-03-13 2019-07-09 河海大学 一种基于降雨空间分布的临界雨量估算方法
CN110009002A (zh) * 2019-03-13 2019-07-12 河海大学 基于多维降雨特征空间最优决策的山洪快速预警预报方法
CN110377868A (zh) * 2019-06-20 2019-10-25 河海大学 一种基于实时雨情的动态水系提取方法
CN111462450A (zh) * 2020-01-16 2020-07-28 华中科技大学 一种考虑降雨空间异质性的山洪预警方法
CN111582615A (zh) * 2019-02-18 2020-08-25 中国科学院深圳先进技术研究院 一种基于logistic回归模型的评价方法及系统
CN111625993A (zh) * 2020-05-25 2020-09-04 中国水利水电科学研究院 一种基于山区地形及降雨特征预测的小流域面雨量插值方法
CN112530137A (zh) * 2020-11-27 2021-03-19 淮阴师范学院 一种基于临界雨量的分布式中小流域地质灾害及洪水预警方法
CN113128009A (zh) * 2021-04-27 2021-07-16 中国水利水电科学研究院 一种考虑山区平原地貌差异的子流域单元划分方法
CN113158139A (zh) * 2021-02-26 2021-07-23 河海大学 一种卫星观测降雨数据的降尺度产品误差计算方法
CN114093133A (zh) * 2021-11-24 2022-02-25 合肥工业大学 一种区域地质灾害气象预报预警方法
CN114676882A (zh) * 2022-03-01 2022-06-28 河海大学 一种水文多模型时变权重组合预报方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014868A (ja) * 2001-06-28 2003-01-15 Foundation Of River & Basin Integrated Communications Japan 洪水予測情報提供システム
JP2007011582A (ja) * 2005-06-29 2007-01-18 Information & Science Techno-System Co Ltd 洪水予測システム
CN102034001A (zh) * 2010-12-16 2011-04-27 南京大学 一种以栅格为模拟单元的分布式水文模型设计方法
CN102592041A (zh) * 2011-11-14 2012-07-18 江西省电力科学研究院 柘林水库中小洪水预报的计算方法
CN105912770A (zh) * 2016-04-08 2016-08-31 中山大学 水文实时预报系统
CN106023530A (zh) * 2016-06-07 2016-10-12 长安大学 一种暴雨型稀性泥石流监测预报预警装置及方法
CN107609715A (zh) * 2017-10-11 2018-01-19 北京师范大学 一种基于暴雨特征山洪临界雨量计算方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014868A (ja) * 2001-06-28 2003-01-15 Foundation Of River & Basin Integrated Communications Japan 洪水予測情報提供システム
JP2007011582A (ja) * 2005-06-29 2007-01-18 Information & Science Techno-System Co Ltd 洪水予測システム
CN102034001A (zh) * 2010-12-16 2011-04-27 南京大学 一种以栅格为模拟单元的分布式水文模型设计方法
CN102592041A (zh) * 2011-11-14 2012-07-18 江西省电力科学研究院 柘林水库中小洪水预报的计算方法
CN105912770A (zh) * 2016-04-08 2016-08-31 中山大学 水文实时预报系统
CN106023530A (zh) * 2016-06-07 2016-10-12 长安大学 一种暴雨型稀性泥石流监测预报预警装置及方法
CN107609715A (zh) * 2017-10-11 2018-01-19 北京师范大学 一种基于暴雨特征山洪临界雨量计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
崔庆忠等: "新安江三水源模型在蒲河流域上的应用", 《东北水利水电》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109118721A (zh) * 2018-10-31 2019-01-01 河海大学 基于临界雨量推求复合预警指标的方法、装置及预警方法
CN109410526A (zh) * 2018-11-09 2019-03-01 新开普电子股份有限公司 一种山洪灾害监测预警平台
CN109583642A (zh) * 2018-11-27 2019-04-05 贵州东方世纪科技股份有限公司 一种区域洪水预警方法
CN109671248A (zh) * 2018-12-12 2019-04-23 河北省水利水电勘测设计研究院 基于防灾对象的山洪灾害预警方法
CN111582615A (zh) * 2019-02-18 2020-08-25 中国科学院深圳先进技术研究院 一种基于logistic回归模型的评价方法及系统
CN109993350A (zh) * 2019-03-13 2019-07-09 河海大学 一种基于降雨空间分布的临界雨量估算方法
CN109993350B (zh) * 2019-03-13 2021-04-27 河海大学 一种基于降雨空间分布的临界雨量估算方法
CN110009002B (zh) * 2019-03-13 2020-02-07 河海大学 基于多维降雨特征空间最优决策的山洪快速预警预报方法
CN109920213A (zh) * 2019-03-13 2019-06-21 河海大学 基于降雨时程分布的临界雨量进行实时山洪预警的方法
CN110009002A (zh) * 2019-03-13 2019-07-12 河海大学 基于多维降雨特征空间最优决策的山洪快速预警预报方法
CN110377868A (zh) * 2019-06-20 2019-10-25 河海大学 一种基于实时雨情的动态水系提取方法
CN110377868B (zh) * 2019-06-20 2023-06-20 河海大学 一种基于实时雨情的动态水系提取方法
CN111462450A (zh) * 2020-01-16 2020-07-28 华中科技大学 一种考虑降雨空间异质性的山洪预警方法
CN111625993B (zh) * 2020-05-25 2020-12-18 中国水利水电科学研究院 一种基于山区地形及降雨特征预测的小流域面雨量插值方法
CN111625993A (zh) * 2020-05-25 2020-09-04 中国水利水电科学研究院 一种基于山区地形及降雨特征预测的小流域面雨量插值方法
CN112530137A (zh) * 2020-11-27 2021-03-19 淮阴师范学院 一种基于临界雨量的分布式中小流域地质灾害及洪水预警方法
CN113158139A (zh) * 2021-02-26 2021-07-23 河海大学 一种卫星观测降雨数据的降尺度产品误差计算方法
CN113128009A (zh) * 2021-04-27 2021-07-16 中国水利水电科学研究院 一种考虑山区平原地貌差异的子流域单元划分方法
CN114093133A (zh) * 2021-11-24 2022-02-25 合肥工业大学 一种区域地质灾害气象预报预警方法
CN114676882A (zh) * 2022-03-01 2022-06-28 河海大学 一种水文多模型时变权重组合预报方法
CN114676882B (zh) * 2022-03-01 2022-12-13 河海大学 一种水文多模型时变权重组合预报方法

Also Published As

Publication number Publication date
CN108597189B (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
CN108597189A (zh) 基于临界雨量的分布式中小流域地质灾害及洪水预警方法
Singh et al. Grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: A case study in the Kapgari watershed, India
Looper et al. An assessment of distributed flash flood forecasting accuracy using radar and rain gauge input for a physics-based distributed hydrologic model
Ran et al. Cumulative sediment trapping by reservoirs in large river basins: A case study of the Yellow River basin
CN110428586A (zh) 基于前期降雨和上下游拓扑关系的农村基层洪涝预警方法
CN113610264B (zh) 一种精细化电网台风洪涝灾害预测系统
CN106779232B (zh) 一种城市内涝的建模预测方法
CN112506994B (zh) 一种电力设备洪涝隐患点监测预警方法及相关装置
Yang et al. Delineation of lakes and reservoirs in large river basins: An example of the Yangtze River Basin, China
CN113011685A (zh) 一种无径流资料地区内陆湖泊水位变化模拟预测方法
CN108615035A (zh) 基于图像识别的中小土石坝安全信息采集系统
CN110187413A (zh) 一种城市内涝预报方法、电子设备及存储介质
Song et al. The long-term water level dynamics during urbanization in plain catchment in Yangtze River Delta
Saha et al. Identification of potential sites for water harvesting structures using geospatial techniques and multi-criteria decision analysis
CN107609715A (zh) 一种基于暴雨特征山洪临界雨量计算方法
Cai et al. Spatial variations of river–groundwater interactions from upstream mountain to midstream oasis and downstream desert in Heihe River basin, China
Pandit et al. Identification of potential sites for future lake formation and expansion of existing lakes in glaciers of Chandra Basin, Western Himalayas, India
Wang et al. Identifying the driving factors of sediment delivery ratio on individual flood events in a long-term monitoring headwater basin
CN110532969A (zh) 基于多尺度图像分割的斜坡单元划分方法
Yue et al. A new strategy for environmental flow management by using the remote sensing method
CN115293241A (zh) 基于多源数据融合的河道崩岸预警方法及装置
Yang et al. Variation of water body in Dongting Lake from in situ measurements and MODIS observations in recent decades
Hunink et al. Green Water Credits for the Upper Tana Basin, Kenya. Phase II-Pilot Operations: Biophysical assessment using SWAT
CN113792437A (zh) 多维度防汛形势综合研判方法及系统
CN107274113B (zh) 一种新型大坝维修决策评估方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191213

CF01 Termination of patent right due to non-payment of annual fee